
SU, T., LYLE, J., ATZENI, A., FAILY, S., VIRJI, H., NTANOS, C. and BOTSIKAS, C. 2013. Continuous integration for web-
based software infrastructures: lessons learned on the webinos project. In Bertacco, V. and Legay, A. (eds.) 

Hardware and software: verification and testing: proceedings of the 9th International Haifa verification conference 
(HVC 2013), 5-7 November 2013, Haifa, Israel. Lecture notes in computer science, 8244. Cham: Springer [online], 

pages 145-150. Available from: https://doi.org/10.1007/978-3-319-03077-7_10 

 
 
 
 

This accepted manuscript is subject to the Springer Nature terms of use for archived versions of subscription 
articles and chapters: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-
terms 

This document was downloaded from 
https://openair.rgu.ac.uk 

Continuous integration for web-based software 
infrastructures: lessons learned on the webinos 

project. 

SU, T., LYLE, J., ATZENI, A., FAILY, S., VIRJI, H., NTANOS, C. and 
BOTSIKAS, C. 

2013 

https://doi.org/10.1007/978-3-319-03077-7_10
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms


Continuous Integration

for Web-Based Software Infrastructures:
Lessons Learned on the webinos Project

Tao Su1, John Lyle2, Andrea Atzeni1, Shamal Faily3, Habib Virji4,
Christos Ntanos5, and Christos Botsikas5

1 Dip. di Automatica e Informatica, Politecnico di Torino, 10129 Torino, Italy
{tao.su,shocked}@polito.it

2 Department of Computer Science, University of Oxford, UK
johnplyle@gmail.com

3 School of Design, Engineering & Computing, Bournemouth University, UK
sfaily@bournemouth.ac.uk
4 Samsung Electronics, UK
habib.virji@samsung.com

5 National Technical University of Athens, Greece
{cntanos,cbot}@epu.ntua.gr

Abstract. Testing web-based software infrastructures is challenging.
The need to interact with different services running on different devices,
with different expectations for security and privacy contributes not only
to the complexity of the infrastructure, but also to the approaches nec-
essary to test it. Moreover, as large-scale systems, such infrastructures
may be developed by distributed teams simultaneously making changes
to APIs and critical components that implement them. In this paper, we
describe our experiences testing one such infrastructure – the webinos
software platform – and the lessons learned tackling the challenges faced.
While ultimately these challenges were impossible to overcome, this pa-
per explores the techniques that worked most effectively and makes
recommendations for developers and teams in similar situations. In par-
ticular, our experiences with continuous integration and automated test-
ing processes are described and analysed.

Keywords: continuous integration, automated testing, web-based soft-
ware infrastructure, functional testing.

1 Introduction

As web-apps become more pervasive, the reliance on web-based software in-
frastructures, such as middleware products and libraries, is growing. However,
because end-users do not interact directly with such infrastructures, then devis-
ing appropriate strategies for detecting and preventing hidden software defects
is challenging.

Four complementary approaches are typically used to identify such defects.
Unit tests target isolated modules, integration tests target the integration of



components, functionality tests target source code functions, and system tests
target high level functionality. Carrying out these tests sequentially can be time-
consuming as developers need to wait for the results of these tests before they
can continue working. Moreover, integration problems of the source code of dif-
ferent contributors commonly occur for a myriad of reasons. To address these
problems, Fowler [1] introduced the idea of continuous integration. This entails
continuously downloading, integrating, and testing the source code and project
libraries contributed by each developer. Following this approach, software can be
tested for defects that might not otherwise be noticed by an individual developer.

A continuous integration strategy is difficult to devise when testing distributed
software infrastructures because it needs to simulate all required devices and
services. In this paper, we describe our experiences developing and applying
continuous integration to test the webinos platform. webinos provides an overlay
network between an individual user’s set of personal devices, including their PC,
smartphone and TV, and then allows web applications to access services on these
devices through a set of standard JavaScript APIs. The complex interactions
between web-based devices through browsers make webinos particularly hard to
effectively test from one side, and particularly interesting as a case study from
the other.

2 Related Work

Most web-based application testing researches focus on client-server applications
that implement a strictly serialised model of interactions, generating test cases
based on user-session profiling [2][3], or on testing the correct functioning on the
client side or the server side separately [4][5].

Currently, there are no similar methods to test web-based software infrastruc-
tures like webinos, which appears to be the first platform for sharing services
from different types of devices through browsers. One approach for using conti-
nuous integration testing is described in [6]. The authors presented a neat plug-in
for Selenium implemented on a continuous integration server; this hooks every
AJAX call made by the tested web application to verify requested data before
application processing. This helps narrow down the location of a fault irrespec-
tive of whether it is situated in server- or client-side code. However, compared
with our approach, this work only narrows the error position, and it is already
covered by available functionality tests.

3 webinos Architecture

webinos is a secure platform which can be accessed by multiple types of web-
enabled devices. In its life cycle, more than 30 organizations, mostly based in
Europe, contributed to its development. It introduces the Personal Zone con-
cept, where all the devices (Personal Zone Proxies) belonging to the same zone
support and expose standard JavaScript APIs for accessing services such as de-
vice features (cameras, geolocation, networking and etc).



Fig. 1. webinos architecture

As shown in Figure 1, the Personal Zone Hub (PZH) is the focal point of the
personal zone. The interactions might take place between PZHs and PZPs in the
same zone or from different zones in different modes, when they try to share the
resources or communicate with each others.

4 Testing webinos

As a web-based software infrastructure, webinos is designed to work on dif-
ferent browser-enabled systems and devices. This makes the testing extremely
challenging. The interpretations of different browsers for the same JavaScript
code are not identical, especially for browsers with different JavaScript engines.
Implementing the same testing code on device with different architectures and
computing power, is also challenging. For example, modules accessing OS specific
functionality such as accessing path or network connectivity, provide different
responses.

To simplify the development process, the platform was modularised; this
meant that each API had its own git repository. This also made testing more
complex. Since the APIs and core components are under continuously develop-
ment by groups which apply rapid development methodology, it would be very
easy for certain API to break other components and even the whole platform
despite having passed its own unit test.

The testing infrastructure was created relatively late in the project. This
meant that testing engineers were busy catching up with the developed compo-



nents, and needed to generate multiple levels of tests to ensure their components
worked correctly independently and when integrated with webinos.

4.1 Approach

To overcome the challenges listed above, we introduced the continuous integra-
tion technique, which means downloading source code, integrating and running
various levels of tests continuously. Five levels of tests are performed, the API
unit tests, integration tests, functionality tests, system tests and APIs’ integrate-
with-webinos tests.

The API unit tests are executed first to test only the module and its dependen-
cies. After that, the integration tests, functionality tests and the system tests are
executed to thoroughly test the integrated platform. The functions in the source
code are called directly in functionality tests, and the results are generated by
comparing the returned with the predefined values. This step requires the help
of a JavaScript test framework. The system tests are executed in a higher level,
mimicking user interactions. Thus, to simulate real case operations, a headless
browser is used to automate this step. After the unit tests and platform tests,
the APIs are integrated with the webinos platform one after another, testing if
they can work correctly after integration.

Setting the order as mentioned is to make the discovery of errors easier: each
unit test is delimited to a specific module, so the test failure means the problem
is circumscribed to the module or its dependencies. The integration tests and
functionality tests are executed before the system tests for similar reason, since
they are more comprehensive and can provide more information on why the test
fails.

To minimise the testing work, the tests are integrated with continuous inte-
gration servers. They are set to download the newest source code, execute the
listed tests one after another in the defined order, and notify the testing engi-
neers if error happens. For unit tests which only take a short time, the continuous
integration server is set to perform the tests after the developer commits, while
the other tests which take longer time are performed in the middle of the night.

4.2 Lessons Learned

The sub-sections below characterise three lessons learned in developing and ap-
plying our continuous integration system for webinos.

Continuous Integration Is Shaped by the Revision Control System
Used. In webinos project, git is chosen to revision control source code. In the
github model, developers build components within their own sandboxes and once
the components are stable, they ask for pull request to the official repository run-
ning on github. Automated tests of pull requests minimises the time that main-
tainers spend reviewing submissions, but delays accepting pull requests cause
merge conflicts, means that multiple incompatible pull requests occur. There-
fore, open source development approaches using systems like github need very



active maintainers and prioritise accepting contribution. For the maintainer who
is also a developer, the rule of ”you should not merge your own pull request” is
effective to avoid errors brought by blind confidence, but causes the mentioned
problem.

As an example, several thumb developers worked together and updated the
webinos-pzh module, but according to the rule, they can not merge their pull
request themselves. Therefore discussions were held on this pull request. How-
ever, at the same time the other pull requests were merged directly. After the
discussion, the pending request was merged, caused a lot of failed tests, these de-
velopers had to rework the updates to incorporate with the new merged changes.

Maintaining the Test Infrastructure Is Harder Than Maintaining the
System. For webinos, a comprehensive testing system may be more difficult to
create than the infrastructure itself.

As an example, to test webinos on various OSes, we use three different conti-
nuous integration servers: one cloud-based infrastructure, one self-hosted infras-
tructure and one self-developed node.js module. The infrastructures focus on
Linux platforms, which do not work very well on proprietary platforms. There-
fore the node.js module is developed to cover this inadequacy. Beside that, the
tests also break frequently because of rapid development of the components.

From the webinos experience, we believe the best option should start testing
from low level to up level as state in section 4.1. The test cases for individual
components can be generated by the developers, this way may fasten the testing
procedure. Also in the most cohesive and loosely coupled components, fairly
good unit tests would help to discover some problems which should be found in
the integration tests. Integration and functional tests work better if it is possible
to assign several developers who have detailed knowledge of the source code to
write these test cases, as these tests are the most important part for testing a
modularised system like webinos. Even if this would require a quite large amount
of resources, bugs raised in the cooperation with other modules are exactly the
kind of problem that an individual developer can not find out. Generating the
system test cases is easier, the developers of these test cases only need to know
how to operate with the webinos platform and use a headless browser to simulate
the operations.

Thus, in our opinion, the best way to assign the resources and speed up the
testing procedure is to assign developers the individual component test respon-
sibility. Also system tests can be generated by single developers, while more care
and resources are needed for integration and functional tests, requiring cooper-
ation from different modules developers.

Developers Only Test for a Single Platform. Developing webinos for mul-
tiple platforms raised several issues that were hard to overcome. Ideally, the
dependencies and modules should be tested on all the platforms before further
implementation and development. For the reason that dependencies or modules
may behave differently on each platform at runtime. Similarly, the binaries for



native modules should be compiled separately on all platforms. In reality most
developers worked only on a single platform at a time, and tend to only concern
the tests passed on their own systems. This may led to subsequent bugs and
incompatibilities piling up on other platforms.

For example, webinos widget packaging required the zipfile library; which was
included and built on Linux developer’s machines. Although fully functional at
runtime on both Linux and Windows machines, the library failed to be built
on Windows. Even though the testing system was totally functioning, this error
remained undetected for several months until a Windows developer tried to
compile it. This subsequently led to several days being spent re-adapting this
library.

5 Conclusion and Future Work

Using continuous integration system to automate various levels tests increases
development efficiency, it also increases our confidence about the quality of we-
binos platform. However, the testing system has its own limitations. At present,
the system is unable to cover all of webinos ’ supported operating systems. Since
webinos applies security as a pre-requisite, security tests are being introduced
as an important part of our testing approach in the future.

Acknowledgements. The research described in this paper was funded by the
EU FP7 webinos project (FP7-ICT-2009-05 Objective 1.2).

References

1. Fowle, M.: Continuous integration in martin fowler’s blog (2000),
http://martinfowler.com/articles/continuousIntegration.html

2. Sampath, S., Sprenkle, S., Gibson, E., Pollock, L., Greenwald, A.S.: Applying con-
cept analysis to user-session-based testing of web applications. IEEE Transactions
on Software Engineering 33(10), 643–658 (2007)

3. Elbaum, S., Rothermel, G., Karre, S., Fisher, M.: Leveraging user-session data to
support web application testing. IEEE Transactions on Software Engineering 31(3),
187–202 (2005)

4. Di Lucca, G.: Testing web-based applications: the state of the art and future trends.
In: 29th Annual International Computer Software and Applications Conference,
COMPSAC 2005, vol. 2, pp. 65–69 (2005)

5. Marin, B., Vos, T., Giachetti, G., Baars, A., Tonella, P.: Towards testing future
web applications. In: 2011 Fifth International Conference on Research Challenges
in Information Science (RCIS), pp. 1–12 (2011)

6. Falah, B., Hasri, M., Schwaiger, S.: Continuous integration testing of web appli-
cations by sanitizing program input. Cyber Journals: Multidisciplinary Journals in
Science and Technology 3(2) (2013)

http://martinfowler.com/articles/continuousIntegration.html



