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Abstract. This work uses Game Theory to study the effectiveness of punishments as an incentive for
rational nodes to follow an epidemic dissemination protocol. The dissemination process is modeled as
an infinite repetition of a stage game. At the end of each stage, a monitoring mechanism informs each
player of the actions of other nodes. The effectiveness of a punishing strategy is measured as the range of
values for the benefit-to-cost ratio that sustain cooperation. This paper studies both public and private
monitoring. Under public monitoring, we show that direct reciprocity is not an effective incentive,
whereas full indirect reciprocity provides a nearly optimal effectiveness. Under private monitoring,
we identify necessary conditions regarding the topology of the graph in order for punishments to be
effective. When punishments are coordinated, full indirect reciprocity is also effective with private
monitoring.
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1 Introduction

Epidemic broadcast protocols are known to be extremely scalable and robust [2,5,15]. As a result,
they are particularly well suited to support the dissemination of information in large-scale peer-
to-peer systems, for instance, to support live streaming [17,16]. In such an environment, nodes do
not belong to the same administrative domain. On the contrary, many of these systems rely on
resources made available by self-interested nodes that are not necessarily obedient to the protocol.
In particular, participants may be rational and aim at maximizing their utility, which is a function
of the benefits obtained from receiving information and the cost of contributing to its dissemination.

Two main incentive mechanisms may be implemented to ensure that rational nodes are not
interested in deviating from the protocol: one is to rely on balanced exchanges [17,16]; other is to
monitor the degree of cooperation of every node and punish misbehavior [9]. When balanced ex-
changes are enforced, in every interaction, nodes must exchange an equivalent amount of messages
of interest to each other. This approach has the main disadvantage of requiring symmetric inter-
actions between nodes. In some cases, more efficient protocols may be achieved with asymmetric
interactions [5,15,9], where balanced exchanges become infeasible. Instead, nodes are expected to
forward messages without immediately receiving any benefit in return. Therefore, one must consider
repeated interactions for nodes to able to collect information about the behavior of their neighbors,
which may be used to detect misbehavior and trigger punishments.

Although monitoring has been used to detect and expel free-riders from epidemic dissemination
protocols [9], no theoretical analysis studied the ability of punishments to sustain cooperation among
rational nodes. Therefore, in this paper, we tackle this gap by using Game Theory [19]. The aim
is to study the existence of equilibria in an infinitely repeated Epidemic Dissemination game. The
stage game consists in a sequence of messages disseminated by the source, which are forwarded by
every node i to each neighbor j with an independent probability pi[j]. At the end of each stage, a
monitoring mechanism provides information to each node regarding pi[j].

Following work in classical Game Theory that shows that cooperation in repeated games can be
sustained using punishing strategies [8], we focus on this class of strategies. We assume that there is a
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pre-defined target for the reliability of the epidemic dissemination process. To achieve this reliability,
each node should forward every message to each of its neighbors with a probability higher than
some threshold probability p, known a priory by the two neighboring nodes. We consider that a
player i defects from a neighbor j if it uses a probability lower than p when forwarding information
to j. Each node i receives a benefit βi per received message, but incurs a cost γi of forwarding a
message to a neighbor. Given this, we are particularly interested in determining the range of values
of the ratio benefit-to-cost (βi/γi) that allows punishing strategies to be equilibria. The wider is
this range, the more likely it is for all nodes to cooperate.

The main contribution of this paper is a quantification of the effectiveness of different punishing
strategies under two types of monitors: public and private. Public monitors inform every node of
the actions of every other node with no delays. On the other hand, private monitoring inform only
a subset of nodes of the actions of each node, and possibly with some delays. In addition, we study
two particular types of punishing strategies: direct and full indirect reciprocity. In the former type,
each node is solely responsible for monitoring and punishing each neighbor, individually. The latter
type specifies that each misbehaving node should eventually be punished by every neighbor. More
precisely, we make the following contributions:

– We derive a generic necessary and sufficient condition for a punishing strategy to be a Subgame
Perfect Equilibrium under public monitoring. From this condition, we also derive an upper
bound for the effectiveness of strategies that use direct reciprocity as an incentive. We observe
that this value decreases very quickly with an increasing reliability, in many realistic scenarios.
On the other hand, if full indirect reciprocity is used, then this problem can be avoided. We
derive a lower bound for the effectiveness of these strategies, which is not only independent from
the desired reliability, but also close to the theoretical optimum, under certain circumstances.

– Using private monitoring with delays, information collected by each node may be incomplete,
even if local monitoring is perfect. We thus consider the alternative solution concept of Sequen-
tial Equilibrium, which requires the specification of a belief system that captures the belief held
by each player regarding past events of which it has not been informed. For a punishing strategy
to be an equilibrium, this belief must be consistent. We provide a definition of consistency that
is sufficient to derive the effectiveness of punishing strategies.

– Under private monitoring with a consistent belief system, we show that certain topologies
are ineffective when monitoring is fully distributed. Then, we prove that, unless full indirect
reciprocity is possible, the effectiveness decreases monotonically with the reliability. To avoid
this problem, punishments should be coordinated, i.e., punishments applied to a misbehaving
node i by every neighbor of i should overlap in time. We derive a lower bound for the effectiveness
of full indirect reciprocity strategies with coordinated punishments. The results indicate that
the number of stages during which punishments overlap should be at least of the order of
the maximum delay of the monitoring mechanism. This suggests that, when implementing a
distributed monitoring mechanism, delays should be minimized.

The remainder of the paper is structured as follows. Section 2 discusses some related work. The
general model is provided in Section 3. The analysis of public and private monitoring are given in
Sections 4 and 5, respectively. Section 6 concludes the paper and provides directions of future work.

2 Related Work

There are examples of work that use monitoring to persuade rational nodes to engage in a dissem-
ination protocol. In Equicast [12], the authors perform a Game Theoretical analysis of a multicast
protocol where nodes monitor the rate of messages sent by their neighbors and apply punishments
whenever the rate drops below a certain threshold. The protocol is shown to be a dominating
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strategy. Nodes are disposed in an approximately random network, thus, the dissemination process
resembles epidemic dissemination. However, given that the network is connected and nodes are
expected to forward messages to every neighbor with probability 1, there is no non-determinism in
the delivery of messages. Furthermore, the authors restrict the actions available to each player by
assuming that they only adjust the number of neighbors with which they interact and a parameter
of the protocol. This contrasts with our analysis, where we consider non-deterministic delivery of
messages and a more general set of strategies available to players.

Guerraoui et al. [9] propose a mechanism that monitors the degree of cooperation of each node
in epidemic dissemination protocols. The goal is to detect and expel free-riders. This mechanism
performs statistical inferences on the reports provided by every node regarding its neighbors, and
estimates the cooperation level of each node. If this cooperation level is lower than a minimum value,
then the node is expelled from the network. The authors perform a theoretical and experimental
analysis to show that this mechanism guarantees that free-riders only benefit by deviating from the
protocol if the degree of deviation is not significantly high. However, no Game Theoretical analysis
is performed to determine in what conditions are free-riders willing to abide to the protocol.

In [17,16], the authors rely on balanced exchanges to provide incentives for nodes to cooperate
in dissemination protocols for data streaming. In BAR Gossip [17], the proposed epidemic dissem-
ination protocol enforces strictly balanced exchanges. This requires the use of a pseudo-random
number generator to determine the set of interactions in every round of exchanged updates, and
occasionally nodes may have to send garbage as a payment for any unbalance in the amount of
information exchanged with a neighbor. A stepwise analysis shows that nodes cannot increase their
utility by deviating in any step of the protocol. In FlightPath [16], the authors remove the need for
sending garbage by allowing imbalanced exchanges. By limiting the maximum allowed imbalance
between every pair of nodes, the authors show that it is possible for the protocol to be an 1/10-Nash
equilibrium, while still ensuring a streaming service with high quality. Unfortunately, these results
might not hold for other dissemination protocols that rely on highly imbalanced exchanges. In these
cases, a better alternative might be to rely on a monitoring approach.

Other game theoretical analysis have addressed a similar problem, but in different contexts. In
particular, the tit-for-tat strategy used in BitTorrent, a P2P file sharing system, has been subjected
to a wide variety of Game Theoretical analysis [6,21,20,14]. These works consider a set of n nodes
deciding with which nodes to cooperate, given a limited number of available connections, with the
intent to share content. Therefore, contrary to our analysis, there is no non-determinism in content
delivery.

Closer to our goal is the trend of work that applies game theory to selfish routing [22,7,11]. In
this problem, each node may be a source of messages to be routed along a fixed path of multiple
relay nodes to a given destination. The benefit of a node is to have its messages delivered to the
destination, while it incurs the costs of forwarding messages as a relay node. This results in a linear
relationship between the actions of a player and the utility of other nodes. In our case, that relation
is captured by the definition of reliability, which is non-linear. Consequently, the utility functions
of an epidemic dissemination and a routing game possess an inherently different structure.

3 Model

We now describe the System and Game Theoretical models, followed by the definition of effective-
ness. In Appendix A, we provide a more thorough description of the considered epidemics model
and include some auxiliary results that are useful for the analysis.

3



3.1 System Model

There is a set of nodesN organized into a directed graph G. This models a P2P overlay network with
a stable membership. Each node has a set of in (N−1

i ) and out-neighbors (Ni). Communication
channels are assumed to be reliable. We model the generation of messages in this network by
considering the existence of a single external source s. Its behavior is described by a profile ps,
which defines for each node i ∈ Ns the probability ps[i] ∈ [0, 1) of i receiving a message directly
from s, with the restriction that ps[i] > 0 for some i. We consider the graph to be connected from
the source s, i.e., there exists a path from s to every node i ∈ N . Conversely, every node i forwards
messages to every neighbor j ∈ Ni with an independent probability pi[j]. Provided a profile of
probabilities p, which includes the vector of probabilities ps and pi used by s and by every node i,
respectively, we can define the reliability of the dissemination protocol as the probability of a node
receiving a message. For the analysis, it is convenient to consider the probability of a node i not
receiving a message, denoted by qi[p]. The reliability of the protocol is then defined by 1 − qi[p].
The exact expression of qi is included in Appendix A.

3.2 Monitoring Mechanism.

The monitoring mechanism emits a signal s ∈ S, where every player i may observe a different
private signal si ∈ s. This signal can take two values for every pair of nodes j ∈ N and k ∈ Nj:
si[j, k] = cooperate notifies i that j forwarded messages to k with a probability higher than a
specified threshold, and si[j, k] = defect signals the complementary action. This signal may be
public, if all nodes read the same signal, or private, otherwise. Moreover, if the signal is perfectly
correlated with the action taken by a node, then monitoring is perfect; otherwise, monitoring is
said to be imperfect.

We consider that monitoring is performed locally by every node. A possible implementation
of such monitoring mechanism in the context of P2P networks can be based on the work of [9].
A simpler and cheaper mechanism would instead consist in every out-neighbor j of a given node
i recording the fraction of messages sent by i to j during the dissemination of a fixed number
M of messages. Then, j may use this information along with an estimate of the reliability of the
dissemination of messages to i (1− qi) in order to determine whether i is cooperating or defecting.
When a defection is detected, j is disseminates an accusation against i towards other nodes. If i is
expected to use pi[j] < 1 towards j, then monitoring is imperfect. Furthermore, accusations may
be blocked, disrupted, or wrongly emitted against one node due to both malicious and rational
behavior. However, in this paper, we consider only perfect monitoring, faithful propagation of
accusations, and that nodes are rational. Almost perfect monitoring can be achieved with a large
M . Faithful propagation may be reasonable to assume if the impact of punishments on the reliability
of each non-punished node is small and the cost of sending accusations is not significant. We intend
to relax these assumptions in future work.

In our model, an accusation emitted by a node j against an in-neighbor i may only be received
by the nodes that are reachable from j by following paths in the graph. In addition, if we consider
the obvious possibility that i might block any accusation emitted by one of its neighbors, then
these paths cannot cross i. Finally, the number of nodes informed of each defection may be further
reduced to minimize the monitoring costs. This restricts the set of in-neighbors of i that may
punish i for defecting j. In this paper, we consider two alternative models. First, we study public
monitoring, where all nodes may be informed about any defection with no delays. Then, we study
the private monitoring case, taking into consideration the possible delay of the dissemination of
accusations.
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3.3 Game Theoretical Model

Our model considers an infinite repetition of a stage game. Each stage consists in the dissemination
of a sequence of messages and is interleaved with the execution of the monitoring mechanism, which
provides every node with some information regarding the actions taken by other nodes during the
stage game.

Stage Game. The stage game is modeled as a strategic game. An action of a player i is a vector of
probabilities pi ∈ Pi, such that pi[j] > 0 only if j ∈ Ni. Thus, pi represents the average probability
used by i to forward messages during the stage. It is reasonable to consider that i adheres to pi

during the complete stage, since i expects to be monitored by other nodes with regard to a given
pi. Hence, changing strategy is equivalent to following a different pi. Despite s not being a player,
for simplicity, we consider that every profile p ∈ P implicitly contains ps. We can also define a
mixed strategy ai ∈ Ai as a probability distribution over Pi, and a profile of mixed strategies a ∈ A
as a vector containing the mixed strategies followed by every player. The utility of a player i is a
function of the benefit βi obtained per received message and the cost γi of forwarding a message
to each neighbor. More precisely, this utility is given by the probability of receiving messages
(1− qi[p]) multiplied by the difference between the benefit per message (βi) and the expected cost
of forwarding that message to every neighbor (γi

∑

j∈Ni
pi[j]):

ui[p] = (1− qi[p])(βi − γi
∑

j∈Ni

pi[j]).

If players follow a profile of mixed strategies a, then the expected utility is denoted by ui[a],
which definition depends on the structure of every aj .

Repeated Game. The repeated game consists in the infinite interleaving between the stage game
and the execution of the monitoring mechanism, where future payoffs are discounted by a factor ωi

for every player i. The game is characterized by (possibly infinite) sequences of previously observed
signals, named histories. The set of finite histories observed by player i is represented by Hi and
H = (Hi)i∈N is the set of all histories observed by any player. A pure strategy for the repeated game
σi ∈ Σi maps each history to an action pi, where σ ∈ Σ is a profile of strategies. Consequently,
σ[h] specifies for some history h ∈ H the profile of strategies p for the stage game to be followed by
every node after history h is observed. A behavioral strategy σi differs from a pure strategy only
in that i assigns a probability distribution ai ∈ Ai over the set of actions for the stage game. For
simplicity, we will use the same notation for the two types of strategies. The expected utility of
player i after having observed history hi is given by πi[σ|hi]. The exact definitions of equilibrium
and expected utility depend on the type of monitoring being implemented. Hence, these definitions
will be provided in each of the sections regarding public and private monitoring.

A Brief Note on Notation. Throughout the paper, we will conveniently simplify the notation
as follows. Whenever referring to a profile of strategies σ, followed by all nodes except i, we will
use the notation σ−i. Also, (σi,σ−i) denotes the composite of a strategy σi and a profile σ−i. The
same reasoning applies to profiles of pure and mixed strategies of the stage game. Finally, we will
let (h, s) denote the history that follows h after signal s is observed.

3.4 Effectiveness

We know from Game Theoretic literature that certain punishing strategies can sustain cooperation
if the discount factor ωi is sufficiently close to 1 [8]. This minimum value is a function of the
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parameters βi and γi for every player i. More precisely, for larger values of the benefit-to-cost ratio
βi/γi, the minimum required value of ωi is smaller. In addition, for certain values of the benefit-to-
cost ratio, no value of ωi can sustain cooperation. Notice that these parameters are specified by the
environment and thus cannot be adjusted in the protocol. Thus, a strategy is more effective if it is
an equilibrium for wider ranges of ωi, βi, and γi. In this paper, we only measure the effectiveness
of a profile of strategies σ as the allowed range of values for the benefit-to-cost ratio.

Definition 1. The effectiveness of a profile σ ∈ Σ is given by ψ[σ] ⊆ [0,∞), such that, if, for
every i ∈ N , βi

γi
∈ ψ[σ], then there exists ωi ∈ (0, 1) for every i ∈ N such that σ is an equilibrium.

4 Public Monitoring

In this section, we assume that the graph allows public monitoring to be implemented. That is,
every node is informed about each defection at the end of the stage when the defection occurred.
We can thus simplify the notation by considering only public signals s ∈ S and histories h ∈ H.
With perfect monitoring, the public signal observed after players follow p ∈ P is deterministic.
This type of monitoring requires accusations to be broadcast. However, since the dissemination
of accusations is interleaved with the dissemination of a sequence of messages, monitoring costs
may not be relevant if the size of each accusation is small, compared to the size of messages being
disseminated.

The section is organized as follows. We start by providing a general definition of punishing
strategies and then introduce the definition of expected utility and the solution concept for public
monitoring. We then proceed to a Game Theoretical analysis, where we analyze punishing strategies
that use direct reciprocity and full indirect reciprocity.

4.1 Public Signal and Punishing Strategies

We study a wide variety of punishing strategies, by considering a parameter τ that specifies the
duration of punishments. Of particular interest to this analysis is the case where the duration of
punishments is infinite, which is known in the Game Theoretical literature as the Grim-trigger
strategy. Furthermore, a punishing strategy specifies a Reaction Set RS[i, j] ⊆ N of nodes that are
expected to react to every defection of i from j during τ stages. This set always contains i and j,
but it may also contain other nodes. In particular, a third node k ∈ RS[i, j] that is an in-neighbor
of i (k ∈ N−1

i ) is expected to stop forwarding any messages to i, as a punishment. If k is not a
neighbor of i, then k may also adapt the probabilities used towards its out-neighbors, for instance,
to keep the reliability high for every unpunished node.

In order for a node j ∈ N to monitor an in-neighbor i ∈ N−1
j , the protocol must define for every

history h ∈ H a threshold probability pi[j|h] with which i should forward messages to j. Since h is
public, pi[j|h] is common knowledge between i and j, allowing for an accurate monitoring. Given
this, the public signal for perfect public monitoring is defined as follows.

