Skip to main content

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 95))

Abstract

Dynamic tactile sensing is an important capability for interacting with the world to identify textures and identify contact events such as objects making and breaking contact with the skin and rolling or slipping on the fingers. It is also used for identifying friction between the fingers and a grasped object and regulating the grasp force accordingly. Humans are endowed with multiple types of mechanoreceptors capable of detecting dynamic events with frequencies in the tens or hundreds of Hz. Increasingly, robots are also being equipped with tactile sensors capable of detecting dynamic phenomena, using a variety of different transducers depending on application-specific design considerations. Advances in electronics have made it possible to do the requisite amplification, signal processing and communication within the hand, with improved performance and greatly reduced wiring in comparison to early efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.S. Johansson, A.B. Vallbo, Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. 286(1), 283 (1979)

    Google Scholar 

  2. R.S. Johansson, J.R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009)

    Google Scholar 

  3. S.J. Lederman, R.L. Klatzky, C.L. Hamilton, G.I. Ramsay, Perceiving surface roughness via a rigid probe: effects of exploration speed and mode of touch. Haptics-e Electron. J. Haptic Res. 1(1), 1–20 (1999)

    Google Scholar 

  4. T. Yoshioka, J. Zhou, Factors involved in tactile texture perception through probes. Adv. Robot. 23(6), 747–766 (2009)

    Article  Google Scholar 

  5. I. Birznieks, P. Jenmalm, A.W. Goodwin, R.S. Johansson, Encoding of direction of fingertip forces by human tactile afferents. J. Neurosci. 21(20), 8222–8237 (2001)

    Google Scholar 

  6. A.B. Vallbo, R.S. Johansson, Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum. Neurobiol. 3, 3–14 (1984)

    Google Scholar 

  7. M. Ueda, K. Iwata, H. Shingu, Tactile sensors for an industrial robot to detect a slip, in Proceedings of the 2nd International Symposium on Industrial Robots, pp. 63–70, 1972

    Google Scholar 

  8. R. Masuda, K. Hasegawa, Slip sensor of industrial robot and its application. Electr. Eng. 96(5), 219–226 (1976)

    Google Scholar 

  9. P.A. Schmidt, E Mael, R Wurtz, E. Maël, R.P. Würtz, A sensor for dynamic tactile information with applications in human robot interaction and object exploration. Robot. Auton. Syst. 54(12), 1005–1014 (2006)

    Google Scholar 

  10. R.A. Russell, Using tactile whiskers to measure surface contours, in Proceedings 1992 IEEE International Conference on Robotics and Automation (IEEE Computer Society Press, 1992), pp. 1295–1299

    Google Scholar 

  11. Van Anh Ho, D. Kondo, S. Okada, T. Araki, E. Fujita, M. Makikawa, S. Hirai, Development of a low-profile sensor using electro-conductive yarns in recognition of slippage, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2011), pp. 1946–1953

    Google Scholar 

  12. R.D. Howe, N. Popp, P. Akella, I. Kao, M.R. Cutkosky. Grasping, manipulation, and control with tactile sensing. In Proceedings of IEEE International Conference on Robotics and Automation (IEEE Computer Society Press, 1990), pp. 1258–1263

    Google Scholar 

  13. R.D. Howe, M.R. Cutkosky, Dynamic tactile sensing: perception of fine surface features with stress rate sensing. IEEE Trans. Robot. Autom. 9(2), 140–151 (1993)

    Article  Google Scholar 

  14. J.S. Son, E.A. Monteverde, R.D. Howe, A tactile sensor for localizing transient events in manipulation. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation (IEEE Computer Society Press, 1994), pp. 471–476

    Google Scholar 

  15. J.M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, K.J. Kuchenbecker, Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Rob. 27(6), 1067–1079 (2011)

    Article  Google Scholar 

  16. M.R. Tremblay, M.R. Cutkosky, Estimating friction using incipient slip sensing during a manipulation task, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 429–434, 1993

    Google Scholar 

  17. P. Dario, D. De Rossi, C. Domenici, R. Francesconi, Ferroelectric polymer tactile sensors with anthropomorphic features, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1 (Institute of Electrical and Electronics Engineers, 1984), pp. 332–340

    Google Scholar 

  18. R.W. Patterson, G.E. Nevill, The induced vibration touch sensor—a new dynamic touch sensing concept. Robotica 4(01), 27–31 (1986)

    Article  Google Scholar 

  19. E.S. Kolesar, C.S. Dyson, R.R. Reston, R.C. Fitch, D.G. Ford, S.D. Nelms, Tactile integrated circuit sensor realized with a piezoelectric polymer, in Proceedings of Eighth Annual IEEE International Conference on Innovative Systems in Silicon (IEEE, 1996), pp. 372–381

    Google Scholar 

  20. S. Ando, H. Shinoda, Ultrasonic emission tactile sensing. IEEE Control Syst. Mag. 15(1), 61–69 (1995)

    Article  Google Scholar 

  21. G. Canepa, R. Petrigliano, M. Campanella, D. De Rossi, Detection of incipient object slippage by skin-like sensing and neural network processing. IEEE Trans. Syst. Man Cybern. Part B 28(3), 348–356 (1998)

    Google Scholar 

  22. J.T. Dennerlein, R.D Howe, P.A. Millman, Vibrotactile feedback for industrial telemanipulators, in Proceedings of the Sixth Annual Symposium on Haptic Interfaces (ASME IMECE, Dallas, 1997), pp. 1–7

    Google Scholar 

  23. B. Choi, H.R. Choi, S. Kang, Development of tactile sensor for detecting contact force and slip, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2005), pp. 2638–2643

    Google Scholar 

  24. A. Mingrino, P. Dario, A. Sabatini. A hand prosthesis with slippage control by tactile sensors, in Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1993), pp. 1276–1277

    Google Scholar 

  25. A.M. Dollar, L.P. Jentoft, J.H. Gao, R.D. Howe, Contact sensing and grasping performance of compliant hands. Auton. Robot. 28(1), 65–75 (2009)

    Article  Google Scholar 

  26. M.A. Qasaimeh, S. Sokhanvar, J. Dargahi, M. Kahrizi, PVDF-based microfabricated tactile sensor for minimally invasive surgery. J. Microelectromech. Syst. 18(1), 195–207 (2009)

    Article  Google Scholar 

  27. R.S. Dahiya, M. Valle, G. Metta, L. Lorenzelli, A. Adami, Design and fabrication of posfet devices for tactile sensing, in Transducers 2009, International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2009), pp 1881–1884

    Google Scholar 

  28. R.S Dahiya, L. Lorenzelli, G. Metta, M. Valle, POSFET devices based tactile sensing arrays. Ferroelectrics 893–896 (2010)

    Google Scholar 

  29. R. Kikuuwe, A. Sano, H. Mochiyama, N. Takesue, H. Fujimoto, A tactile sensor capable of mechanical adaptation and its use as a surface deflection detector. Strain 256–259 (2004)

    Google Scholar 

  30. B.L. Hutchings, A.R. Grahn, R.J. Petersen, Multiple-layer cross-field ultrasonic tactile sensor, in Proceedings of the 1994 IEEE International Conference on Robotics and Automation (IEEE Computer Society Press, 1994), pp. 2522–2528

    Google Scholar 

  31. S. Omata, Real time robotic tactile sensor system for the determination of the physical properties of biomaterials. Sens. Actuators A 112(2–3), 278–285 (2004)

    Article  Google Scholar 

  32. H. Shinoda, K. Matsumoto, S. Ando, Acoustic resonant tensor cell for tactile sensing, in Proceedings of International conference on Robotics and Automation, vol. 4, pp. 3087–3092, 1997

    Google Scholar 

  33. H. Shinoda, S. Sasaki, K. Nakamura, Instantaneous evaluation of friction based on ARTC tactile sensor, in Proceedings ICRA ‘00 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2173–2178, 2000

    Google Scholar 

  34. V. Todorova, D. Kolev, Piezoelectric resonance sensor array, in Proceedings of 27th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, vol 2 (IEEE, 2004), pp. 247–251

    Google Scholar 

  35. M. Shikida, T. Shimizu, K. Sato, K. Itoigawa, Active tactile sensor for detecting contact force and hardness of an object. Sens. Actuators A 103(1–2), 213–218 (2003)

    Article  Google Scholar 

  36. R.D. Howe, W.J. Peine, D.A. Kantarinis, J.S. Son, Remote palpation technology. IEEE Eng. Med. Biol. Mag. 14(3), 318–323 (1995)

    Article  Google Scholar 

  37. D.T.V. Pawluk, J.S. Son, P.S. Wellman, W.J. Peine, R.D. Howe, A distributed pressure sensor for biomechanical measurements. J. Biomech. Eng. 120(2), 302–305 (1998)

    Article  Google Scholar 

  38. J. Ulmen, M. Cutkosky, A robust, low-cost and low-noise artificial skin for human-friendly robots, in IEEE International Conference on Robotics and Automation (ICRA), pp. 4836–4841, 2010

    Google Scholar 

  39. G. Cannata, M. Maggiali, G. Metta, G. Sandini, An embedded artificial skin for humanoid robots, in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (IEEE, 2008), pp. 434–438

    Google Scholar 

  40. A. Schmitz, M. Maggiali, L. Natale, B. Bonino, G. Metta, A tactile sensor for the fingertips of the humanoid robot iCub. Inform. pp. 2212–2217 (2010)

    Google Scholar 

  41. B. Heyneman, J. Ulmen, M.R. Cutkosky, Scalable and responsive articial skin for mobile manipulation, in 7th ACM/IEEE International Conference on Human-Robot Interaction ed. by G. Cannata, F. Mastrogiovanni, G. Metta, L. Natale, Advances in tactile sensing and touch based human-robot interaction, Boston, MA, 2012

    Google Scholar 

  42. N. Wettels, V.J. Santos, R.S. Johansson, G.E. Loeb, Biomimetic tactile sensor array. Adv. Robot. 22(8), 829–849 (2008)

    Article  Google Scholar 

  43. H.B. Muhammad, C. Recchiuto, C.M. Oddo, L. Beccai, C.J. Anthony, M.J. Adams, M.C. Carrozza, M.C.L. Ward, A capacitive tactile sensor array for surface texture discrimination. Microelectron. Eng. 88(8), 1811–1813 (2011)

    Article  Google Scholar 

  44. Florian De Boissieu, C. Godin, B. Guilhamat, D. David, C. Serviere, D. Baudois, Tactile texture recognition with a 3-axial force MEMS integrated articial finger. Houille Blanche Revue Internationale De L’Eau, 2010

    Google Scholar 

  45. C.M.Oddo, L.Beccai, M.Felder, F.Giovacchini, M.C.Carrozza, Artificial roughness encoding with a bio-inspired MEMS-based tactile sensor array. Sensors 9(5), 3161–3183 (2009)

    Google Scholar 

  46. C. Schürmann, R. Haschke, H. Ritter, Modular high speed tactile sensor system with video interface, in Tactile sensing in Humanoids—Tactile Sensors and beyond IEEE-RAS Conference on Humanoid Robots, no. 12. IEEE Paris, France, 2009

    Google Scholar 

  47. T. Maeno, T. Kawamura, S.-C. Cheng, Friction estimation by pressing an elastic finger-shaped sensor against a surface. IEEE Trans. Robot. 20(2), 222–228 (2004)

    Google Scholar 

  48. V. Maheshwari, R.F. Saraf, High-resolution thin-film device to sense texture by touch. Science 312(5779), 1501–1504 (2006)

    Google Scholar 

  49. D. Yamada, T. Maeno, Y. Yamada, Artificial finger skin having ridges and distributed tactile sensors used for grasp force control, in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the societal role of robotics in the next millennium (Cat. No.01CH37180), vol. 2 (IEEE, 2001), pp. 686–691

    Google Scholar 

  50. A.M. Mazid, R.A. Russell. A robotic opto-tactile sensor for assessing object surface texture, In 2006 IEEE Conference on Robotics, Automation and Mechatronics (IEEE, 2006), pp. 1–5

    Google Scholar 

  51. S. O’Sullivan, R. Nagle, J.A. McEwen, V. Casey. Elastomer rubbers as deflection elements in pressure sensors: investigation of properties using a custom designed programmable elastomer test rig. J.Phys. D Appl. Phys. 36(15), 1910–1916 (2003)

    Google Scholar 

  52. J.C. Lötters, W. Olthuis, P.H. Veltink, P. Bergveld, The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7(3), 145–147 (1997)

    Article  Google Scholar 

  53. R.S. Fearing, J.M. Hollerbach, Basic solid mechanics for tactile sensing. Int. J.Robot. Res. 4(3), 40–54 (1985)

    Article  Google Scholar 

  54. M.R. Cutkosky, R.D. Howe, W.R. Provancher, Force and Tactile Sensors ed. by B. Siciliano, O. Khatib. Springer Handbook of Robotics, chapter 20 (Springer, Heidelberg, 2008), pp. 455–476

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Cutkosky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cutkosky, M.R., Ulmen, J. (2014). Dynamic Tactile Sensing. In: Balasubramanian, R., Santos, V. (eds) The Human Hand as an Inspiration for Robot Hand Development. Springer Tracts in Advanced Robotics, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-319-03017-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03017-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03016-6

  • Online ISBN: 978-3-319-03017-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics