Skip to main content

Affordance-Based Activity Placement in Human-Robot Shared Environments

  • Conference paper
Book cover Social Robotics (ICSR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8239))

Included in the following conference series:

Abstract

When planning to carry out an activity, a mobile robot has to choose its placement during the activity. Within an environment shared by humans and robots, a social robot should take restrictions deriving from spatial needs of other agents into account. We propose a solution to the problem of obtaining a target placement to perform an activity taking the action possibilities of oneself and others into account. The approach is based on affordance spaces agents can use to perform activities and on socio-spatial reasons that count for or against using such a space.

This research is partially supported by the DFG (German Science Foundation) in IRTG 1247 ‘Cross-modal Interaction in Natural and Artificial Cognitive Systems’ (CINACS). Thanks to Jianwei Zhang for providing access to the PR2 and the robot lab. Thanks to Johanna Seibt and Klaus Robering for discussions about affordance spaces in the context of ‘Making Space’ and ‘Friends by Design’ and to three anonymous reviewers for their valuable comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althaus, P., Ishiguro, H., Kanda, T., Miyashita, T., Christensen, H.I.: Navigation for human-robot interaction tasks. In: Proc. of ICRA 2004, pp. 368–377 (2004)

    Google Scholar 

  2. Bonnefon, J.-F., Dubois, D., Fargier, H., Leblois, S.: Qualitative heuristics for balancing the pros and cons. Theory and Decision 65(1), 71–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dubois, D., Fargier, H., Bonnefon, J.-F.: On the qualitative comparison of decisions having positive and negative features. Journal of Artificial Intelligence Research 32(1), 385–417 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Gibson, J.J.: The Theory of Affordances. In: The Ecological Approach to Visual Perception, pp. 127–143. Lawrence Erlbaum Association Inc. (1986)

    Google Scholar 

  5. Kendon, A.: Conducting Interaction: Patterns of Behavior and Focused Encounters. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  6. Keshavdas, S., Zender, H., Kruijff, G.J.M., Liu, M., Colas, F.: Functional mapping: Spatial inferencing to aid human-robot rescue efforts in unstructured disaster environments. In: Proc. of the 2012 AAAI Spring Symposium on Designing Intelligent Robots, Stanford University. AAAI Press (2012)

    Google Scholar 

  7. Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., Beetz, M.: Oro, a knowledge management module for cognitive architectures in robotics. In: Proc. of the 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2010)

    Google Scholar 

  8. Lindner, F., Eschenbach, C.: Towards a formalization of social spaces for socially aware robots. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 283–303. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Okada, K., Kojima, M., Sagawa, Y., Ichino, T., Sato, K., Inaba, M.: Vision based behavior verification system of humanoid robot for daily environment tasks. In: Proc. of the 6th IEEE-RAS Int. Conf. on Humanoid Robots, pp. 7–12. IEEE (2006)

    Google Scholar 

  10. Pandey, A.K., Alami, R.: Taskability graph: Towards analyzing effort based agent-agent affordances. In: Proc. of the 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 791–796 (2012)

    Google Scholar 

  11. Raz, J.: Practical Reason and Norms. Oxford University Press (1999)

    Google Scholar 

  12. Shiotani, T., Maegawa, K., Lee, J.H.: A behavior model of autonomous mobile projection robot for the visual information. In: Proc. of the 8th Int. Conf. on Ubiquitous Robots and Ambient Intelligence, pp. 615–620 (2011)

    Google Scholar 

  13. Sisbot, E.A., Marin-Urias, L.F., Broquère, X., Sidobre, D., Alami, R.: Synthesizing robot motions adapted to human presence. Int. Journal of Social Robotics 2(3), 329–343 (2010)

    Article  Google Scholar 

  14. Stulp, F., Fedrizzi, A., Mösenlechner, L., Beetz, M.: Learning and reasoning with action-related places for robust mobile manipulation. Journal of Artificial Intelligence Research (JAIR) 43, 1–42 (2012)

    MATH  Google Scholar 

  15. Tipaldi, G.D., Arras, K.O.: I want my coffee hot! Learning to find people under spatio-temporal constraints. In: Proc. of the Int. Conf. on Robotics and Automation, pp. 1217–1222 (2011)

    Google Scholar 

  16. Torta, E., Cuijpers, R.H., Juola, J.F., van der Pol, D.: Design of robust robotic proxemic behaviour. In: Mutlu, B., Bartneck, C., Ham, J., Evers, V., Kanda, T. (eds.) ICSR 2011. LNCS (LNAI), vol. 7072, pp. 21–30. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Williams, M.-A.: Robot social intelligence. In: Ge, S.S., Khatib, O., Cabibihan, J.-J., Simmons, R., Williams, M.-A. (eds.) ICSR 2012. LNCS (LNAI), vol. 7621, pp. 45–55. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Yamaoka, F., Kanda, T., Ishiguro, H., Hagita, N.: A model of proximity control for information-presenting robots. IEEE Trans. on Robotics 26(1), 187–195 (2010)

    Article  Google Scholar 

  19. Zacharias, F., Borst, C., Beetz, M., Hirzinger, G.: Positioning mobile manipulators to perform constrained linear trajectories. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 2578–2584. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lindner, F., Eschenbach, C. (2013). Affordance-Based Activity Placement in Human-Robot Shared Environments. In: Herrmann, G., Pearson, M.J., Lenz, A., Bremner, P., Spiers, A., Leonards, U. (eds) Social Robotics. ICSR 2013. Lecture Notes in Computer Science(), vol 8239. Springer, Cham. https://doi.org/10.1007/978-3-319-02675-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02675-6_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02674-9

  • Online ISBN: 978-3-319-02675-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics