
ar
X

iv
:1

30
7.

76
61

v2
 [

cs
.L

O
]

 3
0

Ju
l 2

01
3

Resolution in Linguistic Propositional Logic

based on Linear Symmetrical Hedge Algebra

Thi-Minh-Tam Nguyen1, Viet-Trung Vu2,
The-Vinh Doan2, and Duc-Khanh Tran2

1 Faculty of Information Technology - Vinh University
Email: nmtam@vinhuni.edu.vn

2 School of Information and Communication Technology
Hanoi University of Science and Technology

Email: trungvv91@gmail.com
doanthevinh1991@gmail.com
khanhtd@soict.hut.edu.vn

Abstract. The paper introduces a propositional linguistic logic that
serves as the basis for automated uncertain reasoning with linguistic
information. First, we build a linguistic logic system with truth value
domain based on a linear symmetrical hedge algebra. Then, we consider
Gödel’s t-norm and t-conorm to define the logical connectives for our
logic. Next, we present a resolution inference rule, in which two clauses
having contradictory linguistic truth values can be resolved. We also give
the concept of reliability in order to capture the approximative nature of
the resolution inference rule. Finally, we propose a resolution procedure
with the maximal reliability.

Keywords: Linear Hedge Algebra, Linguistic Truth Value, Linguistic
Propositional Logic, Resolution.

1 Introduction

Automated reasoning is an approach to model human thinking. The resolution
rule introduced by Robinson (1965) [5] marked an important point in studying
automated reasoning. Resolution based on fuzzy set theory of Zadeh [18] has
been studied to deal with uncertain information. In fuzzy logic, each clause has
a membership function in [0, 1]. Since then subtantial works [5,17,1,13,6,14] have
been done on the fuzzy resolution.

In two-valued logic, each clause has a truth value True or False. Therefore,
the logical inference is absolutely accurate. However, in linguistic logic, each
literal has a linguistic truth value such as MoreTrue, MoreFalse, PossibleVeryTrue,
LessTrue, ..., where True,False are generators and More,PossibleVery, Less, . . . are
strings of hedges which increase or decrease the semantic of generators. Thus
the accuracy of logical inference is approximate. For instance the two clauses
ATrue ∨ BMoreTrue and BLessFalse ∨ CTrue can be resolved to obtain ATrue ∨ CTrue.
However the literals BMoreTrue and BLessFalse are not totally contradictory, they

http://arxiv.org/abs/1307.7661v2

are only contradictory at a certain degree. Consequently the resolution inference
is only reliable at a certain degree. Therefore, when the inference is performed,
the infered formula should be associated with a certain reliability. Automated
reasoning in linguistic logic has been attracting many researchers. Many works
presented resolution algorithms in linguistic logics with truth value domain based
on the implication lattice algebraic structures [2,3,15,16,19] or based on hedge
algebra [4,8,10,11].

Along the line of these research directions, we study automated reasoning
based on resolution for linguistic propositional logic with truth value domain
is taken from linear symmetrical hedge algebra. The syntax of linguistic propo-
sitional logic is constructed. To define the semantics of logical connectives we
consider t-norm and t-conorm operators in fuzzy logic, specially t-norm and t-
conorm operators of Gödel and Lukasiewicz. We show that logical connectives
based on Gödel connectives are more appropriate to construct logical connectives
for our linguistic logic. A resolution rule and resolution procedure are given. The
concept of reliability of inference is introduced in such a way that the reliability
of the conclusion is smaller than or equal to the reliabilities of the premises.
We also present a resolution procedure with maximal reliability and prove the
soundness and completeness of the resolution procedure.

The paper is structured as follows: Section 2 introduces basic notions and
results on linear symmetrical hedge algebras. Section 3 presents the syntax and
semantics of our linguistic propositional logic with truth value domain based on
linear symmetrical hedge algebra. The resolution rule and resolution procedure
are introduced in Section 4. Section 5 concludes and draws possible future work.
Proofs of theorems, lemmas and proposition are presented in the Appendix.

2 Preliminaries

We recall only the most important definitions of hedge algebra for our work and
refer the reader to [9,7,8] for further details.

We will be working with a class of abstract algebras of the form AX =
(X,G,H,≤) where X is a term set, G is a set of generators, H is a set of
linguistic hedges or modifiers, and ≤ is a partial order on X . AX is called a
hedge algebra (HA) if it satisfies the following:

– Each hedge h is said to be positive w.r.t k, i.e. either kx ≥ x implies hkx ≥
kx or kx ≤ x implies hkx ≤ kx; similarly h is said to be negative w.r.t k, i.e.
either kx ≥ x implies hkx ≤ kx or kx ≤ x implies hkx ≥ kx (for x ∈ X);

– If terms u and v are independent, then, for all x ∈ H(u), we have x /∈ H(v).
If u and v are incomparable, i.e. u 6< v and v 6< u, then so are x and y, for
every x ∈ H(u) and y ∈ H(v);

– If x 6= hx, then x /∈ H(hx), and if h 6= k and hx ≤ kx, then h′hx ≤ k′kx,
for all h, k, h′, k′ ∈ H and x ∈ X . Moreover, if hx 6= kx, then hx and kx are
independent;

– If u /∈ H(v) and u ≤ v(u ≥ v), then u ≤ hv(u ≥ hv) for any h ∈ H .

Let AX = (X,G,H,≤) where the set of generators G contains exactly two
comparable ones, denoted by c− < c+. For the variable Truth, we have c+ =
True > c− = False. Such HAs are called symmetrical ones. For symmetrical
HAs, the set of hedges H is decomposed into two disjoint subsets H+ = {h ∈
H |hc+ > c+} and H− = {h ∈ H |hc+ < c+}. Two hedges h and k are said to be
converse if ∀x ∈ X,hx ≤ x iff kx ≥ x, i.e., they are in different subsets; h and k
are said to be compatible if ∀x ∈ X,hx ≤ x iff kx ≤ x, i.e. they are in the same
subset. Two hedges in each of the sets H+ and H− may be comparable. Thus,
H+ and H− become posets.

A symmetrical HA AX = (X,G = {c−, c+}, H,≤) is called a linear sym-
metrical HA (LSHA, for short) if the set of hedges H can be decomposed into
H+ = {h ∈ H |hc+ > c+} and H− = {h ∈ H |hc+ < c+}, and H+ and H− are
linearly ordered.

Let hnhn−1 . . . h1u, kmkm−1 . . . k1u be the canonical presentations of values
x, y respectively. x = y iff m = n and hj = kj for every j ≤ n. If x 6= y
then there exists an j ≤ min{m,n} + 1 (there is one convention is understood
that if j = min{m,n} + 1, then hj = I where j = n + 1 ≤ m or kj = I
where j = m + 1 ≤ n) such that hj′= kj′ with all j′ < j. Denote that x<j =
hj−1hj−2 . . . h1u = kj−1kj−2 . . . k1u, we have: x < y iff hjx<j < kjx<j , x > y iff
hjx<j > kjx<j .

Let x be an element of the hedge algebra AX and the canonical representation
of x is x = hn...h1a where a ∈ {c+, c−}. The contradictory element of x is an
element y such that y = hn...h1a

′ where a′ ∈ {c+, c−} and a′ 6= a, denoted by
x. In LSHA, every element x ∈ X has a unique contradictory element in X .

It is useful to limit the set of values X only consists of finite length elements.
This is entirely suitable with the practical application in natural language, which
does not consider infinite number of hedge of string.

From now on, we consider a LSHA AX = (X,G,H,≤,¬,∨,∧,→) where G =
{⊥,False,W,True,⊤}; ⊥,⊤ and W are the least, the neutral, and the greatest
elements of X, respectively; ⊥ < False < W < True < ⊤.

3 Propositional logic with truth value domain based on

symmetrical linear hedge algebra

Below, we define the syntax and semantics of the linguistic propositional logic.

Definition 31 An alphabet consists of:

– constant symbols: MoreTrue,VeryFalse,⊥,⊤, ...
– propositional variables: A,B,C, ...
– logical connectives: ∨,∧,→,¬,≡, and
– auxiliary symbols: ✷, (,), ...

Definition 32 An atom is either a propositional variable or a constant symbol.

Definition 33 Let A be an atom and α be a constant symbol. Then Aα is called
a literal.

Definition 34 Formulae are defined recursively as follows:

– either a literal or a constant is a formula,
– if P is a formula, then ¬P is a formula, and
– if P,Q are formulae, then P ∨Q, P ∧Q, P → Q,P ↔ Q are formulae.

Definition 35 A clause is a finite disjunction of literals, which is written as
l1 ∨ l2 ∨ ... ∨ ln, where li is a literal. An empty clause is denoted by ✷.

Definition 36 A formula F is said to be in conjunctive normal form (CNF) if
it is a conjunction of clauses.

In many-valued logic, sets of connectives called Lukasiewicz, Gödel, and prod-
uct logic ones are often used. Each of the sets has a pair of residual t-norm and
implicator. However, we cannot use the product logic connectives when our truth
values are linguistic.

We recall the operators t-norm(T) and t-conorm(S) on fuzzy logic. It is pre-
sented detailed in [12,14].

T-norm is a dyadic operator on the interval [0, 1]: T : [0, 1]2 −→ [0, 1], satis-
fying the following conditions:

– Commutativity: T (x, y) = T (y, x),
– Associativity: T (x, T (y, z)) = T (T (x, y), z),
– Monotonicity: T (x, y) ≤ T (x, z) where y ≤ z, and
– Boundary condition: T (x, 1) = x.

If T is a t-norm, then its dual t-conorm S is given by S(x, y) = 1−T (1−x, 1−y).
Let K = {n|n ∈ N, n ≤ N0}. Extended T-norm is a dyadic operator TE :

K2 −→ K and satisfies the following conditions:

– Commutativity: TE(m,n) = TE(n,m),
– Associativity: TE(m,TE(n, p)) = TE(TE(m,n), p),
– Monotonicity: TE(m,n) ≤ TE(m, p) where n ≤ p, and
– Boundary condition: TE(n,N0) = n.

The Extended T-conorm is given by: SE(m,n) = N0−TE(N0−n,N0−m). It
is easy to prove that SE is commutative, associate, monotonous. The boundary
condition of SE is: SE(0, n) = n.

Two common pairs (T, S) in fuzzy logic: Gödel’s(T, S) and Lukasiewicz’s(T, S)
are defined as following:

– Gödel:

• TG(m,n) = min(m,n)
• SG(m,n) = max(m,n)

– Lukasiewicz:

• TL(m,n) = max(0,m + n−N0)
• SL(m,n) = min(m + n,N0)

Given a SLHA AX , since all the values in AX are linearly ordered, we assume
that they are ⊥ = v0 ≤ v1 ≤ v2 ≤ . . . ≤ vn = ⊤.

Clearly, the pair (T, S) is determined only depending on max and min op-
erators. Commonly, the truth functions for conjunctions and disjunctions are
t-norms and t-conorms respectively.

Example 31 Consider a SLHA AX = (X, {True,False}, {More, Less},≤) with
Less < More. We assume the length of hedge string is limited at 1. Then AX =
{v0 = MoreFalse, v1 = False, v2 = LessFalse, v3 = LessTrue, v4 = True, v5 =
MoreTrue}. We determine the truth value of logical connectives based on t-norm
and t-conorm operators of Gödel and Lukasiewicz:

– Gödel:
• LessFalse ∨ False = max{LessFalse,False} = LessFalse

• MoreTrue ∧ True = min{MoreTrue,True} = True

– Lukasiewicz:
• LessFalse ∨ False = LessTrue

• MoreTrue ∧ True = LessFalse

In fact, if the same clause has two truth values LessFalse or False, then it
should get the value LessFalse. In the case of two truth values are MoreTrue and
True then it should get the value True. We can see that the logical connectives
based on Gödel’s t-norm and t-conorm operators are more suitable in the reso-
lution framework than those based on Lukasiewicz’s. In this paper we will define
logical connectives using Gödel’s t-norm and t-conorm operators.

Definition 37 Let S be a linguistic truth domain, which is a SLHA AX =
(X,G,H,≤), where G = {⊤,True,W,False,⊥}. The logical connectives ∧ (re-
spectively ∨) over the set S are defined to be Gödel’s t-norm (respectively t-
conorm), and furthermore to satisfy the following:

– ¬α = α.
– α → β = (¬α) ∨ β.

where α, β ∈ S.

Proposition 31 Let S be a linguistic truth domain, which is a SLHA AX =
(X, {⊤,True,W,False,⊥}, H,≤); α, β, γ ∈ X, we have:

– Double negation:
• ¬¬α = α

– Commutative:
• α ∧ β = β ∧ α
• α ∨ β = β ∨ α

– Associative:
• (α ∧ β) ∧ γ = α ∧ (β ∧ γ)
• (α ∨ β) ∨ γ = α ∨ (β ∨ γ)

– Distributive:

• α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ)
• α ∨ (β ∧ γ) = (α ∨ β) ∧ (α ∨ γ)

Definition 38 An interpretation consists of the followings:

– a linguistic truth domain, which is a SLHA AX = (X,G,H,≤), where the
set of generators G = {⊤,True,W,False,⊥},

– for each constant in the alphabet, the assignment of an element in X,
– for each formula, the assignment of a mapping from X to X.

Definition 39 Let I be an interpretation and A be an atom such that I(A) =
α1. Then the truth value of a literal Aα2 under the interpretation I is determined
uniquely as follows:

– I(Aα2) = α1 ∧ α2 if α1, α2 > W,
– I(Aα2) = ¬(α1 ∨ α2) if α1, α2 ≤ W,
– I(Aα2) = (¬α1) ∨ α2 if α1 > W, α2 ≤ W, and
– I(Aα2) = α1 ∨ (¬α2) if α1 ≤ W, α2 > W.

Definition 310 The truth value of formulae under an interpretation is deter-
mined recursively as follows:

– I(P ∨Q) = I(P) ∨ I(Q),
– I(P ∧Q) = I(P) ∧ I(Q),
– I(¬P) = ¬I(P),
– I(P → Q) = I(P) → I(Q)

The following result follows from the properties of the ∧ and ∨ operators.

Proposition 32 Let A, B and C are formulae, and I be an arbitrary interpre-
tation. Then,

– Commutative:
• I(A ∨B) = I(B ∨ A)
• I(A ∧B) = I(B ∧ A)

– Associative:
• I((A ∨B) ∨ C) = I(A ∨ (B ∨ C))
• I((A ∧B) ∧ C) = I(A ∧ (B ∧ C))

– Distributive:
• I(A ∨ (B ∧ C)) = I((A ∨B) ∧ (A ∨ C))
• I(A ∧ (B ∨ C)) = I((A ∧B) ∨ (A ∧ C))

Definition 311 Let F be a formula and I be an interpretation. Then

– F is said to be true under interpretation I iff I(F) ≥ W, I is also said to
satisfy formula F , F is said to be satisfiable iff there is an interpretation
I such that I satisfies F , F is said to be tautology iff it is satisfied by all
interpretations;

– F is said to be false under interpretation I iff I(F) ≤ W, I is also said
to falsify formula F , F is said to be unsatisfiable iff it is falsified by all
interpretations.

Definition 312 Formula B is said to be a logical consequence of formula A,
denoted by A |= B, if for all interpretation I, I(A) > W implies that I(B) > W.

Proposition 33 Let A and B be formulae. Then, A |= B iff |= (A → B).

Definition 313 Two formulae A and B are logically equivalent, denoted by A ≡
B, if and only if A |= B and B |= A.

Proposition 34 Let A,B and C be formulae. Then the following properties
hold:

– Idempotency:

• A ∨ A ≡ A

• A ∧ A ≡ A

– Implication:

• A → B ≡ (¬A) ∨B

• (A ≡ B) ≡ (A → B) ∧ (B → A)

– Double negation:

• ¬¬A ≡ A

– De Morgan:

• ¬(A ∨B) ≡ (¬A) ∧ (¬B)

• ¬(A ∧B) ≡ (¬A) ∨ (¬B)

– Commutativity:

• A ∨B ≡ B ∨ A

• A ∧B ≡ B ∧ A

– Associativity:

• A ∨ (B ∨C) ≡ (A ∨B) ∨ C

• A ∧ (B ∧C) ≡ (A ∧B) ∧ C

– Distributivity:

• A ∨ (B ∧C) ≡ (A ∨B) ∧ (A ∨ C)

• A ∧ (B ∨C) ≡ (A ∧B) ∨ (A ∧ C)

We will be working with resolution as the inference system of our logic. Therefore
formulae need to be converted into conjunctive normal form. The equivalence
properties in Proposition 34 ensure that the transformation is always feasible.

Theorem 1. Let F be a formula of arbitrary form. Then F can be converted
into an equivalent formula in conjunctive normal form.

4 Resolution

In the previous section, we have described the syntax and semantics of our
linguistic logic. In this section, we present the resolution inference rule and the
resolution procedure for our logic.

Definition 41 The clause C with reliability α is the pair (C,α) where C is a
clause and α is an element of SLHA AX such that α > W. The same clauses
with different reliabilities are called variants. That is (C,α) and (C,α′) are called
variants of each other.

For a set of n clauses S = {C1, C2, ..., Cn}, where each Ci has a reliability
αi, then the reliability α of S is defined as: α = α1 ∧ α2 ∧ ... ∧ αn.

An inference rule R with the reliability α is represented as:

(C1, α1), (C2, α2), . . . , (Cn, αn)

(C,α)

We call α the reliability of R, provided that α ≤ αi for i = 1..n.

Definition 42 The fuzzy linguistic resolution rule is defined as follows:

(Aa ∨Bb1 , α1), (Bb2 ∨ Cc, α2)

(Aa ∨ Cc, α3)

where b1, b2 and α3 satisfy the following conditions:

b1 ∧ b2 ≤ W,
b1 ∨ b2 > W,
α3 = f(α1, α2, b1, b2)

with f is a function ensuring that α3 ≤ α1 and α3 ≤ α2.

α3 is defined so as to be smaller or equal to both α1 and α2. In fact, the
obtained clause is less reliable than original clauses. The function f is defined
as following:

α3 = f(α1, α2, b1, b2) = α1 ∧ α2 ∧ (¬(b1 ∧ b2)) ∧ (b1 ∨ b2) (1)

Obviously, α1, α2 ≥ W , and α3 depends on b1, b2. Additionally, b1 ∧ b2 ≤ W

implies ¬(b1∧ b2) > W. Moreover, (b1∨ b2) > W. Then, by Formula (1), we have
α3 > W.

Lemma 1. The fuzzy linguistic resolution rule 42 is sound.

We define a fuzzy linguistic resolution derivation as a sequence of the form
S0, . . . , Si, . . ., where:

– each Si is a set of clauses with a reliability, and

– Si+1 is obtained by adding the conclusion of a fuzzy linguistic resolution
inference with premises from Si, that is Si+1 = Si ∪ {(C,α)}, where (C,α)
is the conclusion of the fuzzy linguistic resolution

(C1, α1), (C2, α2)

(C,α)
,

and (C1, α1), (C2, α2) ∈ Si.

A resolution proof of a clause C from a set of clauses S consists of repeated
application of the resolution rule to derive the clause C from the set S. If C is the
empty clause then the proof is called a resolution refutation. We will represent
resolution proofs as resolution trees. Each tree node is labeled with a clause.
There must be a single node that has no child node, labeled with the conclusion
clause, we call it the root node. All nodes with no parent node are labeled with
clauses from the initial set S. All other nodes must have two parents and are
labeled with a clause C such that

C1, C2

C

where C1, C2 are the labels of the two parent nodes. If RT is a resolution tree
representing the proof of a clause with reliability (C,α), then we say that RT

has the reliability α.
Different resolution proofs may give the same the conclusion clause with

different reliabilities. The following example illustrate this.

Example 41 Let AX = (X,G,H,≤,¬,∨,∧,→) be a SRHA where G = {⊥,False,
W,True,⊤}, ⊥,W,⊤ are the smallest, neutral,biggest elements respectively, and
⊥ < False < W < True < ⊤;H+ = {V,M} and H− = {P, L} (V=Very, M=More,
P=Possible, L=Less); Consider the following set of clauses:

1. AMFalse ∨BFalse ∨CVMTrue

2. BLTrue ∨ CPTrue

3. APTrue

4. BVTrue

5. CVFalse

At the beginning, each clause is assigned to the highest reliability ⊤. We have:

(APTrue,⊤)(AMFalse ∨BFalse ∨ CVMTrue,⊤)

(BFalse ∨ CVMTrue,PTrue)(BVTrue,⊤)

(CVMTrue,PTrue) (CVFalse,⊤)

(✷,PTrue)

(AMFalse ∨BFalse ∨ CVMTrue,⊤)(BLTrue ∨CPTrue,⊤)

(AMFalse ∨ CVMTrue, LTrue) (APTrue,⊤)

(CVMTrue, LTrue) (CVFalse,⊤)

(✷, LTrue)

Since different proofs of the same clause may have different reliabilities, it is
natural to study how to design a resolution procedure with the best reliability.
Below we present such a procedure.

We say that a set of clauses S is saturated iff for every fuzzy linguistic reso-
lution inference with premises in S, the conclusion of this inference is a variant
with smaller or equal reliability of some clauses in S. That is for every fuzzy
linguistic resolution inference

(C1, α1), (C2, α2)

(C,α)

where (C1, α1), (C2, α2) ∈ S, there is some clause (C,α′) ∈ S such that α ≤ α′.
We introduce a resolution strategy, called α-strategy, which guarantees that

the resolution proof of each clause has the maximal reliability. An α-strategy
derivation is a sequence of the form S0, . . . , Si, . . ., where

– each Si is a set of clauses with reliability, and
– Si+1 is obtained by adding the conclusion of a fuzzy linguistic resolution

inference with premises with maximal reliabilities from Si, that is Si+1 =
Si∪{(C,α)}, where (C,α) is the conclusion of the fuzzy linguistic resolution
inference

(C1, α1), (C2, α2)

(C,α)

(C1, α1), (C2, α2) ∈ Si and there are not any clauses with reliability (C1, α
′
1),

(C2, α
′
2) ∈ Si such that α′

1 > α1 and α′
2 > α2, or

– Si+1 is obtained by removing a variant with smaller reliability, that is Si+1 =
Si \ {(C,α)} where (C,α) ∈ Si and there is some (C,α′) ∈ Si such that
α < α′.

Define the limit of a derivation S0, . . . , Si, . . .

S∞ =
⋃

i≥0

⋂

j≥i

Sj

The following result establishes the soundness and completeness of the reso-
lution procedure.

Theorem 2. Let S0, . . . , Si, . . . be a fuzzy linguistic resolution α-strategy deriva-
tion. Sn contains the empty clause iff S0 is unsatisfiable (for some n = 0, 1, . . .).

Lemma 2. Consider the following resolution inferences:

(Aa ∨Bb1 , α), (Bb2 ∨ Cc, β)

(Aa ∨ Cc, γ)

(Aa ∨Bb1 , α), (Bb2 ∨ Cc, β′)

(Aa ∨ Cc, γ′)

Then, β′ > β implies γ′ ≥ γ.

Lemma 3. Let S0, . . . , Si, . . . be a fuzzy linguistic resolution α-strategy deriva-
tion, and S∞ be the the limit of the derivation. Then S∞ is saturated.

Theorem 3. Let S0, . . . , Si, . . . be a fuzzy linguistic resolution α-strategy deriva-
tion, and S∞ be the the limit of the derivation. Then for each clause (C,α) in
S∞, there is not any other resolution proof of the clause (C,α′) from S0 such
that α′ > α.

Example 42 Consider again Example 41. Applying the α-strategy we get the
following saturated set of clauses

1. (AMFalse ∨BFalse ∨ CVMTrue,⊤)
2. (BLTrue ∨ CPTrue,⊤)
3. (APTrue,⊤)
4. (BVTrue,⊤)
5. (CVFalse,⊤)
6. (BFalse ∨ CVMTrue,PTrue)
7. (AMFalse ∨ CVMTrue,True)
8. (AMFalse ∨ CVMTrue, LTrue)
9. (AMFalse ∨BFalse,VTrue)

10. (CVMTrue,PTrue)
11. (AMFalse,True)
12. (✷,PTrue)

The initial set of clauses is unsatisfiable, and the resolution futation is the fol-
lowing

(AMFalse ∨BFalse ∨ CVMTrue,⊤)(CVFalse,⊤)

(AMFalse ∨BFalse,VTrue) (BVTrue,⊤)

(AMFalse,True) (APTrue,⊤)

(✷,PTrue)

5 Conclusion

We have presented a linguistic logic system with the basic components: syntax,
semantics and inference. The syntax have been defined as usual. To define the se-
mantics, the truth value domain have been taken from linear symmetrical hedge
algebra and logical connectives have been defined based on Gödel’s t-norm and
t-conorm. We have also introduced an inference rule associated with a reliability
which guarantees that the reliability of the inferred clause is less than or equal to
reliaility of the premise clauses. Moreover, we have given a resolution procedure
which ensures that the proof of clauses has the maximal reliability. The sound-
ness and completeness of the resolution procedure are also proved. The proofs of
the theorems, proposititions and lemmas are omitted due to lack of space. They
can be found in the full paper at http://arxiv.org/submit/769464/view. There
are several lines of future works. It would be natural to consider the linguistic
first order logic in the same settings as our logic here. It would be worth inves-
tivating how to extend our result to other hedge algebra structures and to other
automated reasong methods.

http://arxiv.org/submit/769464/view

References

1. Rafee Ebrahim. Fuzzy logic programming. Fuzzy Sets and Systems, 117(2):215–
230, 2001.

2. Xingxing He, Jun Liu, Yang Xu, Luis Mart́ınez, and Da Ruan. On -satisfiability
and its -lock resolution in a finite lattice-valued propositional logic. Logic Journal
of the IGPL, 20(3):579–588, 2012.

3. Jiajun Lai and Yang Xu. Linguistic truth-valued lattice-valued propositional logic
system lp(x) based on linguistic truth-valued lattice implication algebra. Inf. Sci.,
180(10):1990–2002, 2010.

4. Van Hung Le, Fei Liu, and Dinh Khang Tran. Fuzzy linguistic logic programming
and its applications. TPLP, 9(3):309–341, 2009.

5. Richard C. T. Lee. Fuzzy logic and the resolution principle. In IJCAI, pages
560–567, 1971.

6. B. Mondal and S. Raha. Approximate reasoning in fuzzy resolution. In Fuzzy In-
formation Processing Society (NAFIPS), 2012 Annual Meeting of the North Amer-
ican, pages 1–6, 2012.

7. Cat-Ho Nguyen and Van-Nam Huynh. An algebraic approach to linguistic hedges
in zadeh’s fuzzy logic. Fuzzy Sets and Systems, 129(2):229–254, 2002.

8. Cat-Ho Nguyen, Dinh-Khang Tran, Van-Nam Huynh, and Hai-Chau Nguyen.
Hedge algebras, linguistic-valued logic and their application to fuzzy reasoning.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
7(4):347–361, 1999.

9. C.H. Nguyen and W. Wechler. Hedge Algebras: An Algebraic Approach in Struture
of Sets of Linguistic Truth Values, pages 281–293. Fuzzy Sets and Syst. 35, 1990.

10. Le Anh Phuong and Tran Dinh Khang. A deductive method in linguistic rea-
soning. In Uncertainty Reasoning and Knowledge Engineering (URKE), 2012 2nd
International Conference on, pages 137–140, 2012.

11. Le Anh Phuong and Tran Dinh Khang. Linguistic reasoning based on generalized
modus ponens with linguistic modifiers and hedge moving rules. In Fuzzy Theory
and it’s Applications (iFUZZY), 2012 International Conference on, pages 82–86,
2012.

12. Dana Smutná and Peter Vojtás. Graded many-valued resolution with aggregation.
Fuzzy Sets and Systems, 143(1):157–168, 2004.

13. Peter Vojtás. Fuzzy logic programming. Fuzzy Sets and Systems, 124(3):361–370,
2001.

14. Thomas J. Weigert, Jeffrey J. P. Tsai, and Xuhua Liu. Fuzzy operator logic and
fuzzy resolution. J. Autom. Reasoning, 10(1):59–78, 1993.

15. Yang Xu, Da Ruan, Etienne E. Kerre, and Jun Liu. alpha-resolution principle
based on lattice-valued propositional logic lp(x). Inf. Sci., 130(1-4):195–223, 2000.

16. Yang Xu, Da Ruan, Etienne E. Kerre, and Jun Liu. alpha-resolution principle
based on first-order lattice-valued logic lf(x). Inf. Sci., 132(1-4):221–239, 2001.

17. M. Mukaidono Z. Shen, L. Ding. Fuzzy resolution principle. In Proc. 18th Internat.
Symp. on Multiple-valued Logic, pages 210–215, 1989.

18. Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.
19. Xiaomei Zhong, Yang Xu, Jun Liu, and Shuwei Chen. General form of -resolution

principle for linguistic truth-valued lattice-valued logic. Soft Comput., 16(10):1767–
1781, 2012.

Appendix

A Proof of Propositition 33

Proposition 33. Let A and B be formulae. Then, A |= B iff |= (A → B).

Proof. Assume that A |= B, for any interpretation I, then if I(A) < W, I(¬A) >
W; otherwise if I(A) > W, we recall that A |= B, so I(B) > W. Hence, I(A →
B) = ¬I(A) ∨ I(B) > W. In other words, |= (A → B). Conversely, by a similar
way, we can also show that |= (A → B) implies A |= B.

B Proof of Lemma 1

Lemma 1. The fuzzy linguistic resolution rule 42 is sound.

Proof. We need to prove that for any interpretation I, if I((Aa ∨Bb1) ∧ (Bb2 ∨
Cc)) > W then I(Aa ∨ Cc) > W. We have that

I((Aa ∨Bb1) ∧ (Bb2 ∨Cc))

= I((Aa ∧Bb2) ∨ (Aa ∧ Cc) ∨ (Bb1 ∧Bb2) ∨ (Bb1 ∧ Cc))

= I(Aa ∧Bb2) ∨ I(Aa ∧Cc) ∨ I(Bb1 ∧Bb2) ∨ I(Bb1 ∧ Cc)

It is easy to show that:

– I(Aa ∧Bb2) ≤ I(Aa) ≤ I(Aa ∨ Cc),
– I(Aa ∧ Cc) ≤ I(Aa) ≤ I(Aa ∨ Cc),
– I(Bb1 ∧ Cc) ≤ I(Cc) ≤ I(Aa ∨ Cc), and
– I(Bb1 ∧Bb2) ≤ W

So, if I(Aa ∨Cc) ≤ W then we must have that

I(Aa ∧Bb2) ∨ I(Aa ∧ Cc) ∨ I(Bb1 ∧Bb2) ∨ I(Bb1 ∧ Cc) ≤ W

which contradicts with the initial assumption. This completes the proof of the
theorem.

C Proof of Theorem 2

Theorem 2. Let S0, . . . , Si, . . . be a fuzzy linguistic resolution α-strategy
derivation. Sn contains the empty clause iff S0 is unsatisfiable (for some n =
0, 1, . . .).

Proof. First, we prove if Sn contains the empty clause then S0 is unstatisfialbe.
If Sn contains the empty clause, then S0 is false under any interpretation.

By Lemma 1, we have Sn−1 is false under any interpretation, too. Similarly,
Sn−1, . . . , S1, S0 are also false under any interpretation. This completes the proof
of the soundness of the resolution procedure.

We now prove the completeness of the resolution procedure, that means if
S0 is unstatisfialbe then Sn contains the empty clause. We apply the semantic
tree method for two-valued logics to our linguistic propositional logic.

Let S be a set containing exactly n atoms A1, A2, . . . , An. A semantic tree of
S is an n-level complete binary tree, each level corresponds to an atom. The left
edge of each node at the level i is assigned with the label Ai ≤ W, and the right
edge of each node at the level i is assigned with the label Ai > W (cf.Fig 1).

A1 ≤ W A1 > W

A2 ≤ W A2 > W A2 ≤ W A2 > W

Fig. 1. Semantic tree

A set of clauses S is failed at the node t of a semantic tree T iff there exist
an interpretation I corresponding to a branch in T which contains t, such that
S is false under I. A node t is called a failure node of S iff S fails at t and does
not fail at any node above t. A node t in a semantic tree T is called an inference
node iff both successor nodes of t are failure nodes. If there are failure nodes
for S on every branch of the corresponding semantic tree T , removing all child
nodes of each failure node, we receive a failure tree FT .

Assume that we have a failure tree FT . Because FT has finite level, so there
exists one (or more) leaf node on FT at the highest level, let say this node is
called j. Let i be parent node of j. By definition of failure tree, i cannot be
failure node. Therefore, i has another child node, named k (Figure 2). If k is a
failure node then i is inference node, the lemma is proved. If k is not a failure
node then it has two child nodes: l,m. Clearly l,m are at higher level than j.
This contradicts with the assumption that j is at the highest level. Therefore k
is a failure node and i is an inference node.

Let FT1 (respectively FT2) be a failure tree of the set of clauses S1 (respec-
tively S2). We denote FT1 ⊃ FT2 iff there exists an inference node i of FT1 such
that removing two successor nodes of i on FT1 we receive FT2.

Because S0 is unsatisfiable, there is a corresponding failure tree FT and an
inference node i on FT with two child nodes j, k. Assuming that the label of
edge i − j is A ≤ W and the label of edge i − k is A > W. The interpretation
corresponding to the branch contains the edge i−j and terminating at j makes S0

i

k j

l m

Fig. 2. Inference node on failure tree

satisfiable. So, there is at least one clause in S0 containing the literal Aα1 where
α1 ≤ W, let say C1. Similarly, there exists at least one clause in S0 containing
the literal Aα2 where α2 > W, we named it C2. Applying the resolution rule 42:

C1, C2

C3

C3 does not contain atom A, so that C3 is false under all interpretations con-
taining A. Thus, failure tree FT1 of clause set S1 = S0 ∪ C3 does not contain
node j, k, this means FT ⊃ FT1.

By applying resolution procedure, there exist failure tree FT2, FT3, . . . of the
sets of clauses S2, S3, . . . such that FT ⊃ FT1 ⊃ FT2 ⊃ FT3 ⊃ Because
there are only a finite number of nodes in FT , then exists some n satisfying:
FTn = ✷ (i.e. FT ⊃ FT1 ⊃ FT2 ⊃ FT3 ⊃ . . . ⊃ FTn = ✷). Only the empty
clause is false under the empty interpretation. This means that the set of clauses
Sn (Sn corresponds to FTn) contains the empty clause. This completes the proof
of the theorem.

D Proof of Lemma 2

Lemma 2. Consider the following resolution inferences:

(Aa ∨Bb1 , α), (Bb2 ∨ Cc, β)

(Aa ∨ Cc, γ)

(Aa ∨Bb1 , α), (Bb2 ∨ Cc, β′)

(Aa ∨ Cc, γ′)

Then, β′ > β implies γ′ ≥ γ.

Proof. We have
γ = α ∧ β ∧ ¬(b1 ∧ b2) ∧ (b1 ∨ b2)

γ′ = α ∧ β′ ∧ ¬(b1 ∧ b2) ∧ (b1 ∨ b2)
Denote δ = min(α,¬(b1 ∧ b2), (b1 ∨ b2)) then γ = min(β, δ), γ = min(β′, δ).
Hence, if β′ > β implies γ′ ≥ γ
The equality occurs when β ≥ min(α,¬(b1 ∧ b2), (b1 ∨ b2)).

E Proof of Lemma 3

Lemma 3. Let S0, . . . , Si, . . . be a fuzzy linguistic resolution α-strategy deriva-
tion, and S∞ be the the limit of the derivation. Then S∞ is saturated.

Proof. By contradiction assume that S∞ is not saturated. Then there must be
a fuzzy linguistic resolution inference

(C1, α1), (C2, α2)

(C,α)

where (C1, α1), (C2, α2) ∈ S∞, there is not any clause (C,α′) ∈ S∞ such that
α ≤ α′. By definition of α-strategy derivation, either (C,α) is in S∞ or there
must be a clause (C,α′′) in Si for some i = 0, 1, . . . such that α ≤ α′′, this also
means that (C,α) is removed from Sj for some j ≥ i. In both cases, we have a
contradiction.

F Proof of Theorem 3

Theorem 3. Let S0, . . . , Si, . . . be a fuzzy linguistic resolution α-strategy
derivation, and S∞ be the the limit of the derivation. Then for each clause
(C,α) in S∞, there is not any other resolution proof of the clause (C,α′) from
S0 such that α′ > α.

Proof. By contradiction, suppose that for some clause (C,α) in S∞, there exists
a resolution proof of (C,α′) from S0 such that α′ > α. Let (C1, α1) and (C2, α2)
be the two parents of (C,α′) in such a resolution proof of (C,α′). We have
that (C1, α1) and (C2, α2) cannot be both in S∞ because otherwise an inference
with these two clauses as premisses would give (C,α′) in S∞. Without lost of
generality, we can assume that (C1, α1) is not in S∞. Obviously, the resolution
proof of (C1, α1) from S0 can not be in S∞. That also means there is a clause
(C1, α

′
1) in S∞ such that there is not any other resolution proof of the clause

(C1, α
′′
1), where α′′

1 > α′
1. By Lemma 3, S∞ is satutared. According to Lemma

2, the inference with premisses (C1, α
′
1) and (C2, α2) gives us the conclusion

(C,α′′), with α′′ > α′. This contradicts with the fact that S∞ is satutared. This
completes the proof of the theorem.

	Resolution in Linguistic Propositional Logic based on Linear Symmetrical Hedge Algebra