Definition 2. For every h ∈ H and p
′ ∈ P, let s = sig[p′|h] be the public signal observed when

players follow p
′. For every i ∈ N and j ∈ Ni, s[i, j] = cooperate if and only if p′i[j] ≥ pi[j|h].

Then, a punishing strategy becomes a set of rules specifying how every pi[j|h] should be defined.
Namely, let σ∗i ∈ Σi denote a punishing strategy, which specifies that after a history h every node
i should forward messages to a neighbor j with probability pi[j|h]. We will denote by σ

∗ ∈ Σ
the profile of punishing strategies. The restrictions imposed on every pi[j|h] can be defined as
follows. Every node i evaluates the set of defections observed in a history h by i and every neighbor
j to which both nodes should react. Basing on this information, i uses a deterministic function
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to determine the probability pi[j|h]. For convenience, we will define pi[k|h] = 0 for every node
k ∈ N \Ni that is not an out-neighbor of i.

For the precise definition of punishing strategy, we need an additional data structure called
Defection Set (DSi[j|h]) containing the set of defections to which both i and j are expected to
react, according to RS. This information is specified in the form of tuples (k1, k2, r) stating that
both i and j are expected to react to a defection of k1 from k2 that occurred in the previous
r-th stage. This way, pi[j|h] is defined as a function of DSi[j|h]. Namely, if DSi[j|h] contains some
defection of j from k and i should react to it (i ∈ RS[j, k]) or if i defected from j, then pi[j|h] is 0.
Otherwise, i forwards messages to j with any positive probability that is a deterministic function
of DSi[j|h].

Definition 3. Define DSi[j|h] ⊆ N ×N × Z as follows for every i ∈ N , j ∈ Ni, and h ∈ H:

– DSi[j|∅] = ∅.
– For h = (h′, s), DSi[j|h] = L1 ∪ L2, where:

1. L1 = {(k1, k2, r + 1)|(k1, k2, r) ∈ DSi[j|h
′] ∧ r + 1 < τ)}.

2. L2 = {(k1, k2, 0)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ s[k1, k2] = defect}.

For every h ∈ H, i ∈ N , and j ∈ Ni:

– If there exists r < τ such that (i, j, r) ∈ DSi[j|h], then pi[j|h] = 0.
– If there exist r < τ and k ∈ Nj such that (j, k, r) ∈ DSi[j|h], then pi[j|h] = 0.
– Otherwise, pi[j|h] is a positive function of DSi[j|h].

We consider that the source s also abides to this strategy. In Section 4.3, we will show that it
follows by construction that if some node k observes a defection of i from a node j and k ∈ RS[i, j],
then k reacts to this defection during τ stages, regardless of the ensuing actions of i and the
current punishments being applied. In addition, after defecting some neighbor j, i does not forward
messages to any node of RS[i, j] in any of the following τ stages.

4.2 Expected Utility and Solution Concept

The expected utility of a profile of pure strategies for every player i and history h is given by:

πi[σ|h] = ui[p] + ωiπi[σ|(h, sig[p|h])], (1)

where p = σ[h]. Conversely, we can define the expected utility for a profile of behavioral strategies
as follows:

πi[σ|h] = ui[a] + ωi

∑

s∈S

πi[σ|(h, s)]pr[s|a, h], (2)

where a = σ[h] and pr[s|a, h] is defined as

pr[s|a, h] =
∏

j∈N

prj[s|aj , h],

where prj[s|aj , h] is the probability of the actions of j in aj leading to s.
The considered solution concept for this model is the notion of Subgame Perfect Equilibrium

(SPE) [19], which refines the solution concept of Nash Equilibrium (NE) for repeated games. In
particular, a profile of strategies is a NE if no player can increase its utility by deviating, given that
other players follow the specified strategies. The solution concept of NE is adequate for instance for
strategic games, where players choose their actions prior to the execution of the game. However,
in repeated games, players have multiple decision points, where they may adapt their actions
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according to the observed history of signals. In this case, the notion of NE ignores the possibility of
players being faced with histories that are not consistent with the defined strategy, e.g., when some
defection is observed. This raises the possibility of the equilibrium only being sustained by non-
credible threats. To tackle this issue, the notion of SPE was proposed, which requires in addition
the defined strategy to be a NE after any history. This intuition is formalized as follows.

Definition 4. A profile of strategies σ
∗ is a Subgame Perfect Equilibrium if and only if for every

player i ∈ N , history h ∈ H, and strategy σ′i ∈ Σi,

πi[σ
∗
i ,σ

∗
−i|h] ≥ πi[σ

′
i,σ

∗
−i|h].

While this definition considers variations in strategies, it is possible to analyze only variations
in the first strategy for the stage game after any history and holding σ

∗ for the remaining stages,
as stated by the one-deviation property. For any a′i ∈ Ai and p

′
i ∈ Pi, let σ

∗
i [h|a

′
i] and σ∗i [h|p

′
i]

denote the strategies where i always follows σ∗i , except after history h, when it chooses a′i and p
′
i

respectively. The same notation will be used for profiles a′ ∈ A and p
′ ∈ P, namely, σ∗[h|a′] and

σ
∗[h|p′], respectively. The following property captures the above intuition, which is known to be

true from Game Theoretic literature and can be proven in a similar fashion to [3]:

Property 5. One-deviation. A profile of strategies σ
∗ is a SPE if and only if for every player

i ∈ N , history h ∈ H, and a′i ∈ Ai, πi[σ
∗
i ,σ

∗
−i|h] ≥ πi[σ

′
i,σ

∗
−i|h], where σ

′
i = σ∗i [h|a

′
i].

4.3 Evolution of the Network

After any history h ∈ H, the network induced by h when players follow σ
∗ can be characterized

by a subgraph, where a link (i, j) is active iff i is not punishing j and i has not defected from j
in the last τ stages. All the remaining links are inactive. When considering a profile of punishing
strategies σ

∗, the evolution of this subgraph over time is deterministic. That is, after a certain
number of stages, inactive links become active, such that at most after τ stages we obtain the
original graph. Given this, we prove some correctness properties of the punishment strategy, which
require the introduction of some auxiliary notation. The complete proofs are in Appendix B.1. All
the considered proofs are performed by induction.

For any profile of pure strategies σ ∈ Σ and h ∈ H, let hist[h, r|σ] denote the history resulting
from players following σ during r stages, after having observed h. That is:

hist[h, r|σ] = (h, (sr
′
)r′∈{1...r}),

such that s1 = sig[σ[h]|h] and for every r′ ∈ {1 . . . r − 1} we have sr
′+1 = sig[σ[h′]|h′], where

h′ = hist[h, r′|σ]. Notice that hist[h, 0|σ] = h for every h ∈ H and σ ∈ Σ.
The following notation will be useful in the analysis, where, for every r > 0, h′ = hist[h, r−1|σ]

and p
′ = σ[h′]:

– qi[h, r|σ] = qi[p
′].

– p̄i[h, r|σ] =
∑

j∈Ni
p′i[j].

– ui[h, r|σ] = ui[p
′] = (1− qi[h, r|σ])(βi − γip̄i[h, r|σ]).

– Ni[h] = {j ∈ Ni|pi[j|h] > 0}.

The following lemma characterizes the evolution of the punishments being applied to any pair
of nodes.

Lemma 6. For every h ∈ H, r ∈ {1 . . . τ − 1}, i ∈ N , and j ∈ Ni,

DSi[j|h
∗
r ] = {(k1, k2, r

′ + r)|(k1, k2, r
′) ∈ DSi[j|h] ∧ r

′ + r < τ},

where h∗r = hist[h, r|σ∗].
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Proof. The proof is by induction, where for the initial case it follows immediately from the definition
of DSi that for every (k1, k2, r

′) ∈ DSi[j|h] such that r′ < 1, r′ is incremented by 1 in the next
stage. Inductively, after r stages, either r′ + r < τ and (k1, k2, r

′ + r) ∈ DSi[j|h] or (k1, k2, r
′) has

been removed from DSi. (Complete proof in Section B.1). ⊓⊔

From this lemma, we obtain the following trivial corollary that simply states that every pun-
ishment ends after τ stages. This is true by the fact that for every h ∈ H, i ∈ N , j ∈ Ni, and
(k1, k2, r

′) ∈ DShi [j], we have r′ < τ .

Corollary 7. For every h ∈ H, r ≥ τ , i ∈ N , and j ∈ Ni, it holds DSi[j|h
∗
r ] = ∅, where h∗r =

hist[h, r|σ∗].

The following lemma proves that every node i that defects from a neighbor j expects to be
punished exactly during the next τ stages, regardless of the following actions of i or the punishments
already being applied to i. The auxiliary notation CDi[p

′|h] is used to denote the characterization
of the defections performed by i in p

′ after history h. More precisely, for every i ∈ N ,

CDi[p
′|h] = {j ∈ Ni|p

′
i[j] < pi[j|h]}.

Lemma 8. For every h ∈ H, p′ ∈ P, r ∈ {1 . . . τ}, i ∈ N , and j ∈ Ni,

DSi[j|h
′
r] = DSi[j|h

∗
r ] ∪ {(k1, k2, r − 1)|k1, k2 ∈ N ∧ k2 ∈ CDk1 [p

′|h] ∧ i, j ∈ RS[k1, k2]}, (3)

where h∗r = hist[h, r|σ∗], h′r = hist[h, r|σ′], and σ
′ = σ

∗[h|p′] is the profile of strategies where all
players follow p

′ in the first stage.

Proof. By induction, the base case follows from the definition of DSi[j|h] and the fact that i registers
every defection of k1 to k2 detected in p

′ by adding (k1, k2, 0) to DSi[j|h]. Inductively, after r ≤ τ
stages, this pair is transformed into (k1, k2, r − 1). (Complete proof in Section B.1). ⊓⊔

From the previous lemmas, it follows that any punishment ceases after τ stages, which is proven
in Lemma 9.

Lemma 9. For every h ∈ H, p′ ∈ P, r > τ , i ∈ N , and j ∈ Ni,

DSi[j|h
′
r ] = DSi[j|h

∗
r ] = ∅, (4)

where h∗r = hist[r|σ∗], h′r = hist[r|σ′], and σ
′ = σ

∗[h|p′].

Proof. From Corollary 7 and Lemma 9, it follows that after τ stages, every pair (k1, k2, r) is removed
from DSi[j|h]. (Complete proof in Section B.1). ⊓⊔

4.4 Generic Results

This section provides some generic results. Namely, we first derive the theoretically optimal effec-
tiveness, which serves as an upper bound for the effectiveness of any profile of strategies. Then, we
derive a simplified generic necessary and sufficient condition for any profile of strategies to be a
SPE. The complete proofs are in Appendix B.2.

Proposition 10 establishes a minimum necessary benefit-to-cost ratio for any profile of strategies
to be a SPE of the repeated Epidemic Dissemination Game. Intuitively, the benefit-to-cost ratio
must be greater than the expected costs of forwarding messages to neighbors (p̄i =

∑

j∈Ni
pi[j|∅]),

since otherwise a player has incentives to not forward any messages. This is the minimum benefit-
to-cost ratio that provides an enforceable utility as defined by the Folk Theorems [8], given that
the utility that results from nodes following any profile p ∈ P is feasible and the minmax utility is
0. Consequently, this establishes an upper bound for the effectiveness of any strategy.
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Proposition 10. For every profile of punishing strategies σ∗, if σ∗ is a SPE, then, for every i ∈ N ,
βi

γi
> p̄i. Consequently, ψ[σ

∗] ⊆ (v,∞), where v = maxi∈N p̄i.

Proof. (See Section B.2). ⊓⊔

A necessary and sufficient condition for any profile of punishing strategies to be an equilibrium
is that no node has incentives to stop forwarding messages to any subset of neighbors, i.e., to drop
those neighbors. This condition is named the DC Condition, which is defined as follows:

Definition 11. DC Condition. For every player i ∈ N , history h ∈ H, and D ⊆ Ni[h],

τ
∑

r=0

ωr
i (ui[h, r|σ

∗]− ui[h, r|σ
′]) ≥ 0, (5)

where σ
′ = (σ′i,σ

∗
−i), σ

′
i = σ∗i [h|p

′
i], and p

′
i is defined as:

– For every j ∈ D, p′i[j] = 0.

– For every j ∈ Ni \D, p′i[j] = pi[j|h].

The following Lemma shows that the DC Condition is necessary.

Lemma 12. If σ∗ is a SPE, then the DC Condition is fulfilled.

Proof. By the One-deviation property, for a profile to be a SPE, a player i must not be able to
increase its utility by unilaterally deviating in the first stage. In particular, this is true if i deviates
by dropping any subset D of neighbors. Furthermore, since any punishment ends after τ stages, by
Lemma 9, we have that if nodes follow the deviating profile σ

′, then for every r > τ ,

ui[h, r|σ
∗] = ui[h, r|σ

′].

The DC Condition follows by the One-deviation property and the fact that

πi[σ
∗|h]− πi[σ

′|h] =
∞
∑

r=0

ωr
i (ui[h, r|σ

∗]− ui[h, r|σ
′]).

(Complete proof in Section B.2). ⊓⊔

In Lemma 16, we also show that the DC Condition is sufficient. In order to prove this, we first
need to show that every node i cannot increase its utility by not following a pure strategy in every
stage game and by not forwarding messages with a probability in {0, pi[j|h]} to every neighbor j.
This is shown in two steps. First, Lemma 13 proves that any local best response mixed strategy
only gives positive probability to an action in {0, pi[j|h]}. Second, Lemma 14 proves that there is
a pure strategy for the stage game that is a local best response.

Define the set of local best response strategies for history h ∈ H and any i ∈ N as:

BR[σ∗
−i|h] = {ai ∈ Ai|∀a′i∈Ai

πi[(σ
∗
i [h|ai],σ

∗
−i)|h] ≥ πi[(σ

∗
i [h|a

′
i],σ

∗
−i)|h]}.

Notice that BR[σ∗
−i|h] is not empty. The following lemma first proves that every player i always

uses probabilities in {0, pi[j|h]} towards a neighbor j.

Lemma 13. For every i ∈ N , h ∈ H, ai ∈ BR[σ∗
−i|h], and pi ∈ Pi such that ai[pi] > 0, it is true

that for every j ∈ Ni we have pi[j] ∈ {0, pi[j|h]}.
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Proof. The proof is by contradiction. Namely, assume that for some pi and ai that is a best response
and ai[pi] > 0, we have that pi does not fulfill the restrictions defined above. We can find a′i and
p
′
i such that:

– p
′
i fulfills the restrictions defined in the lemma.

– a′i[p
′
i] = ai[pi] + ai[p

′
i] and a

′
i[pi] = 0.

By letting p
∗ = σ

∗[h], we have that

sig[(pi,p
∗
−i)|h] = sig[(p′

i,p
∗
−i)|h].

Consequently,

πi[σ
∗
i [h|ai],σ

∗
−i|h] < πi[σ

∗
i [h|a

′
i],σ

∗
−i|h].

Thus, ai cannot be a best response, which is a contradiction. (Complete proof in Section B.2). ⊓⊔

We now have to show that there exists a pure strategy in BR[σ∗
−i|h].

Lemma 14. For every h ∈ H and i ∈ N , there exists ai ∈ BR[σ∗
−i|h] and pi ∈ Pi such that

ai[pi] = 1.

Proof. First, notice that if only pure strategies are best-responses, then the result follows immedi-
ately. If there exists a mixed strategy ai that is a best response, then i must be indifferent between
following any profile pi such that ai[pi] > 0. Otherwise, i could find a better strategy a′i. In that
case, any such profile pi is a best response. (Complete proof in Section B.2). ⊓⊔

Lemma 15 is a direct consequence of Lemmas 13 and 14.

Lemma 15. For every h ∈ H and i ∈ N , there exists pi ∈ Pi and a pure strategy σi = σ∗i [h|pi]
such that:

1. For every j ∈ Ni, pi[j] ∈ {0, pi[j|h]}.

2. For every ai ∈ Ai, πi[σi,σ
∗
−i|h] ≥ πi[σ

′
i,σ

∗
−i|h], where σ

′
i = σ∗i [h|ai].

Proof. (See Section B.2). ⊓⊔

It is now possible to show that the DC Condition is sufficient.

Lemma 16. If the DC Condition is fulfilled, then σ
∗ is a SPE.

Proof. If the DC Condition holds, then no player i can increase its utility by dropping any subset
of neighbors. By Lemma 15, it follows that i cannot increase its utility by following any alternative
strategy for the first stage game, which by the One-deviation property implies that the profile σ

∗

is a SPE. (Complete proof in Section B.2). ⊓⊔

The following theorem merges the results from Lemmas 12 and 16.

Theorem 17. σ
∗ is a SPE if and only if the DC Condition holds.
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4.5 Direct Reciprocity is not Effective

If G is undirected, then it is possible to use direct reciprocity only, by defining RS[i, j] = {i, j} for
every i ∈ N and j ∈ Ni. That is, if i defects from j, then only j punishes i. Direct reciprocity is the
ideal incentive mechanism in a fully distributed environment, since it does not require accusations
to be sent by any node. The goal of this section is to show that punishments that use direct
reciprocity are not effective, even using public monitoring. To prove this, we first derive a generic
necessary benefit-to-cost ratio and then we identify the conditions under which direct reciprocity
is ineffective. The complete proofs are included in Appendix B.3.

Lemma 18 derives a minimum benefit-to-cost ratio for direct reciprocity.

Lemma 18. If σ∗ is a SPE, then, for every i ∈ N and j ∈ Ni, it is true that q′i > q∗i and:

βi
γi
> p̄i +

pi[j|∅]

q′i − q∗i

(

1− q′i +
1− q∗i
τ

)

, (6)

where p
′
i is the strategy where i drops j, σ′ = (σ∗i [∅|p

′
i],σ

∗
−i), q

′
i = qi[σ

′[∅]], and q∗i = qi[σ
∗[∅]].

Proof. By the definition of SPE and Theorem 17, the DC Condition must hold for the initial
empty history and every deviation in the first stage where any player i drops an out-neighbor j.
After some manipulations of the DC Condition for this specific scenario, Inequality 6 is obtained.
(Complete proof in Section B.3). ⊓⊔

Lemma 19 also shows that direct reciprocity is not an effective incentive mechanism under
certain circumstances. Namely, by letting q∗i to be the probability of delivery of messages in equi-
librium (qi[σ

∗[∅]]), we find that, if pi[j|∅] + q∗i ≪ 1, then the effectiveness is of the order (1/q∗i ,∞),
which decreases to ∅ very quickly with an increasing reliability. The conditions under which direct
reciprocity is ineffective are easily met, for instance, when a node has more neighbors than what is
strictly necessary to ensure high reliability.

Lemma 19. Suppose that for any i ∈ N and j ∈ Ni, pi[j|∅] + q∗i ≪ 1. If σ∗ is a SPE, then:

ψ[σ∗] ⊆

(

1

q∗i
,∞

)

, (7)

where q∗i = qi[σ
∗[∅]].

Proof. The proof follows directly from Lemma 18 and the fact that, as we show in Lemma 54 from
Appendix A, we have that if q′i results from exactly j punishing i for defecting from j, then

q′i ≤ q∗i
1

1− pi[j|∅]
.

(Complete proof in Section B.3). ⊓⊔

4.6 Full Indirect Reciprocity is Sufficient

Unlike direct reciprocity, if full indirect reciprocity is used, then the effectiveness may be indepen-
dent of the reliability of the dissemination protocol. This consists in the case where for every i ∈ N
and j ∈ Ni we have

N−1
i ⊆ RS[i, j]. (8)

The goal of this section is to show that, if full indirect reciprocity is used, then the effectiveness
is independent of the reliability of the dissemination protocol under certain circumstances. To
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prove this, we proceed in two steps. First, we conveniently simplify the DC Condition. Then, we
derive a sufficient benefit-to-cost ratio for σ

∗ to be a SPE. The complete proofs are included in
Appendix B.4.

The following lemma simplifies the DC Condition for this specific type of punishing strategies.

Lemma 20. The profile of strategies σ
∗ is a SPE if and only if for every h ∈ H and i ∈ N :

τ
∑

r=1

(ωr
i ui[h, r|σ

∗])− (1− qi[h, 0|σ
∗])γip̄i[h, 0|σ

∗] ≥ 0. (9)

Proof. This simplification is obtained directly from the DC Condition and the fact that, if a node
i has incentives to drop some out-neighbor j, then the best response strategy is to drop all out-
neighbors. This is proven by defining p

′′, where i drops a subset D of out-neighbors, and p
′, where

i drops every out-neighbor. We can prove that:

– sig[p′|h] = sig[p′′|h].
– ui[p

′] > ui[p
′′].

– For any r > 0, ui[h, r|σ
′] = ui[h, r|σ

′′], where σ′ and σ
′′ differ from σ

∗ exactly in that i follows
p
′ and p

′′ in the first stage, respectively.

This implies that πi[σ
′|h] > πi[σ

′′|h], and therefore the best response for i is to drop all neighbors.
(Complete proof in Section B.4). ⊓⊔

Theorem 22 derives a lower bound for the effectiveness of a full indirect reciprocity profile of
strategies σ∗. This is done in two steps. First, it is shown that the history h that minimizes the left
side of Inequality 9 results exactly in the same punishments being applied during the first τ − 1
stages. This is proven in Lemma 21.

Lemma 21. Let h ∈ H be defined such that for every h′ ∈ H, the value of the left side of Inequal-
ity 9 for h is lower than or equal to the value for h′. Then, for every r ∈ {1 . . . τ − 2},

ui[h, r|σ
∗] = ui[h, r + 1|σ∗].

Proof. The proof is performed by contradiction, where we assume that h minimizes the left side of
Inequality 9, but for some r ∈ {1 . . . τ − 2}

ui[h, r|σ
∗] 6= ui[h, r + 1|σ∗].

This implies that in h a set of punishments ends at the end of stage r. We can find h′ where those
punishments are either postponed or anticipated one stage and such that the left side of Inequality 9
is lower for h′ than for h, which is a contradiction. (Complete proof in Section B.4). ⊓⊔

It is now possible to derive a sufficient benefit-to-cost ratio for full indirect reciprocity to be
a SPE, which constitutes a lower bound for the effectiveness of these strategies. However, this
derivation is only valid when the following assumption holds. There must exist a constant c ≥ 1
such that for every history h:

qi[h, 0|σ
∗] ≥ 1− c(1 − qi[h, 1|σ

∗]). (10)

Intuitively, this states that, after some history h, if the value of qi varies from the first stage to
the second due to some punishments being concluded, then this variation is never too large. With
this assumption, we can derive a sufficient benefit-to-cost for σ∗ to be a SPE.
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Theorem 22. If there exists a constant c ≥ 1 such that, for every h ∈ H and i ∈ N , Assumption 10
holds, then ψ[σ∗] ⊇ (v,∞), where

v = max
h∈H

max
i∈N

p̄i[h, 0|σ
∗]
(

1 +
c

τ

)

. (11)

Proof. We consider the history h that minimizes the left side of Inequality 9. Using the result
of Lemma 21, after some manipulations, we can find that if for every i ∈ N , βi/γi ∈ (v,∞),
then there exist ωi ∈ (0, 1) for every i ∈ N such that Inequality 9 is true for every history h′,
which implies by Lemma 20 that σ

∗ is a SPE. This allows us to conclude that ψ[σ∗] ⊇ (v,∞).
(Complete proof in Section B.4). ⊓⊔

We can then conclude that if c is small or τ is large, and the maximum of p̄i[h, 0|σ
∗] is never

much larger than p̄i for every i and h, then the effectiveness of full indirect reciprocity is close
to the optimum derived in Proposition 10. In particular, if Grim-trigger is used (τ → ∞) and p̄i
is maximal for every i, then the effectiveness is optimal. Furthermore, if for any h both qi[h, 0]
and qi[h, 1] are small, then the effectiveness of full indirect reciprocity differs from the theoretical
optimum only by a factor 1 + 1/τ , which is upper bounded by 2 for any τ ≥ 1.

5 Private Monitoring

When using public monitoring, we make the implicit assumption that the monitoring mechanism
is able to provide the same information instantly to every node, which requires the existence of
a path from every out-neighbor j of any node i to every node of the graph, that does not cross
i. In addition, public monitoring is only possible if accusations are broadcast to every node. We
now consider private monitoring, where the dissemination of accusations may be restricted by the
topology and scalability constraints. However, any node that receives an accusation may react to
it. Therefore, the definition of RS is no longer necessary. In addition, accusations may be delayed.

5.1 Private Signals

In private monitoring, signals are determined by the history of previous signals h and the profile p

followed in the last stage. Namely, sig[p|h] returns a signal s, such that every node i observes only
its private signal si ∈ s, indicating for every other node j ∈ N whether j cooperated or defected
with its out-neighbors in previous stages. The distinction between cooperation and defection is now
determined by a threshold probability pi[j|hi]. If a node i defects an out-neighbor j in stage r,
then k is informed of this defection with a delay dk[i, j], i.e., k is informed only at the end of stage
r + dk[i, j]. We only assume that, for every node i ∈ N and j ∈ Ni, both i and j are informed
instantly of the action of i towards j in the previous stage, i.e.:

di[i, j] = dj [i, j] = 0.

We consider that these delays are common knowledge among players. Moreover, we still assume
that monitoring is perfect and that accusations are propagated faithfully. We intend to relax the
assumptions in future work. With this in mind, it is possible to provide a precise definition of a
private signal. For every player i ∈ N and history h ∈ H, we denote by hi ∈ h the private history
observed by i when all players observe the history h ∈ H. If |hi| ≥ r ≥ 1, then let hri denote the
last r-th signal observed by i, where h1i is the last signal. A private signal is defined such that if
some node j observes a defection of an in-neighbor i ∈ N−1

j , every node k ∈ N such that dk[i, j]
is finite (dk[i, j] < ∞) observes this defection dk[i, j] stages after the end of the stage it occurred.
The value dk[i, j] is infinite if and only if accusations emitted by j against i may never reach k,
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either due to every path from j to k crossing i or the monitoring mechanism not disseminating the
accusation to k. However, if there exists a path from j to k without crossing i and k ∈ N−1

i , then
dk[i, j] <∞.

Formally:

Definition 23. For every i ∈ N and h ∈ H, let s′i ∈ sig[p′|h] be the private signal observed by i
when players follow p

′ ∈ P after having observed h. We have:

– For every j ∈ N and k ∈ Nj such that di[j, k] = 0, s′i[j, k] = cooperate if and only if p′j[k] ≥
pj [k|hj ], where hj ∈ h.

– For every j ∈ N and k ∈ Nj such that 0 < di[j, k] <∞, s′i[j, k] = defect if and only if:
• |h| ≥ di[j, k].

• For hk ∈ h and s′k = h
di[j,k]
k , s′k[j, k] = defect.

– For every j ∈ N and k ∈ Nj such that di[j, k] = ∞, s′i[j, k] = cooperate.

5.2 Private Punishments

In this context, we can define a punishing strategy σ∗i for every node i as a function of the threshold
probability pi[j|hi] determined by i for every private history hi and out-neighbor j. Notice that in
the definition of private signals we assume that an accusation by j is emitted against i iff i uses
pi[j] < pi[j|hi] for any private history hi. This was reasonable to assume in public monitoring,
where histories were public. Here, the strategy must also specify for every private history hj the
threshold probability pi[j|hj ], since hi may differ from hj . In order for j to accurately monitor i,
for every h ∈ H and hi, hj ∈ h, we must have

pi[j|hi] = pi[j|hj ]. (12)

Therefore, both threshold probabilities must be computed as a function of the same set of
signals. The only issue with this requirement is that defection signals may arrive at different stages
to i and j. For instance, if k1 defects from k2 in stage r and di[k1, k2] < dj[k1, k2], then i must
wait for stage r + dj [k1, k2] before taking this defection into consideration in the computation of
the threshold probability. Furthermore, as in public monitoring, i and j are expected to react to
a given defection for a finite number of stages. However, as we will see later, this number should
vary according to the delays in order for punishments to be effective. Thus, for every k1 ∈ N and
k2 ∈ Nk1 , we define τ [k1, k2|i, j] to be the number of stages during which i and j react to a given
defection of k1 from k2. Notice that τ [k1, k2|i, j] = τ [k1, k2|j, i].

This intuition is formalized as follows. As in public monitoring, DSi[j|hi] denotes the set of
defections observed by i and that j will eventually observe. This set also contains tuples in the
form (k1, k2, r). The main difference is that now i may have to wait before considering this tuple
in the definition of pi[j|hi]. We signal this by allowing r to be negative and by using the tuple in
the definition of pi[j|hi] only when r ≥ 0. When i observes a defection for the first time, it adds
(k1, k2, v) to DSi[j|hi], where

v = min[di[k1, k2]− dj [k1, k2], 0].

Then, i removes this pair when r = τ [k1, k2|i, j]. For simplicity, we allow v to take the value
∞ when dj [k1, k2] = ∞, resulting in that i never takes into consideration this defection when
determining pi[j|hi]. This leads to the following definition.

Definition 24. For every i ∈ N , hi ∈ Hi, and j ∈ Ni ∪N−1
i , define DSi[j|hi] ⊆ N ×Z as follows:

– DSi[j|∅] = ∅.
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– For hi = (h′i, s
′
i), DSi[j|hi] = L1 ∪ L2, where:

1. L1 = {(k1, k2, r + 1)|(k1, k2, r) ∈ DSi[j|h
′
i] ∧ r + 1 < τ [k1, k2|i, j]}.

2. L2 = {(k1, k2, v)|k1, k2 ∈ N ∧ s′i[k1, k2] = defect}, where:

v = min[di[k1, k2]− dj [k1, k2], 0].

For every i ∈ N , hi ∈ Hi, and j ∈ Ni, σ
∗
i [hi] = pi[j|hi]:

– Let K = {(k1, k2, r) ∈ DSi[j|hi]|r ≥ 0}.
– If there exists r ≥ 0 such that (i, j, r) ∈ K, then pi[j|hi] = 0.
– If there exist r ≥ 0 and k ∈ Nj such that (j, k, r) ∈ K, then pi[j|hi] = 0.
– Otherwise, pi[j|h] is a positive function of K.

For every j ∈ N−1
i \ Ni, σ

∗
i [hi] = pj[i|hi] such that:

– Let K = {(k1, k2, r) ∈ DSi[j|hi]|r ≥ 0}.
– If there exists r ≥ 0 such that (j, i, r) ∈ K, then pj[i|hi] = 0.
– If there exist r ≥ 0 and k ∈ Ni such that (i, k, r) ∈ K, then pj[i|hi] = 0.
– Otherwise, pj[i|hi] is a positive function of K.

5.3 Expected Utility and Solution Concept

We now model the interactions as a repeated game with imperfect information and perfect recall,
for which the solution concept of Sequential Equilibrium is adequate [13]. Its definition requires the
specification of a belief system µ. After a player i observes a private history hi ∈ Hi, i must form
some expectation regarding the history h ∈ H observed by every player, which must include hi.
This is captured by a probability distribution µi[.|hi] over H. By defining µ = (µi)i∈N , we call
a pair (σ,µ) an assessment, which is assumed to be common knowledge among all players. The
expected utility of a profile of strategies σ is then defined as:

πi[σ|µ, hi] =
∑

h∈H

µi[h|hi]πi[σ|h], (13)

where πi[σ|h] is defined as in the public monitoring case.
An assessment (σ∗,µ∗) is a Sequential Equilibrium if and only if (σ∗,µ∗) is Sequentially Ratio-

nal and Consistent. The definition of sequential rationality is identical to that of subgame perfection:

Definition 25. An assessment (σ∗,µ∗) is Sequentially Rational if and only if for every i ∈ N ,
hi ∈ Hi, and σ

′
i ∈ Σi, πi[σ

∗|µ∗, hi] ≥ πi[σ
′
i,σ

∗
−i|µ

∗, hi].

However, defining consistency for an assessment (σ∗,µ∗) is more intricate. The idea of defining
this concept was introduced in [13], intuitively defined as follows in our context. For any profile
σ
∗, every private history hi that may be reached with positive probability when players follow

σ
∗ is said to be consistent with σ

∗; otherwise, hi is inconsistent. For any consistent hi, µi[h|hi]
must be defined using the Bayes rule. The definition of µi for inconsistent private histories varies
with the specific definition of Consistent Assessment. It turns out that, in our case, the notion of
Preconsistency introduced in [10] is sufficient.

We now provide the formal definition of Preconsistency and later provide an interpretation in
the context of punishment strategies. Let pri[h

′|h,σ] be the probability assigned by i to h′ ∈ H
being reached from h ⊂ h′ when players follow σ ∈ Σ. Given hi ∈ Hi, we can define

pri[h
′|µ, hi,σ] =

∑

h∈H

µi[h|hi]pri[h
′|h,σ].
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For h′i ∈ Hi such that hi ⊂ h′i, let:

pri[h
′
i|µ, hi,σ] =

∑

h′∈H:h′
i∈h

′

pri[h
′|µ, hi,σ].

Definition 26. An assessment (σ∗,µ∗) is Preconsistent if and only if for every i ∈ N , hi ∈ Hi,
and h′i ∈ Hi such that hi ⊂ h′i, if there exists σ′i ∈ Σi such that pri[h

′
i|µ

∗, hi, (σ
′
i,σ

∗
−i)] > 0, then

for every h′ ∈ H such that h′i ∈ h′:

µi[h
′|h′i] =

pri[h
′|µ∗, hi, (σ

′
i,σ

∗
−i)]

pri[h′i|µ
∗, hi, (σ′i,σ

∗
−i)]

.

The underlying intuition of this definition when considering a profile of punishing strategies σ∗

is as follows. First, notice that a history hi is consistent with σ
∗ if and only if no defections are

observed in hi. For any σ′i, the profile of strategies σ
′ = (σ′i,σ

∗
−i) may specify non-deterministic

actions for the stage game, by only due to σ′i. Consider any h
′
i. If h

′
i does not contain any defections,

then the only strategies σ′i such that h′i is consistent with any such σ
′ are those where i does not

defect any node. Therefore, we can set hi to the empty history and from the above definition derive
the conclusion that µi[h

′|h′i] = 1 if and only if h′ does not contain any defections. Similarly, if h′i
only contains defections performed by i, then hi can be the empty set and there must be only one
h′ such that µi[h

′|h′i] = 1, which is the history where only defections performed by i are observed
by any player.

If h′i contains only defections performed by i, then we can use induction on the number of
defections committed by other nodes to prove that µi[h

′|h′i] = 1 if and only if h′ contains exactly
the defections observed by i in h′i. The base case follows from the two previous scenarios. As for
the induction step, there are two hypothesis. If the last defections were performed in the last stage,
then there is no hi ⊂ h′i such that

pri[h
′
i|µ, hi,σ

′] > 0. (14)

Otherwise, consider that the last defections performed by other nodes occurred in the last r-th
stage where r > 1, when i observed hi. In this case, it is true that 14 holds. Here, there is only
one history h such that hi ∈ h and µi[h|hi] = 1, which is true by the induction hypothesis. This
history contains exactly the defections observed by i in hi, which are also included in h′i. Thus, the
only history h′ that may follow hi fulfills the condition that no other defection was performed other
than what i observed in h′i.

In summary, µ[h|hi] = 1 if and only if h is the history containing hi and the set of defections
observed by any node j ∈ H in hj ∈ h is a subset of the set of defections observed in hi. The
importance of this definition of consistency is that in [13] the authors prove that the One-deviation
property also holds for Preconsistent assessments, which is sufficient for our analysis.

Property 27. One-deviation. A Preconsistent assessment (σ∗,µ∗) is Sequentially Rational if and
only if for every player i ∈ N , history hi ∈ Hi, and profile a

′
i ∈ Ai,

πi[σ
∗
i ,σ

∗
−i|µ

∗, hi] ≥ πi[σ
′
i,σ

∗
−i|µ

∗, hi],

where σ′i = σ∗i [hi|a
′
i] is defined as in public monitoring.

5.4 Evolution of the Network

When a player i observes a private history hi ∈ Hi, only the histories h ∈ H such that hi ∈ h can
be observed by other players. Given this, we use the same notation as in public monitoring, when
referring to the evolution of the network after a history h is observed. Namely, hist[h, r|σ] is the
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resulting history starting from the observation of h and when all players follow the pure strategy σ.
Therefore, we continue to use the same notation for qi (qi[h, r|σ]), p̄i (p̄i[h, r|σ]), and ui (ui[h, r|σ]).
Now, we have

Ni[hi] = {j ∈ Ni|pi[j|hi] > 0}.

The definition of CDi[p|h] ⊆ N is almost identical to that of the public monitoring case. Namely,
for every i ∈ N , h ∈ H, and hi ∈ h,

CDi[p|h] = {j ∈ Ni|pi[j] < pi[j|hi]}.

The following lemma proves that every node k1 that defects from an out-neighbor k2 expects
i and j to react to this defection during the next τ [k1, k2|i, j] stages, regardless of the following
actions of k1 or the punishments already being applied to k1.

Lemma 28. For every h ∈ H, p′ ∈ P, r > 0, i ∈ N , and j ∈ Ni:

DSi[j|h
′
i,r] = DSi[j|h

∗
i,r] ∪ {(k1, k2, r − 1− di[k1, k2] + v[k1, k2])|k1, k2 ∈ N∧

k2 ∈ CDk1 [p
′|h] ∧ r ∈ {di[k1, k2] + 1 . . . di[k1, k2] + τ [k1, k2|i, j] − v[k1, k2]}∧

v[k1, k2] = min[di[k1, k2]− dj [k1, k2], 0]},
(15)

where h∗i,r ∈ hist[h, r|σ∗], h′i,r ∈ hist[h, r|σ′], and σ
′ = σ

∗[h|p′] is the profile of strategies where all
players follow p

′ in the first stage.

Proof. By induction, the base case follows from the definition of DSi and the fact that i registers
every defection of k1 to k2 in stage di[k1, k2], adding (k1, k2, v[k1, k2]) to DSi[j|h]. Inductively,
after r ≤ di[k1, k2] + τ [k1, k2|i, j] − v[k1, k2] stages, this pair is transformed into (k1, k2, r − 1).
(Complete proof in Section C.1). ⊓⊔

For the sake of completeness, we prove in Lemma 29 that the strategy is well defined, in terms
of defining threshold probabilities that are always common knowledge between pairs of players.
This supports our assumption in the definition of private signals that an accusation is emitted by
j against i iff i uses pi[j] < pi[j|hj ] towards j.

Lemma 29. For every i ∈ N , j ∈ Ni, h ∈ H, and hi, hj ∈ h:

pi[j|hi] = pi[j|hj ].

Proof. It follows from the definition of DS that a node i never includes in the set K a tuple
(k1, k2, r) such that r < 0, for any out-neighbor j. This value is only negative when di[k1, k2] <
dj [k1, k2], in which case v is set to −(dj [k1, k2]− di[k1, k2]). By Lemma 28, this value only becomes
0 when j is also informed of this defection, in which case both nodes include the pair in K.
Consequently, K is always defined identically by i and j after any history h, which implies the
result. (Complete proof in Section C.1). ⊓⊔

5.5 Generic Results

Proposition 30 reestablishes the optimal effectiveness for private monitoring. The proof of this
proposition is identical to that of Proposition 10. The only difference lies in the fact that now the
effectiveness of a profile of strategies σ∗ is conditional on a belief system µ

∗ (ψ[σ∗|µ∗]).

Proposition 30. For every assessment (σ∗,µ∗), if (σ∗,µ∗) is Sequentially Rational, then, for
every i ∈ N , βi

γi
≥ p̄i. Consequently, ψ[σ

∗] ⊆ (v,∞), where v = maxi∈N p̄i.
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Proof. (See Section C.2). ⊓⊔

As in the public monitoring case, we can define a necessary and sufficient condition for the
defined profile of strategies to be Sequentially Rational, which we name PDC Condition. The proof
of both necessity and sufficiency is almost identical to that of public monitoring.

Definition 31. PDC Condition. For every i ∈ N , hi ∈ Hi, and D ⊆ Ni[hi],

∑

h∈H

µ∗i [h|hi]
∞
∑

r=0

ωr
i (ui[h, r|σ

∗]− u′i[h, r|σ
′]) ≥ 0, (16)

where σ
′ = (σ∗i [hi|p

′
i],σ

∗
−i) and p

′
i is defined as:

– For every j ∈ D, p′i[j] = 0.
– For every j ∈ N \D, p′i[j] = pi[j|hi].

The following corollary captures the fact that the PDC condition is necessary, which follows
directly from the One-deviation property and the definition of πi for private monitoring.

Corollary 32. If the assessment (σ∗,µ∗) is Sequentially Rational and Preconsistent, then the PDC
Condition is fulfilled.

In order to prove that the PDC Condition is sufficient, we proceed in the same fashion to public
monitoring, always implicitly assuming that the considered assessment is Preconsistent. Redefine
the set of local best responses for every node i and private history hi ∈ Hi as:

BR[σ∗
−i|µ

∗, hi] = {ai ∈ Ai|∀a′i∈Ai
πi[(σ

∗
i [hi|ai],σ

∗
−i)|µ

∗, hi] ≥ πi[(σ
∗
i [hi|a

′
i],σ

∗
−i)|µ

∗, hi]}.

Lemma 33. For every i ∈ N , hi ∈ Hi, ai ∈ BR[σ∗
−i|µ

∗, hi], and pi ∈ Pi such that ai[pi] > 0, it
is true that for every j ∈ Ni we have pi[j] ∈ {0, pi[j|hi]}.

Proof. (See Section C.2). ⊓⊔

Lemma 34. For every i ∈ N and hi ∈ Hi, there exists ai ∈ BR[σ∗
−i|µ

∗, hi] and pi ∈ Pi such that
ai[pi] = 1.

Proof. (See Section C.2). ⊓⊔

Lemma 35. For every i ∈ N and hi ∈ Hi, there exists pi ∈ Pi and a pure strategy σi = σ∗i [hi|pi]
such that:

1. For every j ∈ Ni, pi[j] ∈ {0, pi[j|hi]}.
2. For every ai ∈ Ai, πi[σi,σ

∗
−i|µ

∗, hi] ≥ πi[σ
′
i,σ

∗
−i|µ

∗, hi], where σ
′
i = σ∗i [hi|ai].

Proof. (See Section C.2). ⊓⊔

Lemma 36. If the PDC Condition is fulfilled and (σ∗,µ∗) is Preconsistent, then (σ∗,µ∗) is Se-
quentially Rational.

Proof. (See Section C.2). ⊓⊔

The following theorem merges the results from Corollary 32 and Lemma 36.

Theorem 37. If (σ∗,µ∗) is Preconsistent, then (σ∗,µ∗) is Sequentially Rational if and only if the
PDC Condition is fulfilled.
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5.6 Ineffective Topologies

An important consequence of Theorem 37 is that not every topology allows the existence of equi-
libria for punishing strategies. In fact, if there is some node i and a neighbor j such that every node
k that is reachable from j without crossing i is never in between s and i, then the impact of the
punishments applied to i after defecting from j is null. This intuition is formalized in Lemma 38,
where PS[i, j] denotes the set of paths from i to j in G.

Lemma 38. If the assessment (σ∗,µ∗) is Preconsistent and Sequentially Rational, then for every
i ∈ N and j ∈ Ni, there is k ∈ N \ {i}, x ∈ PS[s, i], and x′ ∈ PS[j, k], such that k ∈ x and i /∈ x′.

Proof. Assume by contradiction the opposite. Then, nodes can follow p
′ where i drops j, such

that, if p′′ is the profile resulting from nodes punishing i, then by Lemma 53 from Appendix A,
qi[p

′′] = qi[p
∗], where p∗ = σ

∗[∅]. Since i increases its utility in the first stage by deviating, we have

ui[p
′′] > ui[p

∗].

Moreover, by letting σ
′ = σ

∗[p′] to be the profile where exactly i defects j, it is true that for every
r > 0

ui[∅, r|σ
′] = ui[∅, r|σ

∗].

This implies that πi[σ
′|µ∗, ∅] > πi[σ

∗|µ∗, ∅], which is a contradiction. (Complete proof in Section C.2).
⊓⊔

The main implication of this result is that many non-redundant topologies, i.e., that do not
contain multiple paths between s and every node, are ineffective at sustaining cooperation. This
is not entirely surprising, since it was already known that cooperation cannot be sustained using
punishments as incentives in non-redundant graphs such as trees [18]. But even slightly redundant
structures, such as directed cycles, do not fulfill the necessary condition specified in Lemma 38.
Although redundancy is desirable to fulfill the above condition, it might decrease the effectiveness
of punishments unless full indirect reciprocity may be used, as shown in the following section.

5.7 Redundancy may decrease Effectiveness

In addition to the need to fulfill the necessary condition of Lemma 38, a higher redundancy increases
tolerance to failures. We show in Theorem 39 that if the graph is redundant and it does not allow
full indirect reciprocity to be implemented, then the effectiveness decreases monotonically with
the increase of the reliability. We consider the graph to be redundant if there are multiple non-
overlapping paths from the source to every node. More precisely, if for every i ∈ N and j ∈ N \{i},
there exists x ∈ PS[s, i] such that j /∈ x, then G is redundant.

The reliability increases as the probabilities pi[j|∅] approach 1 for every node i and out-neighbor
j. This is denoted by limσ∗→1. We find that the effectiveness of any punishing strategy that can-
not implement full indirect reciprocity converges to ∅, i.e., no benefit-to-cost ratio can sustain
cooperation. This intuition is formalized as follows:

lim
σ∗→1

ψ[σ∗|µ∗] = ·i∈N ,j∈Ni
lim

pi[j|∅]→1
ψ[σ∗|µ∗] = ∅. (17)

Theorem 39 proves that Equality 17 holds for any graph that does not allow full indirect
reciprocity to be implemented, which in our model occurs when there is no path from some j ∈ Ni

to some k ∈ N−1
i that does not cross i.

Theorem 39. If G is redundant and there exist i ∈ N , j ∈ Ni, and k ∈ N−1
i such that for every

x ∈ PS[j, k] we have i ∈ x, then Equality 17 holds.
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Proof. The proof defines a deviating profile of strategies σ
′ where exactly i drops j. It follows

that there is a path x from s to i such that every node k ∈ x never reacts to this defection. By
Definition 24, k uses pk[l|∅] towards every out-neighbor l; a value that converges to 1. It follows
from Lemma 49 in Appendix A that

lim
σ∗→1

(πi[σ
∗|µ∗, ∅]− πi[σ

′|µ∗, ∅]) < 0.

Therefore, for any βi and γi, the left side of the PDC Condition converges to a negative value. By
Theorem 37, this implies that ψ[σ∗|µ∗] converges to ∅. (Complete proof in Section C.3). ⊓⊔

Notice that this result does not imply that only full indirect reciprocity is effective at incen-
tivizing rational nodes to cooperate in all scenarios. In fact, in many realistic scenarios, it might
suffice for a majority of the in-neighbors of a node i to punish i after any deviation. A more sensible
analysis would take into consideration the rate of converge to ∅ as the reliability increases. However,
full indirect reciprocity is necessary in order to achieve an effectiveness fully independent of the
desired reliability in any redundant graph.

5.8 Coordination is Desirable

Although full indirect reciprocity is desirable for redundant graphs, we now show that for some
definitions of punishing strategies, it might not be sufficient if monitoring incurs large delays. In
particular, nodes also need to coordinate the punishments being applied to any node, such that
these punishments overlap during at least one stage after the defection, cancelling out any benefit
obtained for receiving messages along some redundant path. This intuition is formalized as follows.

Definition 40. An assessment (σ∗,µ∗) enforces coordination if and only if for every i ∈ N and
j ∈ Ni, there exists r > 0 such that, for every k ∈ N−1

i ,

r ∈ {dk[i, j] + 1 . . . dk[i, j] + τ [i, j|k, i]}.

We prove a similar theorem to Theorem 39, which states that for some definitions of punishing
strategies, with a redundant graph, the effectiveness decreases to ∅ with the reliability.

Theorem 41. If the graph is redundant and σ
∗ does not enforce coordination, then there is a

definition of σ∗ such that Equality 17 holds.

Proof. Consider the punishing strategy where every node i reacts only to the defections of out-
neighbors or to its own defections, and uses pi[j|∅] in any other case. If σ∗ does not enforce coor-
dination, then for some i ∈ N and j ∈ Ni, and for every r > 0, we can find a path from s to i such
that every node k along the path uses the probability pk[l|∅] towards the next node l in the path.
These probabilities converge to 1 as the reliability increases, which by Lemma 49 implies that

lim
σ∗→1

(πi[σ
∗|µ∗, ∅]− πi[σ

′|µ∗, ∅]) < 0,

where σ
′ is the alternative profile of strategies where exactly i drops j. Therefore, for any βi and

γi, the left side of the PDC Condition converges to a negative value. By Theorem 37, this implies
that ψ[σ∗|µ∗] converges to ∅. (Complete proof in Section C.4). ⊓⊔

In order to allow nodes to obtain messages with high probabilities, while keeping the effec-
tiveness independent of the desired reliability, punishments must be coordinated, such that after
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any deviation any node i expects to be punished by every in-neighbor during τ > 0 stages. More
precisely, for every node i, by letting

d̄i = max
j∈Ni

max
k∈N−1

i

dk[i, j]

to be the maximum delay of accusations against i towards any in-neighbor of i, the protocol must
define τ [i, j|k, i] for every k ∈ N−1

i and j ∈ Ni in order to fulfill

τ [i, j|k, i] + dk[i, j] ≥ d̄i + τ.

It is sufficient and convenient for the sake of simplicity to provide a definition of τ [i, j|k, l] for every
k ∈ N and l ∈ Nk where dk[i, j] < ∞, such that every node stops reacting to a given defection in
the same stage. More precisely,

Definition 42. For every k ∈ N and l ∈ Nk such that dk[i, j] <∞, if k and l observe the defection
before d̄i + τ , i.e., g = max[dk[i, j], dl[i, j]] < d̄i + τ , then k and l react to a defection of i from j:

τ [i, j|k, l] = d̄i + τ − g.

Otherwise,

τ [i, j|k, l] = 0.

This ensures that no node k reacts to a defection of i from j after stage d̄i + τ .

5.9 Coordinated Full Indirect Reciprocity

We now study the set of punishing strategies that use full indirect reciprocity. This requires the
existence of a path from every j ∈ Ni to every k ∈ N−1

i , which must not cross i. Under some circum-
stances, the effectiveness of a Preconsistent assessment (σ∗,µ∗) that uses full indirect reciprocity
does not increase with the reliability of the dissemination process. As seen in the previous section,
this requires punishments to be coordinated, which we assume to be defined as in Definition 42.

The fact that accusations may be delayed has an impact on the effectiveness, which is quantified
in Lemma 46. To prove this lemma, we first derive in Lemma 44 an intermediate sufficient condition
for the PDC Condition to be true. The lemma simplifies the PDC Condition for the worst scenario,
where all in-neighbors of a node i begin punishing i for any defection simultaneously. The proofs
assume that punishing strategies are defined in a reasonable manner. More precisely, if in reaction
to a defection of node i other nodes increase the probabilities used towards out-neighbors other
than i, then i should never expect a large increase in its reliability during the initial stages, before
every in-neighbor starts punishing i. This intuition is captured in Assumption 43.

Definition 43. (Assumption) There exists a constant ǫ ∈ [0, 1) such that, for every h ∈ H,
i ∈ N , p′

i ∈ Pi, σ
′ = (σ∗i [h|p

′
i],σ

∗
−i), and r > 0,

qi[h, r|σ
∗]− qi[h, r|σ

′] < ǫ.

Lemma 44. If (σ∗, µ∗) is Preconsistent, Assumption 43 holds, and Inequality 18 is fulfilled for
every i ∈ N , hi ∈ Hi, and h ∈ H such that µ∗i [h|hi] > 0, then (σ∗,µ∗) is Sequentially Rational:

−
d̄i
∑

r=0

ωr
i ((1− qi[h, r|σ

∗])γip̄i[h, r|σ
∗] + ǫβi) +

d̄i+τ
∑

r=d̄i+1

ωr
i ui[h, r|σ

∗] ≥ 0. (18)
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Proof. By the definition of coordinated punishments if i deviates in σ′i by dropping some subset of
neighbors such that all players follow σ

′ = (σ′i,σ
∗
−i), then in the worst scenario no node punishes i

in any of the first d̄i stages. Therefore, by our assumptions, for every r ∈ {1 . . . d̄i},

ui[h, r|σ
∗]− ui[h, r|σ

′] ≥ −
d̄i
∑

r=0

ωr
i ((1 − qi[h, r|σ

∗])γip̄i[h, r|σ
∗] + ǫβi).

Also, for every r ∈ {d̄i + 1 . . . d̄i + τ}, every in-neighbor of i punishes i, which by Lemma 51 from
Appendix A implies

ui[h, r|σ
′] = 0.

Finally, for every r ≥ d̄i + τ + 1, every node ends its reaction to any defection of i after d̄i + τ + 1
stages, implying that

ui[h, r|σ
∗] = ui[h, r|σ

′].

These three facts have the consequence that if Inequality 18 is fulfilled, then the PDC Condition
holds. Therefore, by Theorem 37, (σ∗,µ∗) is Sequentially Rational. (Complete proof in Section C.5).

⊓⊔

We can now derive a lower bound for the effectiveness of the considered punishing strategies, in
a similar fashion to Theorem 22. However, now a stronger assumption is made, defined in 45. The
reasoning is similar in that after any history, if a node i defects from some out-neighbor, then the
reliability i would obtain during the initial stages when it is not being punished by all in-neighbors
is not significantly greater than the reliability i would obtain in the subsequent stages, had i not
deviated from the specified strategy.

Definition 45. (Assumption). There exists a constant c > 0, such that, for every i ∈ N , r ∈
{0 . . . d̄i}, and r

′ ∈ {d̄i + 1 . . . d̄i + τ},

qi[h, r|σ
∗] ≥ 1− c(1− qi[h, r

′|σ∗]).

Lemma 46. If (σ∗,µ∗) is Preconsistent, Assumptions 43 and 45 hold, and Inequality 19 is fulfilled
for every h, i ∈ N , and r, r′ ≤ d̄i + τ such that qi[h, r|σ

∗] < 1 and qi[h, r
′|σ∗] < 1, then there exist

ωi ∈ (0, 1) for every i ∈ N such that (σ∗,µ∗) is Sequentially Rational:

βi
γi
> p̄i[h, r|σ

∗]
1

A
+ p̄i[h, r

′|σ∗]
1

B − C
, (19)

where

– A = 1− ǫ(d̄i+1)
(1−qi[h,r|σ∗])τ .

– B = τ
c
.

– C = ǫ(d̄i+1)
1−qi[h,r′|σ∗] .

Proof. The proof considers two histories h1 and h2 that minimize the first and the second factors
of Inequality 18, respectively. Thus, if the following condition is true, then Inequality 18 is true:

−
d̄i
∑

r=0

ωr
i ((1− q∗i [h1, 0|σ

∗])γip̄i[h1, 0|σ
∗] + ǫβi) +

d̄i+τ+1
∑

r=d̄i+1

ωr
i ui[h2, 0|σ

∗] ≥ 0.

After some manipulations, we conclude that the above condition is fulfilled if 19 is true. This implies
by Lemma 44 that if 19 holds for every h, and r, r′ ≤ d̄i + τ , then Inequality 18 also holds for some
ωi ∈ (0, 1) and (σ∗,µ∗) is Sequentially Rational. (Complete proof in Section C.5). ⊓⊔
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The main conclusion that can be drawn from this lemma is that if we pick the values of τ and
ǫ such that τ ≥ d̄+ 1 and ǫ≪ 1, then we can simplify the above condition to what is expressed in
Theorem 47, where d̄ = maxi∈N d̄i is the maximum delay of the monitoring mechanism.

Theorem 47. If (σ∗,µ∗) is Preconsistent, Assumptions 43 and 45 hold for ǫ ≪ 1, and τ ≥ d̄+1,
then there exists a constant c > 0 such that ψ[σ∗|µ∗] ⊇ (v,∞), where

v = max
i∈N

max
h∈H

p̄i[h, 0|σ
∗](1 + c).

Proof. (See Section C.5). ⊓⊔

As in public monitoring, the effectiveness is close to optimal only if the initial expected costs
of forwarding messages p̄i are not significantly smaller than the expected costs incurred after any
history. Provided this guarantee, if ǫ is small and τ is chosen to be at least of the order of the
maximum delay between out and in-neighbors of any node, then for any other punishing strategy,
the effectiveness differs from the optimal by a constant factor.

Notice that, although we can adjust the value of τ to compensate for higher delays, it is desirable
to have a low maximum delay. First, this is due to the fact that higher values of τ correspond to
harsher punishments, which we may want to avoid, especially when monitoring is imperfect and
honest nodes may wrongly be accused of deviating. Second, a larger delay decreases the range of
values of ωi for each benefit-to-cost ratio that ensures that punishing strategies are an equilibrium.
In particular, we can derive from the proof of Lemma 46 the strict minimum ωi for Grim-trigger
to be an equilibrium. Under our assumptions, it is approximately given by

ωi ≥ d̄i

√

γip̄i
βi

.

For larger values of d̄i and the same benefit-to-cost ratio, the minimum ωi is also larger, reducing
the likelihood of punishments to persuade rational nodes to not deviate from the specified strategy.

6 Discussion and Future Work

From this analysis, we can derive several desirable properties of a fully distributed monitoring
mechanism for an epidemic dissemination protocol with asymmetric interactions, which uses pun-
ishments as the main incentive. This mechanism is expected to operate on top of an overlay network
that provides a stable membership to each node. The results of this paper determine that the over-
lay should optimally explore the tradeoff between maximal randomization and higher clustering
coefficient. The former is ideal for minimizing the latency of the dissemination process and fault
tolerance, whereas the latter is necessary to minimize the distances between the neighbors of each
node, while maximizing the number of in-neighbors of every node i informed about any defection
of i. The topology of this overlay should also fulfill the necessary conditions identified in this paper.
Furthermore, the analysis of private monitoring shows that each accusation may be disseminated
to a subset of nodes close to the accused node, without hindering the effectiveness. As future work,
we plan to extend this analysis by considering imperfect monitoring, unreliable dissemination of
accusations, malicious behavior, and churn. One possible application of the considered monitoring
mechanism would be to sustain cooperation in a P2P news recommendation system such as the
one proposed in [4]. Due to the lower rate of arrival of news, a monitoring approach may be better
suited in this context.
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A Epidemic Model

The probability that a node i does not receive a message from s when all players follow p can be
defined recursively, as follows.

Proposition 48. Define φ as follows: i) φ[R, ∅|p, L] = 1 and ii) for I 6= ∅ and R′ = R ∪ I ∪ L:

φ[R, I|p, L] =
∑

H⊆N\R′(P [I,H|p] ·Q[N , R, I,H|p] · φ[R ∪ I,H|p, L]), (20)

where
P [I,H|p] =

∏

k∈H(1−
∏

l∈I(1− pl[k])).
Q[N , R, I,H|p] =

∏

k∈N\(H∪R∪I)

∏

l∈I(1− pl[k]).

Then, φ[∅, {s}|p, L] is the probability that no node of L receives a message disseminated by s.
In particular, qi[p] = φ[∅, {s}|p, {i}].

Proof. (Justification) The considered epidemics model is very similar to the Reed-Frost model [1],
where dissemination is performed by having nodes forwarding messages with independent proba-
bilities. The main difference is that the probability of forwarding each message is determined by a
vector p, instead of being identical for every node. This implies that the dissemination process can
be modeled as a sequence of steps, such that, at every step, there is a set I of nodes infected in the
last step, a set R of nodes infected in previous steps other than the last, and a set S of susceptible
nodes. Given R and I, the probability of the set H ⊆ N \ (I ∪R ∪L) containing exactly the set of
nodes infected at the current step is

P [I,H|p] ·Q[N , I,H|p] =
∏

k∈H

(1−
∏

l∈I

(1− pl[k])) ·
∏

k∈N\(H∪R∪I)

∏

l∈I

(1− pl[k]). (21)

That is, every node i ∈ H is infected with a probability equal to 1 minus the probability of no
node of I choosing i, and these probabilities are all independent. Furthermore, all nodes of I do
not infect any node of N \ (H ∪ R ∪ I). We can characterize φ with a weighted tree, where nodes
correspond to a pair (R, I). Moreover, for every parent node (R, I), each child node corresponds
to a pair (R ∪ I,H) for every H ⊆ N \ (R ∪ I ∪ L). The root node is the pair (∅, {s}) and leaf
nodes are in the form (R, ∅) for every R ⊆ {s} ∪N \L. The weight of the transition from (R, I) to
(R ∪ I,H) is given by 21, which is the probability of exactly the nodes of H being infected among
every node of N \ (R ∪ I ∪ L). The sum of these factors for any path from (∅, {s}) to (R, ∅) gives
the probability of exactly the nodes of R being infected in a specific order. By summing over all
leaf nodes in the form (R, ∅), we have the total probability of exactly the nodes of R being infected.
Finally, by summing over all possible R ⊆ {s} ∪ N \ L, we obtain the probability of no node in L
being infected. In particular, qi[p] = φ[∅, {s}|p, {i}]. ⊓⊔

The following are some useful axioms for the proofs, for any p, R, I, L, and R′ = R ∪ I ∪ L:

∑

H⊆N\R′

P [I,H|p] ·Q[N , R, I,H|p] = 1. (22)

If (A,B) is a partition of N , then

∑

H⊆N\R′ P [I,H|p] ·Q[N , R, I,H|p] =

=
∑

H1⊆A\R′ P [I,H1|p]Q[A,R, I,H1|p]·

·
∑

H2⊆B\R′ P [I,H2|p] ·Q[B,R, I,H1|p]

(23)

j ∈ I ⇒ P [I,H|p] ≤ P [I \ {j},H|p]. (24)
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A.1 Deterministic Delivery

Lemma 49 proves the straightforward fact that if there is a path from s to some node i where all
nodes along the path forward messages with probability 1, then qi = 0.

Lemma 49. For any p ∈ P, if there exists i ∈ N and x ∈ PS[s, i] such that for every r ∈
{0 . . . |x| − 1} we have pxr [xr+1] = 1, then qi[p] = 0.

Proof. The proof goes by induction on r where the induction hypothesis is that, for every r ∈
{0 . . . |x| − 2}, R ⊆ N ∪ {s} \ {i}, and I ⊆ N ∪ {s} \ {i} ∪R, such that:

– xr ∈ I,
– for every r′ ∈ {0 . . . r}, xr′ ∈ R ∪ I,
– for every r′ ∈ {r + 1 . . . |x| − 1}, xr′ ∈ N \ (R ∪ I),

we have φ[R, I|p, {i}] = 0.
Consider the base case for r = |x| − 2 and let R′ = R ∪ I ∪ {i}. In this case, for j = xr,

φ[R, I|p, {i}] =
∑

H⊆N\R′(P [I,H|p] ·Q[N , R, I,H|p] · φ[R ∪ I,H|p, {i}])

=
∑

H⊆N\R′(P [, I,H|p] ·Q[N \ {i}, R, I,H|p]
∏

l∈I\{j}(1− pl[i])(1 − pj[i])φ[R ∪ I,H|p, {i}])

=
∑

H⊆N\R′(P [, I,H|p] ·Q[N \ {i}, R, I,H|p]

0 · φ[R ∪ I,H|p, {i}])

= 0.

This proves the base case. Assume now that the hypothesis is true for every r′ ∈ {0 . . . r} and
some r ∈ {1 . . . |x| − 2}. Let a = xr−1 and b = xr, let R1 = R ∪ I and R2 = R1 ∪H. We thus have

φ[R, I|p, {i}] =
∑

H⊆N\(R1∪{i})
(P [I,H|p] ·Q[N , R, I,H|p] · φ[R1,H|p, {i}])

=
∑

H⊆N\(R1∪{i,b})
(P [I,H|p] ·Q[N \ {b}, R, I,H|p]

∏

l∈I\{a}(1− pl[b])(1 − pa[b])φ[R1,H|p, {i}])

+
∑

H⊆N\(R1∪{i,b})
(P [I,H ∪ {b}|p] ·Q[N , R, I,H ∪ {b}|p] · φ[R1,H ∪ {b}|p, {i}])

=
∑

H⊆N\(R1∪{i,b})
(P [I,H|p] ·Q[N \ {b}, R, I,H|p] · 0 · φ[R1,H|p, {i}])

+
∑

H⊆N\(R1∪{i,b})
(P [I,H ∪ {b}|p] ·Q[N , R, I,H ∪ {b}|p] · 0)

= 0.

This proves the induction step for r − 1. Consequently, since s = x0 and xr ∈ N for every r ∈
{1 . . . |x| − 1},

qi[p] = φ[∅, {s}|p, {i}] = 0.

⊓⊔
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A.2 Positive Reliability

Lemma 50 shows that if every node forwards messages with a positive probability, then every node
of the graph receives a message with positive probability as well.

Lemma 50. For any p ∈ P, if there exists i ∈ N and x ∈ PS[s, i] such that for every r ∈
{0 . . . |x| − 1} we have pxr [xr+1] > 0, then qi[p] < 1.

Proof. The proof goes by induction on r where the induction hypothesis is that, for every r ∈
{0 . . . |x| − 2}, R ⊆ N ∪ {s} \ {i}, and I ⊆ N ∪ {s} \ {i} ∪R, such that:

– xr ∈ I,
– for every r′ ∈ {0 . . . r}, xr′ ∈ R ∪ I,
– for every r′ ∈ {r + 1 . . . |x| − 1}, xr′ ∈ N \ (R ∪ I),

we have φ[R, I|p, {i}] < 1.
Consider the base case for r = |x| − 2 and let R1 = R ∪ I ∪ {i}. In this case, by Axiom 22, for

j = xr,
φ[R, I|p, {i}] =

∑

H⊆N\R1
(P [I,H|p] ·Q[N , R, I,H|p] · φ[R ∪ I,H|p, {i}])

=
∑

H⊆N\R1
(P [I,H|p] ·Q[N \ {i}, R, I,H|p]·

∏

l∈I\{j}(1− pl[i])(1 − pj[i])φ[R ∪ I,H|p, {i}])

<
∑

H⊆N\R1
P [I,H|p] ·Q[N , R, I,H|p]

= 1.

This proves the base case. Assume now that the hypothesis is true for every r′ ∈ {0 . . . r} and some
r ∈ {1 . . . |x| − 2}. Let a = xr−1 and b = xr. Consider that R1 = R ∪ I and R2 = R ∪H ∪ I.

We thus have by Axioms 22 and 24,

φ[R, I|p, {i}] =
∑

H⊆N\(R1∪{i})
(P [I,H|p] ·Q[N , R, I,H|p]φ[R1,H|p, {i}])

=
∑

H⊆N\(R1∪{i,b})
(P [I,H|p] ·Q[N \ {b}, R, I,H|p]

∏

l∈I(1− pl[k])
∏

l∈I\{a}(1− pl[k])(1 − pa[b])φ[R1,H|p, {i}])

+
∑

H⊆N\(R1∪{i,b})
(P [I,H ∪ {b}|p] ·Q[N , R, I,H ∪ {b}|p] · φ[R1,H ∪ {b}|p, {i}])

<
∑

H⊆N\(R1∪{i,b})
(P [I,H|p] ·Q[N \ {b}, R, I,H|p]

∏

l∈I(1− pl[k])
∏

l∈I\{a}(1− pl[k]) · 1 · φ[R1,H|p, {i}])

+
∑

H⊆N\(R1∪{i,b})
(P [I \ {a},H ∪ {b}|p] ·Q[N , R, I \ {a},H ∪ {b}|p])

≤
∑

H⊆N\(R1∪{i,b})
(P [I \ {a},H|p] ·Q[N , R, I \ {a},H|p])

+
∑

H⊆N\(R1∪{i})
(P [I \ {a},H ∪ {b}|p] ·Q[N , R, I \ {a},H ∪ {b}|p])

=
∑

H⊆N\(R1∪{i})
(P [I \ {a},H|p] ·Q[N , R, I \ {a},H|p])

= 1.

This proves the induction step for r − 1. Consequently, since s = x0 and xr ∈ N for every r ∈
{1 . . . |x| − 1},

qi[p] = φ[∅, {s}|p, {i}] < 1.

⊓⊔
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A.3 Null Reliability

Lemma 51 shows that if every in-neighbor of a node i does not forward messages to i, then qi = 0.

Lemma 51. If p ∈ P is defined such that for some i ∈ N and for every j ∈ N−1
i pj [i] = 0, then

qi[p] = 1.

Proof. The proof goes by induction on r where the induction hypothesis is that for every r ∈
{0 . . . |N |}, R ⊆ N ∪{s} \ {i}, and I ⊆ N ∪{s} \ {i} ∪R such that |R|+ |I| ≤ |N |+1− r, we have
φ[R, I|p, {i}] = 1.

The base case is for r = 0, where we have by the definition of p.

φ[R, I|p, {i}] =
∏

l∈I

(1− pl[i])φ[R ∪ I, ∅|p, {i}] =
∏

l∈I

(1− 0) · 1 = 1.

Assume the induction hypothesis for any r ∈ {0 . . . |N | − 1}. Consider any two R and I defined
as above for r + 1, such that |R|+ |I| = |N | − r. Let R1 = R ∪ I ∪ {i} and R2 = H ∪ R ∪ I. It is
true by Axiom 22 that:

φ[R, I|p, {i}] =
∑

H⊆N\R1
P [I,H|p]Q[N , R, I,H|p]φ[R ∪ I,H|p, {i}])

=
∑

H⊆N\R1
P [I,H|p]Q[N , R, I,H|p] · 1

= 1.

Therefore, for r = |N |, qi[p] = φ[∅, {s}|p, {i}] = 1. ⊓⊔
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A.4 Uniform Reliability

Lemma 53 shows that for some node i and for every path x from s to and i, every node of x does
not change its probability from p to p

′, then qi[p] = qi[p
′]. As an intermediate step, Lemma 52

proves that the reliability is the same whenever I and R contain the same set of nodes from any
path from s to i.

For any i ∈ N , p ∈ P, and K ⊆ N , let

Di = {j ∈ N ∪ {s} \ {i}|PS[j, i] 6= ∅},

and:

p[I, k] = 1−
∏

j∈I

(1− pj [k]).

Therefore, it is possible to write:

P [I,H|p] =
∏

k∈H p[I, k].
Q[N , R, I,H|p] =

∏

k∈N\(R∪I∪H)(1− p[I, k]).

For any L1, L2 ⊆ N \Di such that L1 ∩ L2 = ∅, since for every j ∈ L we have PS[j, i] = ∅ and
pj [k] = 0 for every k ∈ Di, and for every H ⊆ Di,

p[I ∪ L1, k] = p[I, k].
P [I ∪ L1,H|p] = P [I,H|p].
Q[N , R ∪ L1, I ∪ L2,H|p] = Q[N , I,H|p].

(25)

Lemma 52. For every p ∈ P, i ∈ N , R ⊆ N ∪ {s} \ {i}, I ⊆ Di \ R, and L1, L2 ⊆ N \ (Di ∪R)
such that L1 ∩ L2 = ∅,

φ[R ∪ L1, I ∪ L2|p, {i}] = φ[R, I|p, {i}].

Proof. Fix p and i. First notice that for every R ⊆ N and L ⊆ N \ (Di ∪R),

φ[R,L|p, {i}] = 1. (26)

We now prove by induction that for every R ⊆ N ∪{s}, I ⊆ Di \R, and L1, L2 ⊆ N \ (Di ∪R)
such that L1 ∩ L2 = ∅,

φ[R,L1, I ∪ L2|p, {i}] = φ[R, I|p, {i}].

The induction goes on r ∈ {0 . . . |N |}, where |R|+ |I|+ |L| = |N |+ 1− r, where L = L1 ∪ L2.
For r = 0, by Axiom 22, 25 and 26, we can write:

φ[R ∪ L1, I ∪ L2|p, {i}] = (1− p[I ∪ L1, i])φ[R ∪ I ∪ L, ∅|p, {i}]
= (1− p[I, i])
= (1− p[I, i])

∑

H⊆L φ[R ∪ I,H|p, {i}]

= (1− p[I, i])
∑

H⊆N\(R∪I∪{i})(P [I,H|p] ·Q[N , R, I,H|p]

·φ[R ∪ I,H|p, {i}])
= φ[R, I|p, {i}].

(27)

This proves the base case.
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Assume the induction hypothesis for every r′ ∈ {0 . . . r} and r ∈ {0 . . . |N | − 1}. By Axioms 22
and 23, and by 25 and the induction hypothesis, we can write:

φ[R ∪ L1, I ∪ L2|p, {i}] =
∑

H⊆N\(R∪I∪L∪{i})(

P [I ∪ L2,H|p] ·Q[N , R ∪ L1, I ∪ L2,H|p]·
φ[R ∪ I ∪ L,H|p, {i}])

=
∑

H1⊆Di\(R∪I∪{i})(

P [I ∪ L2,H1|p] ·Q[Di, R ∪ L1, I ∪ L2,H1|p]
∑

H2⊆N\(R∪L∪{i}∪Di)
(

P [I ∪ L2,H2|p] ·Q[N \Di, R ∪ L1, I ∪ L2,H2|p]
φ[R ∪ I ∪ L,H1 ∪H2|p, {i}]))

=
∑

H1⊆Di\(R∪I∪L∪{i})(φ[R ∪ I,H1|p, {i}]

P [I,H1|p] ·Q[Di, R ∪ L1, I ∪ L2,H1|p]
∑

H2⊆N\(R∪L∪{i}∪Di)
(

P [I ∪ L2,H2|p] ·Q[N \Di, R ∪ L1, I ∪ L2,H2|p]))

=
∑

H1⊆Di\(R∪I∪L∪{i})(φ[R ∪ I,H1|p, {i}]

P [I,H1|p] ·Q[Di, R, I,H1|p])

=
∑

H1⊆Di\(R∪I∪L∪{i})(

P [I,H1|p] ·Q[Di, R, I,H1|p]
∑

H2⊆N\(R∪L∪{i}∪Di)
(

P [I,H2|p] ·Q[N \Di, R, I,H2|p]φ[R ∪ I,H1 ∪H2|p, {i}]))

=
∑

H⊆N\(R∪I∪{i})(

P [I,H|p] ·Q[N , R, I,H|p] · φ[R ∪ I,H|p, {i}])

= φ[R, I|p, {i}].

This proves the result. ⊓⊔
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Lemma 53. Let p,p′ ∈ P be any two profiles of probabilities such that for some i ∈ N , for every
x ∈ PS[s, i], and for every j ∈ x, pj = p

′
j. Then, qi[p] = qi[p

′].

Proof. Assume this to be the case for a fixed i, p, and p
′. Then, for every x ∈ PS[s, i] and j ∈ x,

it is true that, for every k ∈ N−1
j , there exists x′ ∈ PS[s, i] such that

k ∈ x′ ∧ pk[j] = p′k[j]. (28)

Define p′[I, k] as in 25, but for p
′. Condition 28 implies that for every I ⊆ N ∪ {s} and

k ∈ Di ∪ {i}:
p′[I, k] = p[I, k]. (29)

The rest of the proof is performed by induction on r where the induction hypothesis is that for
every r ∈ {0 . . . |N |}, R ⊆ N ∪{s}\{i}, and I ⊆ N ∪{s}\{i}∪R such that |R|+ |I| ≤ |N |+1− r,
we have φ[R, I|p, {i}] = φ[R, I|p′, {i}].

The base case is for r = 0, where we have by 29 and the definition of p and p
′:

φ[R, I|p, {i}] = p[I, i]φ[R ∪ I, ∅|p, {i}]
= p′[I, i]φ[R ∪ I, ∅|p′, {i}]
= φ[R, I|p′, {i}].

This proves the base case. Now, assume the induction hypothesis for some r ∈ {0 . . . |N | − 1}.
It is true by Lemma 52, by Axioms 22 and 23, by 29, and the induction hypothesis that:

φ[R, I|p, {i}] =
∑

H⊆N\(R∪I∪{i})(P [I,H|p] ·Q[N , R, I,H|p] · φ[R ∪ I,H|p, {i}])

=
∑

H1⊆Di\(R∪I∪{i})(

P [I,H1|p] ·Q[Di, R, I,H1|p]
∑

H2⊆N\(R∪{i}∪Di)
(

P [I,H2|p] ·Q[N \Di, R, I,H2|p]
φ[R ∪ I,H1 ∪H2|p, {i}]))

=
∑

H1⊆Di\(R∪I∪{i})(φ[R ∪ I,H1|p, {i}]

P [I,H1|p] ·Q[Di, R, I,H1|p]
∑

H2⊆N\(R∪{i}∪Di)
(

P [I,H2|p] ·Q[N \Di, R, I,H2|p]))

=
∑

H1⊆Di\(R∪I∪{i})(φ[R ∪ I,H1|p
′, {i}]

P [I,H1|p
′] ·Q[Di, R, I,H1|p

′])

=
∑

H1⊆Di\(R∪I∪{i})(

P [I,H1|p
′] ·Q[Di, R, I,H1|p

′]
∑

H2⊆N\(R∪L∪{i}∪Di)
(

P [I,H2|p
′] ·Q[N \Di, R, I,H2|p

′]φ[R ∪ I,H1 ∪H2|p
′, {i}]))

=
∑

H⊆N\(R∪I∪{i})(

P [I,H|p′] ·Q[N , R, I,H|p′] · φ[R ∪ I,H|p′, {i}])

= φ[R, I|p′, {i}].

This concludes the proof by induction. Therefore, for r = |N |,

qi[p] = φ[∅, {s}|p, {i}] = φ[∅, {s}|p′, {i}] = qi[p
′].

⊓⊔
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A.5 Single Impact

Lemma 54 provides an upper bound for the impact in the reliability when a single in-neighbor j
punishes node i.

Lemma 54. For every i ∈ N , j ∈ N−1
i , p ∈ P such that pj [i] < 1 and qi[p] > 0, if p′ is the profile

where only j deviates from pj[i] to pj[i]
′ < pj[i], then

qi[p
′] ≤ qi[p]

1− pj [i]
′

1− pj[i]
.

Proof. Fix i, j, p, and p
′. The proof shows by induction that for every r ∈ {0 . . . |N |}, R ⊆

N ∪ {s} \ {i} and I ⊆ N ∪ {s} \ {i} ∪R such that |R|+ |I| − r = |N | − 1:

φ[R, I|p′, {i}] ≤ φ[R, I|p, {i}]
1 − p′j[i]

1 − pj[i]
.

Notice that by the definition of φ, if j ∈ R, then

φ[R, I|p′, {i}] = φ[R, I|p, {i}]. (30)

For the base case r = 0, if j ∈ R, then the result follows immediately. Thus, consider that j ∈ I.
We can write

φ[R, I|p′, {i}] = p[I, i]φ[R ∪ I, ∅|p, {i}]
= p[I \ {j}, i] · p′[{j}, i]

= p[I \ {j}, i] · (1 − pj [i])
1−p′j [i]

1−pj [i]

= p[I, i]
1−p′j [i]

1−pj [i]

= φ[R, I|p, {i}]
1−p′j [i]

1−pj [i]
.

This proves the induction step for r = 0. Assume now that the induction hypothesis is true for
every r′ ∈ {0 . . . r} and for some r ∈ {0 . . . |N | − 1}.

If j /∈ I, then by the induction hypothesis and by 30,

φ[R, I|p′, {i}] =
∑

H⊆N\(R∪I∪{i})(P [I,H|p′] ·Q[N , R, I,H|p′] · φ[R ∪ I,H|p′, {i}])

=
∑

H⊆N\(R∪I∪{i})(P [I,H|p] ·Q[N , R, I,H|p] · φ[R ∪ I,H|p′, {i}])

≤
∑

H⊆N\(R∪I∪{i})(P [I,H|p] ·Q[N , R, I,H|p] · φ[R ∪ I,H|p, {i}]
1−p′j [i]

1−pj [i]
)

≤ φ[R, I|p, {i}]
1−p′j [i]

1−pj [i]
.

For the final case where j ∈ I, we have by 30:

φ[R, I|p′, {i}] =
∑

H⊆N\(R∪I∪{i})(P [I,H|p′] ·Q[N , R, I,H|p′] · φ[R ∪ I,H|p′, {i}])

=
∑

H⊆N\(R∪I∪{i})(
∏

k∈H p[I, k]
∏

k∈N\(H∪R∪I∪{i})(1− p[I, k])p[I \ {j}, i](1 − pj[i])
1−p′j [i]

1−pj [i]
φ[R ∪ I,H|p, {i}])

= φ[R, I|p, {i}]
1−p′j [i]

1−pj [i]
.

This concludes the proof. ⊓⊔
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B Public Monitoring

B.1 Evolution of the Network

Proof of Lemma 6. For every h ∈ H, r ∈ {1 . . . τ − 1}, i ∈ N , and j ∈ Ni,

DSi[j|h
∗
r ] = {(k1, k2, r

′ + r)|(k1, k2, r
′) ∈ DSi[j|h] ∧ r

′ + r < τ},

where h∗r = hist[h, r|σ∗].

Proof. Fix i, h, and j. The proof goes by induction on r, where the induction hypothesis is that,
for every r ∈ {1 . . . τ − 1},

DSi[j|h
∗
r ] = {(k1, k2, r

′ + r)|(k1, k2, r
′) ∈ DSi[j|h] ∧ r

′ + r < τ}.

By Definition 3, we have that for every r ∈ {1 . . . τ − 1}, p∗ = σ
∗[h∗r ], and s

∗ = sig[p∗|h],

DSi[j|h
∗
r+1] = L1[r + 1|σ∗] ∪ L2[r + 1|σ∗], (31)

where
L1[r + 1|σ∗] = {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ DSi[j|h

∗
r ] ∧ r

′ + 1 < τ}.
L2[r + 1|σ∗] = {(k1, k2, 0)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ s

∗[k1, k2] = defect}.
(32)

First, note that by Definition 2 it holds that s∗[k1, k2] = cooperate for every k1 ∈ N and
k2 ∈ Nk1 . Thus, by 32, for every r ∈ {1 . . . τ − 1},

L2[r|σ
∗] = {(k1, k2, 0)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ s

∗[k1, k2] = defect} = ∅. (33)

By 32,
L1[1|σ

∗] = {(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ DSi[j|h] ∧ r
′ + 1 < τ},

which, along with 33 and 31, proves the base case.
Now, consider that the induction hypothesis is valid for any r ∈ {1 . . . τ − 2}. We have by this

assumption and by 32 that

L1[r + 1|σ∗] = {(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ DSi[j|h
∗
r ] ∧ r

′ + 1 < τ},
= {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈

{(l1, l2, r
′′ + r)|(l1, l2, r

′′) ∈ DSi[j|h] ∧ r
′′ + r < τ} ∧ r′ + 1 < τ},

= {(k1, k2, r
′ + (r + 1))|(k1, k2, r

′) ∈ DSi[j|h] ∧ r
′ + (r + 1) < τ}.

This fact, along with 33 and 31, proves the induction step for r + 1. ⊓⊔
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Proof of Lemma 8. For every h ∈ H, p′ ∈ P, r ∈ {1 . . . τ}, i ∈ N , and j ∈ Ni:

DSi[j|h
′
r ] = DSi[j|h

∗
r ] ∪ {(k1, k2, r − 1)|k1, k2 ∈ N ∧ k2 ∈ CDk1 [p

′|h] ∧ i, j ∈ RS[k1, k2]},

where h∗r = hist[h, r|σ∗], h′r = hist[h, r|σ′], and σ
′ = σ

∗[h|p′] is the profile of strategies where all
players follow p

′ in the first stage.

Proof. Fix h, p′, i, and j. The proof goes by induction on r, where the induction hypothesis is that
for every r ∈ {1 . . . τ}, Equality 3 holds.

By Definition 3, we have that for every r ≤ τ , pr = σ
∗[h∗r ], and s

∗ = sig[pr|h∗r ]:

DSi[j|h
∗
r+1] = L1[r + 1|σ∗] ∪ L2[r + 1|σ∗], (34)

where
L1[r + 1|σ∗] = {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ DSi[j|h

∗
r ] ∧ r

′ + 1 < τ}.
L2[r + 1|σ∗] = {(k1, k2, 0)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ s

∗[k1, k2] = defect}.
(35)

Similarly, for every r ≤ τ , pr = σ
′[h′r], and s

′ = sig[pr|h′r],

DSi[j|h
′
r+1] = L1[r + 1|σ′] ∪ L2[r + 1|σ′], (36)

where
L1[r + 1|σ′] = {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ DSi[j|h

′
r ] ∧ r

′ + 1 < τ}.
L2[r + 1|σ′] = {(k1, k2, 0)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ s

′[k1, k2] = defect}.
(37)

First, note that for every r ∈ {1 . . . τ} and p
′′ ∈ P, such that σ′′ = σ

∗[h|p′′], we have σ
′′[h′] =

σ
∗[h′] for every h′ ∈ H \ {h}.
Thus, for h′′r = hist[h, r|σ′′], p∗ = σ

′′[h′′r ], and s∗ = sig[p∗|h′′r ], we have by Definition 2 that
s∗[k1, k2] = cooperate for every k1 ∈ N and k2 ∈ Nk1 . Thus, by Definition 3, for every r ∈ {1 . . . τ},

L2[r|σ
′′] = {(k1, k2, 0)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ s

∗[k1, k2] = defect} = ∅. (38)

It follows by 35 and 37 that, for every r ∈ {1 . . . τ},

L2[r|σ
∗] = L2[r|σ

′] = ∅. (39)

The base case is when r = 1. Since h = h′0 = h∗0, by 35 and 37, it is true that:

L1[1|σ
′] = L1[1|σ

∗]. (40)

Furthermore, if players follow p
′, then for s′ = sig[p′|h], we have s′[k1, k2] = defect iff k2 ∈

CDk1 [p
′|h]. Thus:

L2[1|σ
′] = {(k1, k2, 0)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ s

′[k1, k2] = defect}
= {(k1, k2, 0)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ k2 ∈ CDk1 [p

′|h]}.
(41)

Consequently, the base case follows from 34, 36, 39, 40, and 41.
Hence, assume the induction hypothesis for r ∈ {1 . . . τ − 1}. By the induction hypothesis and

by 35, since r < τ , it is also true that

L1[r + 1|σ′] = {(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ DSi[j|h
′
r ] ∧ r

′ + 1 < τ}

= {(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ DSi[j|h
∗
r ] ∧ r

′ + 1 < τ}∪
∪{(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ {(l1, l2, r − 1)|l1, l2 ∈ N

∧l2 ∈ CDl1 [p
′|h] ∧ i, j ∈ RS[l1, l2]} ∧ r

′ + 1 < τ}

= L1[r + 1|σ∗] ∪ {(k1, k2, (r + 1)− 1)|k1, k2 ∈ N
∧k2 ∈ CDk1 [p

′|h] ∧ i, j ∈ RS[k1, k2]}.

(42)

The induction hypothesis follows from 34, 36, 39, and 42 for r+1, which proves the result. ⊓⊔
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Proof of Lemma 9. For every h ∈ H, p′ ∈ P, r > τ , i ∈ N , and j ∈ Ni,

DSi[j|h
′
r ] = DSi[j|h

∗
r ] = ∅,

where h∗r = hist[r|σ∗], h′r = hist[r|σ′], and σ
′ = σ

∗[h|p′].

Proof. Fix h, p′, i, and j. The proof goes by induction on r, where the induction hypothesis is that
for every r ∈ {1 . . . τ}, Equality 4 holds.

By Definition 3, we have that for every r > 0, pr = σ
∗[h∗r ], and s

∗ = sig[pr|h∗r ]:

DSi[j|h
∗
r+1] = L1[r + 1|σ∗] ∪ L2[r + 1|σ∗], (43)

where
L1[r + 1|σ∗] = {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ DSi[j|h

∗
r ] ∧ r

′ + 1 < τ}.
L2[r + 1|σ∗] = {(k1, k2, 0)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ s

∗[k1, k2] = defect}.
(44)

Similarly, for every r > 0, pr = σ
′[h′r], and s

′ = sig[pr|h′r],

DSi[j|h
′
r+1] = L1[r + 1|σ′] ∪ L2[r + 1|σ′], (45)

where
L1[r + 1|σ′] = {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ DSi[j|h

′
r ] ∧ r

′ + 1 < τ}.
L2[r + 1|σ′] = {(k1, k2, 0)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ s

′[k1, k2] = defect}.
(46)

First, note that for every r > 0, p′′ ∈ P, and σ
′′ = σ

∗[h|p′′], we have σ
′′[h′] = σ

∗[h′] for every
h′ ∈ H \ {h}.

Thus, for h′′r = hist[r|σ′′], p∗ = σ
′′[h′′r ], and s∗ = sig[p∗|h′′r ], we have by Definition 2 that

s∗[k1, k2] = cooperate for every k1 ∈ N and k2 ∈ Nk1 . Thus, by Definition 3, for every r > 0,

L2[r|σ
′′] = {(k1, k2, 0)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ s

∗[k1, k2] = defect} = ∅. (47)

It follows by 44 and 46 that, for every r > τ ,

L2[r|σ
∗] = L2[r|σ

′] = ∅. (48)

By Lemma 8,

DSi[j|h
′
τ ] = DSi[j|h

∗
τ ] ∪ {(k1, k2, τ − 1)|k1, k2 ∈ N ∧ k2 ∈ CDk1 [p

′|h] ∧ i, j ∈ RS[k1, k2]}.

Therefore, by 44 and 46,

L1[τ |σ
′] = {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ DSi[j|h

′
τ ] ∧ r

′ + 1 < τ}

= {(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ DSi[j|h
∗
τ ] ∧ r

′ + 1 < τ}∪
∪{(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ {(l1, l2, τ − 1)|l1, l2 ∈ N ∧ l2 ∈ CDl1 [p

′|h]
∧i, j ∈ RS[l1, l2]} ∧ r

′ + 1 < τ}

= {(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ DSi[j|h
∗
τ ] ∧ r

′ + 1 < τ}∪
∪{(k1, k2, r

′ + 1)|k1, k2 ∈ N ∧ k2 ∈ CDk1 [p
′|h] ∧ i, j ∈ RS[k1, k2] ∧ τ < τ}

= {(k1, k2, r
′ − 1)|(k1, k2, r

′) ∈ DSi[j|h
∗
τ ] ∧ r

′ + 1 < τ} ∪ ∅
= L1[τ + 1|σ∗].

By Corollary 7,
L1[τ + 1|σ′] = L1[τ + 1|σ∗] = ∅. (49)

36



By 43, 45 48, 49, the base case is true.
Now, assume the induction hypothesis for some r ≥ τ + 1. By this assumption, 44, and 46:

L1[r + 1|σ′] = {(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ DSi[j|h
′
r ] ∧ r

′ + 1 < τ}
= {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ ∅}

= ∅.
(50)

By Definition 3, by 45, and 47, the induction step is true for r + 1, which proves the result. ⊓⊔
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B.2 Generic Results

Proof of Proposition 10. For every profile of punishing strategies σ
∗, if σ∗ is a SPE, then, for

every i ∈ N , βi

γi
> p̄i. Consequently, ψ[σ

∗] ⊆ (v,∞), where v = maxi∈N p̄i.

Proof. Let p∗ = σ
∗[h]. The equilibrium utility is

πi[σ
∗|∅] =

∞
∑

r=0

ωr
i (1− qi[p

∗])(βi − γip̄i) =
1− qi[p

∗]

1− ωi
(βi − γip̄i).

If βi

γi
≤ p̄i, then

πi[σ
∗|∅] ≤ 0. (51)

Let σ′i ∈ Σi be a strategy such that, for every h ∈ H, σ′i[h] = 0, and let σ
′ = (σ′i,σ

∗
−i), where

0 = (0)j∈Ni
. We have

πi[σ
′|∅] = (1− qi[p

∗])βi + πi[σ
′|(h, sig[p′|h])] ≥ (1− qi[p

∗])βi, (52)

where p
′ = (0,p∗

−i). By Lemma 50, qi[p
∗] < 1. Since πi[σ

′|(h, sig[p′|h])] ≥ 0, it is true that

πi[σ
∗|∅] ≤ 0 < πi[σ

′|∅].

This contradicts the assumption that σ∗ is a SPE. ⊓⊔
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Proof of Lemma 12. If σ∗ is a SPE, then the DC Condition is fulfilled.

Proof. The proof consists in assuming that σ
∗ is a SPE and deriving 5. By Property 5, we must

have, for every h ∈ H and a′i ∈ Ai,

πi[σ
∗|h]− πi[σ

′|h] ≥ 0, (53)

where σ′i = σ∗i [h|a
′
i] and σ

′ = (σ′i,σ
∗
−i). This is true for any σ

′
i, where a

′
i[p

′
i] = 1 and p

′
i differs from

σ∗i [h] exactly in that i drops the nodes from any set D ⊆ Ni[h]:

– For every j ∈ D, p′i[j] = 0.
– For every j ∈ Ni \D, p′i[j] = pi[j|h]

For any pure profile of strategies σ ∈ Σ, we can write

πi[σ|h] =
∞
∑

r=0

ωr
i ui[h, r|σ]. (54)

By Lemma 9 and Definition 3, for every r > τ , j ∈ N , and k ∈ Nj,

DSj [k|h
′
r] = DSj [k|h

∗
r ] = ∅,

pj [k|h
′
r] = pj[k|h

∗
r ],

(55)

where h′r = hist[h, r|σ′] and h∗r = hist[h, r|σ∗]. This implies that for every r > τ :

qi[h, r|σ
′] = qi[h, r|σ

∗],

p̄i[h, r|σ
′] = p̄i[h, r|σ

∗],

ui[h, r|σ
′] = ui[h, r|σ

∗].

Thus, 53 and 54 imply 5. ⊓⊔
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Proof of Lemma 13. For every i ∈ N , h ∈ H, ai ∈ BR[σ∗
−i|h], and pi ∈ Pi such that ai[pi] > 0,

it is true that for every j ∈ Ni we have pi[j] ∈ {0, pi[j|h]}.

Proof. Suppose then that there exist h ∈ H, i ∈ N , a1i ∈ BR[σ∗
−i|h], and p

1
i ∈ Pi such that

a1i [p
1
i ] > 0 and there exists j ∈ Ni such that p1i [j] /∈ {0, pi[j|h]}. Consider an alternative a2i ∈ Ai:

– Define p
2
i ∈ Pi such that for every j ∈ Ni, if p

1
i [j] ≥ pi[j|h], then p

2
i [j] = pi[j|h], else, p

2
i [j] = 0.

– Set a2i [p
2
i ] = a1i [p

1
i ] + a1i [p

2
i ] and a

2
i [p

1
i ] = 0.

– For every p
′′
i ∈ Pi \ {p

1
i ,p

2
i }, set a

2
i [p

′′
i ] = a1i [p

′′
i ].

Consider the following auxiliary definitions:

– a
1 = (a1i ,p

∗
−i) and a

2 = (a2i ,p
∗
−i), where p

∗ = σ
∗[h].

– σ1i = σ∗i [h|a
1
i ] and σ

2
i = σ∗i [h|a

2
i ].

– p
1 = (p1

i ,p
∗
−i) and p

2 = (p2
i ,p

∗
−i).

– σ
1 = (σ1i ,σ

∗
−i) and σ

2 = (σ2i ,σ
∗
−i).

– s1 = sig[p1|h] and s2 = sig[p2|h].

Notice that for any j ∈ Ni, p
1
i [j] ≥ p2i [j] and p1i [j] ≥ pi[j|h] iff p2i [j] ≥ pi[j|h]. Thus, by

Definition 2, for any s ∈ S,
pri[s|a

1
i , h] = pri[s|a

2
i , h].

pr[s|a1, h] = pr[s|a2, h].
(56)

Moreover, for some j ∈ Ni, p
1
i [j|h] > p2i [j|h], thus, it is true that

ui[a
1] < ui[a

2]. (57)

Recall that
πi[σ

1|h] = ui[a
1] + ωi

∑

s∈S

πi[σ
1|(h, s)]pr[s|a1, h],

πi[σ
2|h] = ui[a

2] + ωi

∑

s∈S

πi[σ
2|(h, s)]pr[s|a2, h].

By 56 and the definition of σ1 and σ
2,

∑

s∈S

πi[σ|(h, s)]pr[s|a
1, h] =

∑

s∈S

πi[σ|(h, s)]pr[s|a
2, h].

By 57,
πi[σ

1|h] < πi[σ
2|h].

This is a contradiction, since a1i ∈ BR[σ∗
−i|h] by assumption, concluding the proof. ⊓⊔
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Proof of Lemma 14. For every h ∈ H and i ∈ N , there exists ai ∈ BR[σ∗
−i|h] and pi ∈ Pi such

that ai[pi] = 1.

Proof. For any h ∈ H and i ∈ N , if BR[σ∗
−i|h] only contains pure strategies for the stage game,

since BR[σ∗
−i|h] is not empty, the result follows. Suppose then that there exists a mixed strategy

a1i ∈ BR[σ∗
−i|h]. We know from Lemma 13 that every such a1i attributes positive probability to

one of two probabilities in {0, pi[j|h]}, for every j ∈ Ni. Let σ
1
i = σ∗i [h|a

1
i ], σ

1 = (σ1i ,σ
∗
−i), and

denote by P∗[h] the finite set of profiles of probabilities that fulfill the condition of Lemma 13, i.e.,
for every p ∈ P∗[h], j ∈ N , and k ∈ Nj, pj[k] ∈ {0, pj [k|h]}. We can write

πi[σ
1|h] =

∑

pi∈P∗
i [h]

(ui[p] + ωiπi[σ
1|(h, sig[p|h])])a1i [pi], (58)

where p = (pi,p
∗
−i) and p

∗ = σ
∗[h].

For any p
1
i ∈ P∗

i [h] such that a1i [p
1
i ] > 0, let p

∗ = σ
∗[h], p1 = (p1

i ,p
∗
−i), σ

′
i = σ∗i [h|p

1
i ], and

σ
′ = (σ′i,σ

∗
−i).

There are three possibilities:

1. πi[σ
1|h] = πi[σ

′|h].
2. πi[σ

1|h] < πi[σ
′|h].

3. πi[σ
1|h] > πi[σ

′|h].

In possibility 1, it is true that there is a′i ∈ BR[σ∗
−i|h] such that a′i[p

1
i ] = 1 and the result

follows. Possibility 2 contradicts the assumption that a1i ∈ BR[σ∗
−i|h].

Finally, consider that possibility 3 is true. Recall that a1i being mixed implies a1i [p
1
i ] < 1. Thus,

there must exist p2
i ∈ P∗

i [h] \ {p
1
i }, σ

′′
i = σ∗i [h|p

2
i ], and σ

′′ = (σ′i,σ
∗
−i), such that a1i [p

2
i ] > 0 and

πi[σ
′|h] < πi[σ

′′|h]. (59)

Here, we can define a2i ∈ Ai such that:

– a2i [p
2
i ] = a1i [p

1
i ] + a1i [p

2
i ];

– a2i [p
1
i ] = 0.

– For every p
′′
i ∈ P∗[h] \ {p1

i ,p
2
i }, a

2
i [p

′′
i ] = a1i [p

′′
i ].

Now, let:

– σ2i = σ∗i [h|a
2
i ] and σ

2 = (σ2i ,σ
∗
−i).

– p
2 = (p2

i ,p
∗
−i).

– σ
′ = (σi[h|p

′′
i ],σ

∗
−i).

By 58,

πi[σ
1|h] = l1 + πi[σ

′|h]a1i [p
1
i ] + πi[σ

′′|h]a1i [p
2
i ],

πi[σ
2|h] = l2 + πi[σ

′′|h]a2i [p
2
i ],

where

l1 =
∑

p′′∈P∗[h]\{p1
i ,p

2
i }

(ui[p
′′] + ωiπi[σ

1|h, s′′])a1i [p
′′
i ],

l2 =
∑

p′′∈P∗[h]\{p1
i
,p2

i
}

(ui[p
′′] + ωiπi[σ

2|h, s′′])a2i [p
′′
i ],

and s′′ = sig[p′′|h].
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By the definition of a2i , we have that l1 = l2. It follows that:

πi[σ
1|h]− πi[σ

2|h] = πi[σ
′|h]a1i [p

1
i ] + πi[σ

′′|h]a1i [p
2
i ]− πi[σ

′′|h](a1i [p
2
i ] + a1i [p

1
i ])

= (πi[σ
′|h]− πi[σ

′′|h])a1i [p
1
i ].

If follows from 59 that:
πi[σ

1|h] < πi[σ
2|h],

contradicting the assumption that a1i ∈ BR[σ∗
−i|h]. This concludes the proof. ⊓⊔
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Proof of Lemma 15. For every h ∈ H and i ∈ N , there exists pi ∈ Pi and a pure strategy
σi = σ∗i [h|pi] such that:

1. For every j ∈ Ni, pi[j] ∈ {0, pi[j|h]}.
2. For every ai ∈ Ai, πi[σi,σ

∗
−i|h] ≥ πi[σ

′
i,σ

∗
−i|h], where σ

′
i = σ∗i [h|ai].

Proof. Consider any h ∈ H and i ∈ N . From Lemma 14, it follows that there exists ai ∈ BR[σ∗
−i|h]

and pi ∈ Pi such that ai[pi] = 1. By Lemma 13, every such ai and pi such that ai[pi] = 1 fulfill
Condition 1. Condition 2 follows from the definition of BR[σ∗

−i|h]. ⊓⊔

Proof of Lemma 16. If the DC Condition is fulfilled, then σ
∗ is a SPE.

Proof. Assume that Inequality 5 holds for every history h and D ⊆ Ni[h]. In particular, these
assumptions imply that, for each pi ∈ Pi such that pi[j] ∈ {0, pi[j|h]} for every j ∈ Ni, we have

πi[σ
∗|h] ≥ πi[σi,σ

∗
−i|h], (60)

where σi = σ∗i [h|pi]. By Lemma 15, there exists one such pi such that σi is a local best response.
Consequently, by 60, for every ai ∈ Ai and σ

′
i = σ∗i [h|ai],

πi[σ
∗|h] ≥ πi[σ

′
i,σ

∗
−i|h].

By Property 5, σ∗ is a SPE. ⊓⊔
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B.3 Direct Reciprocity is not Effective

Proof of Lemma 18. If σ∗ is a SPE, then, for every i ∈ N and j ∈ Ni, it is true that q′i > q∗i
and:

βi
γi
> p̄i +

pi[j|∅]

q′i − q∗i

(

1− q′i +
1− q∗i
τ

)

,

where p
′
i is the strategy where i drops j, σ′ = (σ∗i [∅|p

′
i],σ

∗
−i), q

′
i = qi[σ

′[∅]], and q∗i = qi[σ
∗[∅]].

Proof. The assumption that σ∗ is a SPE implies by Theorem 17 that the DC Condition is true for
the history ∅, any node i ∈ N , and D = {j}, where j ∈ Ni. Define p

′
i ∈ Pi as:

– p′i[j] = 0.
– For every k ∈ Ni \ {j}, p

′
i[k] = pi[k|∅].

We have that:
p̄i − p̄i[∅, 0|σ

′] =
∑

k∈Ni
pi[k|∅] −

∑

k∈Ni\{j}
pi[k|∅]

= pi[j|∅].
(61)

Let σ′i = σ∗i [∅|p
′
i], σ

′ = (σ′i,σ
∗
−i), h

∗
r = hist[∅, r|σ∗], and h′r = hist[∅, r|σ′]. It is true by the

definition of ui and by 61 that

ui[∅, 0|σ
∗]− ui[∅, 0|σ

′] = (1− q∗i )(βi − γip̄i)− (1− q∗i )(βi − γip̄i[∅, 0|σ
′])

= (1− q∗i )γi(p̄i[∅, 0|σ
′]− p̄i)

= −(1− q∗i )γipi[j|∅].
= −c,

(62)

where c = (1− q∗i )γipi[j|∅]. Notice that for every k ∈ N \ {i}

CDk[p
′|h] = ∅, (63)

and
CDi[p

′|h] = {j}. (64)

From 63 and 64, and by Lemma 8, and Definition 3, for every r ∈ {1 . . . τ},

DSi[j|h
′
r] = DSi[j|h

∗
r ] ∪ {(k1, k2, r − 1)|k1, k2 ∈ N ∧ i, j ∈ RS[k1, k2] ∧ k2 ∈ CDk1 [p

′|h]}
= DSi[j|h

∗
r ] ∪ {(i, j, r − 1)|i, j ∈ RS[i, j]}

= {(i, j, r − 1)}.
(65)

and for every k ∈ N \ {j}

DSi[k|h
′
r] = DSi[k|h

∗
r ] ∪ {(k1, k2, r − 1)|k1, k2 ∈ N ∧ i, k ∈ RS[k1, k2] ∧ k2 ∈ CDk1 [p

′|h]}
= DSi[k|h

∗
r ] ∪ {(i, k, r − 1)|i, k ∈ RS[i, j]}

= DSi[k|h
∗
r ] = ∅.

(66)

By 65 and 66, Definition 3, and the definition of p′, for every r ∈ {1 . . . τ}

p̄i[∅, r|σ
′] =

∑

k∈Ni\{j}

pi[k|h
′
r] =

∑

k∈Ni\{j}

pi[k|∅] = p̄i − pi[j|∅]. (67)

By 65 and 67, for every r ∈ {1 . . . τ},

ui[∅, r|σ
∗]− ui[∅, r|σ

′] = (1− qi[∅, r|σ
∗])(βi − γip̄i[∅, r|σ

∗])−
(1− qi[∅, r|σ

′])(βi − γip̄i[∅, r|σ
′])

= (1− q∗i )(βi − γip̄i)− (1− q′i)(βi − γip̄i + pi[j|∅])
= (q′i − q∗i )(βi − γip̄i)− (1− q′i)γipi[j|∅]
= a− b,

(68)

where:
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– a = (q′i − q∗i )(βi − γip̄i).
– b = (1− q′i)γipi[j|∅].

By Theorem 17, the assumption that σ∗ is a SPE, 62, and 68,

∑τ
r=0 ω

r
i (ui[h, r|σ

∗]− ui[h, r|σ
′]) ≥ 0

−c+
∑τ

r=1 ω
r
i (a− b) ≥ 0

−c+
ωi−ωτ+1

i

1−ωi
(a− b) ≥ 0

−c(1− ωi) + (ωi − ωτ+1
i )(a− b) ≥ 0

ωi(a− b+ c)− ωτ+1
i (a− b)− c ≥ 0.

(69)

This is a polynomial function of degree τ + 1 ≥ 2 that has a zero in ωi = 1 and is negative for
ωi = 0, since, by Lemma 50, c > 0. For any ωi ∈ (0, 1), a solution to 69 exists only if the polynomial
is strictly concave. The second derivative is

−(τ + 1)τωτ−1
i (a− b),

so we must have a > b for this to be true, i.e.:

(q′i − q∗i )(βi − γip̄i) > (1− q′i)γipi[j|∅]
⇒ (q′i − q∗i )(βi − γip̄i) > 0.

(70)

By Proposition 10, we know that βi > γip̄i. Thus, 70 implies q′i > q∗i , which concludes the first
part of the proof.

Furthermore, a solution to 69 exists if and only if there is a maximum of the polynomial for
ωi ∈ (0, 1). We can find the zero of the first derivative in order to ωi, obtaining

ωτ
i =

a− b+ c

(a− b)(τ + 1)
. (71)

For a solution of 71 to exist for some ωi ∈ (0, 1), it must be true that:

1. aτ > bτ + c.
2. a− b+ c > 0.

Condition 1) yields:

τ(q′i − q∗i )(βi − γip̄i)τ > τ(1− q′i)γipi[j|∅] + (1− q∗i )γipi[j|∅]
τ(q′i − q∗i )βi > τ(q′i − q∗i )γip̄i + τ(1− q′i)γipi[j|∅] + (1− q∗i )γipi[j|∅]

βi > γip̄i +
1−q′i
q′i−q∗i

γipi[j|∅] +
1−q∗i

τ(q′i−q∗i )
γipi[j|∅]

βi

γi
> p̄i +

1
q′
i
−q∗

i

pi[j|∅](1 − q′i +
1−q∗i
τ

)

(72)

which is equivalent to 6. If Condition 1 is true, then:

a > b+
c

τ
⇒ a > b− c.

That is, Condition 1 implies Condition 2. Therefore, if σ∗ is a SPE for some ωi ∈ (0, 1), then 6
must hold, which proves the result. ⊓⊔
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Proof of Lemma 19. Suppose that for any i ∈ N and j ∈ Ni, pi[j|∅] + q∗i ≪ 1. If σ∗ is a SPE,
then:

ψ[σ∗] ⊆

(

1

q∗i
,∞

)

.

Proof. Fix i and j for which the assumption holds. Let p′
i be defined as:

– p′i[j] = 0,
– p′i[k] = pi[k|∅] for every k ∈ Ni \ {j}.

Let q′i = qi[(p
′
i,p

∗
−i)] and q

∗
i = qi[σ

∗[∅]], where p
∗ = σ[∅]. By Lemma 18, we must have

βi
γi
> p̄i +

pi[j|∅]

q′i − q∗i

(

1− q′i +
1− q∗i
τ

)

. (73)

By Lemma 54 from Appendix A, it is true that q′i ≤
q∗i

1−pi[j|∅]
. By including this fact in 73, we

obtain:
βi

γi
> p̄i +

pi[j|∅]
q′i−q∗i

(

1− q′i +
1−q∗i
τ

)

> p̄i +
pi[j|∅]
q′i−q∗i

(1− q′i)

≥ p̄i +
pi[j|∅](1−pi[j|∅])

(1−pi[j|∅])(q∗i −q∗i (1−pi[j|∅]))
(1− pi[j|∅] − q∗i )

= p̄i +
1
q∗i
(1− pi[j|∅] − q∗i )

≈ p̄i +
1
q∗i

> 1
q∗i
.

(74)

The result follows from the fact that if for every i there exists ωi ∈ (0, 1) such that σ
∗ is a SPE,

then [0, 1
q∗i
] ∩ ψ[σ∗] = ∅.

⊓⊔
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B.4 Full Indirect Reciprocity is Sufficient

Proof of Lemma 20. The profile of strategies σ
∗ is a SPE if and only if for every h ∈ H and

i ∈ N :
τ

∑

r=1

(ωr
i ui[h, r|σ

∗])− (1− qi[h, 0|σ
∗])γip̄i[h, 0|σ

∗] ≥ 0.

Proof. Using the result from Theorem 17, it is true that σ∗ is a SPE if and only if the DC Condition
is true for every i ∈ N , h ∈ H, and D ⊆ Ni[h].

Consider any strategy σ′i = σ∗i [h|p
′] where p

′ = (0,p∗
−i) and p

∗ = σ
∗[h]. Alternatively, define

σ′′i = σ∗i [h|p
′′] where p

′′ = (p′′
i ,p

∗
−i) such that for some D ⊂ Ni[h]:

– For every j ∈ D, p′′i [j] = 0.

– For every j ∈ Ni \D, p′′i [j] = pi[j|h].

Define h∗r = hist[r|σ∗]. Let σ′ = (σ′i,σ
∗
−i), h

′
r = hist[r|σ′], σ′′ = (σ′′i ,σ

∗
−i), and h

′′
r = hist[r|σ′]. By

Lemma 8 and the definition of full indirect reciprocity, for every r ∈ {1 . . . τ} and j ∈ N−1
i , since

for every k ∈ N \ {i},

CDi[p
′|h] = Ni,

CDi[p
′′|h] = D,

CDk[p
′|h] = CDk[p

′′|h] = ∅,

it holds that

DSj [i|h
′
r] = DSj [i|h

∗
r ] ∪ {(k1, k2, r − 1)|k1, k2 ∈ N ∧ k2 ∈ CDk1 [p

′|h] ∧ j, i ∈ RS[k1, k2]}
= DSj [i|h

∗
r ] ∪ {(i, k, r − 1)|k ∈ Ni ∧ j, i ∈ RS[i, k]}.

= DSj [i|h
∗
r ] ∪ {(i, k, r − 1)|k ∈ Ni}.

(75)

and

DSj[i|h
′′
r ] = DSj [i|h

∗
r ] ∪ {(k1, k2, r)|k1, k2 ∈ N ∧ k2 ∈ CDk1 [p

′′|h] ∧ j, i ∈ RS[k1, k2]}
= DSj [i|h

∗
r ] ∪ {(i, k, r − 1)|k ∈ D ∧ j, i ∈ RS[i, k]}.

= DSj [i|h
∗
r ] ∪ {(i, k, r − 1)|k ∈ D}.

(76)

By Definition 3, and by 75 and 76, for every r ∈ {1 . . . τ} and j ∈ N−1
i ,

pj[i|h
′
r] = pj[i|h

′′
r ] = 0. (77)

It follows from 77 and Lemma 51 that for every r ∈ {1 . . . τ}

qi[h, r|σ
′] = qi[h, r|σ

′′] = 1.
ui[h, r|σ

′] = ui[h, r|σ
′′] = 0.

(78)

Furthermore, we have

p̄i[h, 0|σ
′] ≤ p̄i[h, 0|σ

′′],

which implies that

ui[h, 0|σ
′] > ui[h, 0|σ

′′]. (79)

By 78 and 79,

τ
∑

r=0

ωr(ui[h, r|σ
∗]− ui[h, r|σ

′]) <

τ
∑

r=0

ωr(ui[h, r|σ
∗]− ui[h, r|σ

′′]). (80)
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Finally, we have

∑τ
r=0 ω

r(ui[h, r|σ
∗]− ui[h, r|σ

′]) ≥ 0
(1− qi[h, 0|σ

∗])(βi − p̄i[h, 0|σ
∗])− (1− qi[h, 0|σ

∗])βi +
∑τ

r=1 ω
rui[h, r|σ

∗] ≥ 0
∑τ

r=1 ω
rui[h, r|σ

∗]− (1− qi[h, 0|σ
∗])p̄i[h, 0|σ

∗] ≥ 0.
(81)

It is direct to conclude by Theorem 17 that if σ∗ is a SPE, then DC Condition is fulfilled for
D = Ni. By 80, if DC Condition is fulfilled for D = Ni, then it is also fulfilled for every D ⊂ Ni,
and by Theorem 17, σ∗ is a SPE. Thus, σ∗ is a SPE iff 81 holds. This concludes the proof. ⊓⊔
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Proof of Lemma 21 Let h ∈ H be defined such that for every h′ ∈ H, the left side of Inequality 9
for h is lower than or equal to the value for h′. Then, for every r ∈ {1 . . . τ − 2},

ui[h, r|σ
∗] = ui[h, r + 1|σ∗].

Proof. The proof goes by contradiction. First, assume that h minimizes the left side of Inequality 9:

τ
∑

r=1

(ωr
i ui[h, r|σ

∗])− (1− qi[h, 0|σ
∗])γip̄i[h, 0|σ

∗] ≥ 0.

This implies that for every h′ ∈ H, we have:

∑τ
r=1(ω

r
i ui[h, r|σ

∗])− (1− qi[h, 0|σ
∗])γip̄i[h, 0|σ

∗]
−
∑τ

r=1(ω
r
i ui[h

′, r|σ∗])− (1− qi[h
′, 0|σ∗])γip̄i[h

′, 0|σ∗] ≤ 0

∑τ
r=1 ω

r
i (ui[h, r|σ

∗]− ui[h
′, r|σ∗])

+(1− qi[h, 0|σ
∗])γi(γip̄i[h

′, 0|σ∗]− p̄i[h, 0|σ
∗]) ≤ 0

(82)

Assume by contradiction that for every h that minimizes the above condition, there is some
r ∈ {1 . . . τ − 3},

ui[h, r|σ
∗] 6= ui[h, r + 1|σ∗].

Fix h. Without loss of generality, suppose

ui[h, r|σ
∗] < ui[h, r + 1|σ∗]. (83)

By Lemma 6 and Definition 3, this implies the existence of D ⊂ N 2, such that, for every j ∈ N
and k ∈ Nj ,

DSj [k|h
∗
r+1] = DSj [k|h

∗
r ] \ {(k1, k2, τ − 1)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2]},

DSj [k|h
∗
r ] = DSj[k|h

∗
r+1] ∪ {(k1, k2, τ − 1)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2]},

(k1, k2, τ − r − 1) ∈ DSj[k|h],
(84)

where h∗r = hist[h, r|σ∗], and there exist j, k and (k1, k2) ∈ D such that i, j ∈ RS[k1, k2], for
instance, k1 and k2.

Notice that, if 83 is true, then τ − r − 1 ≥ 1. Thus, we can define h′ such that:

– |h′| = |h|.

– DSj [k|h
′] = DSj[k|h] \ {(k1, k2, τ − r − 1)|(k1, k2) ∈ D} ∪ {(k1, k2, τ − r − 2)|(k1, k2) ∈ D}.
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Let h′r = hist[h′, r|σ∗]. By Lemma 6, for every r′ ∈ {0 . . . r − 1}, j ∈ N , and k ∈ Nj,

DSj [k|h
′
r′+1] = {(l1, l2, r

′′ + 1)|(l1, l2, r
′′) ∈ DSj [k|h

′
r′ ] ∧ r

′′ + 1 < τ}

= {(l1, l2, r
′′ + r′)|(l1, l2, r

′′) ∈ (DSj[k|h] \ {(k1, k2, τ − r − 1)|(k1, k2) ∈ D}
∪{(k1, k2, τ − r − 2)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2]}) ∧ r

′′ + r′ < τ}

= {(k1, k2, r
′′ + r′)|(k1, k2, r

′′) ∈ DSj [k|h] ∧ (k1, k2) /∈ D ∧ r′′ + r′ < τ}
∪{(k1, k2, τ − r + r′ − 2)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2] ∧ τ − r − 2 + r′ < τ}

= DSj[k|h
∗
r′+1] \ {(k1, k2, τ − r + r′ − 1)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2]}

∪{(k1, k2, τ − r + r′ − 2)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2] ∧ r
′ − 2 < r}.

= DSj[k|h
∗
r′+1] \ {(k1, k2, τ − r + r′ − 1)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2]}

∪{(k1, k2, τ − r + r′ − 2)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2] ∧ r
′ − 1 < r}.

= DSj[k|h
∗
r′+1] \ {(k1, k2, τ − r + r′ − 1)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2]}

∪{(k1, k2, τ − r + r′ − 1)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2]}.

= DSj[k|h
∗
r′+1].

(85)

By the definition of DSj[k|h] and DSj[k|h
′] and by Definition 3, for every r′ ∈ {0 . . . r}, j ∈ N ,

and k ∈ Nj ,

pj[k|h
′
r′ ] = pj[k|h

∗
r′ ].

p̄i[h
′, r′|σ∗] = p̄i[h, r

′|σ∗].
qi[h

′, r′|σ∗] = qi[h, r
′|σ∗].

ui[h
′, r′|σ∗] = ui[h, r

′|σ∗].

(86)

Furthermore, by 84,

DSj[k|h
′
r+1] = {(l1, l2, r

′ + 1)|(l1, l2, r
′) ∈ DSj [k|h

′
r] ∧ r

′ + 1 < τ}

= {(l1, l2, r
′ + 1)|(l1, l2, r

′) ∈ (DSj[k|h
∗
r ] ∪ {(k1, k2, τ − 2)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2]})

∧r′ + 1 < τ})

= {(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ DSj [k|h
∗
r ]}∪

{(k1, k2, τ − 1)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2] ∧ τ − 1 < τ}

= DSj [k|h
∗
r+1] ∪ {(k1, k2, τ − 1)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2]}

= DSj [k|h
∗
r ].

(87)

By Definition 3 and 87,

pj[k|h
′
r+1] = pj[k|h

∗
r ].

p̄i[h
′, r + 1|σ∗] = p̄i[h, r|σ

∗].
qi[h

′, r + 1|σ∗] = qi[h, r|σ
∗].

ui[h
′, r + 1|σ∗] = ui[h, r|σ

∗].

(88)
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Finally, by Lemma 6, for every r′ > r, j ∈ N , and k ∈ Nj,

DSj [k|h′r′+1] = {(l1, l2, r′′ + 1)|(l1, l2, r′′) ∈ DSj [k|h′r′ ] ∧ r
′′ + 1 < τ}

= {(l1, l2, r
′′ + 1)|(l1, l2, r

′′) ∈ (DSj[k|h]\
{(k1, k2, τ − r − 1)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2]}
∪{(k1, k2, τ − r − 2)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2]}) ∧ r

′′ + 1 < τ}

= {(l1, l2, r
′′ + r′ + 1)|(l1, l2, r

′′) ∈ DSj [k|h] ∧ r
′′ + r′ + 1 < τ}

\{(k1, k2, τ − r + r′ − 1)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2] ∧ r
′ < r}

∪{(k1, k2, τ − r + r′ − 2)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2] ∧ r
′ < r + 1}

= {(l1, l2, r
′′ + r′)|(l1, l2, r

′′) ∈ DSj[k|h] ∧ r
′′ + r′ < τ}

\{(k1, k2, τ − r + r′ − 1)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2] ∧ r
′ < r}

∪{(k1, k2, τ − r + r′ − 2)|(k1, k2) ∈ D ∧ j, k ∈ RS[k1, k2] ∧ r
′ < r}

= {(l1, l2, r
′′ − r′)|(l1, l2, r

′′) ∈ DSj[k|h] ∧ r
′′ > r′}

= DSj[k|h
∗
r′+1].

(89)

Therefore, by Definition 3, for every r′ > r + 1, j ∈ N , and k ∈ Nj ,

pj[k|h
′
r′ ] = pj[k|h

∗
r′ ].

p̄i[h
′, r′|σ∗] = p̄i[h, r

′|σ∗].
qi[h

′, r′|σ∗] = qi[h, r
′|σ∗].

ui[h
′, r′|σ∗] = ui[h, r

′|σ∗].

(90)

By 83, 86, 88, and 90,

∑τ
r′=1 ω

r′

i (ui[h, r
′|σ∗]− ui[h

′, r′|σ∗]) +(1− qi[h, 0|σ
∗])γi(γip̄i[h

′, 0|σ∗]− p̄i[h, 0|σ
∗])

= ui[h, r + 1|σ∗]− ui[h
′, r + 1|σ∗] = ui[h, r + 1|σ∗]− ui[h, r|σ

∗] > 0.

This is a contradiction to 82, which concludes the proof. For the case where

ui[h, r|σ
∗] > ui[h, r + 1|σ∗],

the proof is identical, except that h′ is defined such that the punishments that end at stage r are
anticipated, i.e.:

DSj [k|h
′] = DSj[k|h] \ {(k1, k2, τ − r − 1)|(k1, k2) ∈ D} ∪ {(k1, k2, τ − r)|(k1, k2) ∈ D}.

⊓⊔
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Proof of Theorem 22. If there exists a constant c ≥ 1 such that, for every h ∈ H and i ∈ N ,
Assumption 10 holds, then ψ[σ∗] ⊇ (v,∞), where

v = max
h∈H

max
i∈N

p̄i[h, 0|σ
∗]
(

1 +
c

τ

)

.

Proof. Assume by contradiction that, for any player i ∈ N , σ∗ is not a SPE for any ωi ∈ (0, 1) and
that

βi
γi
> max

h∈H
p̄i[h, 0|σ

∗]
(

1 +
c

τ

)

.

Fix i. The proof considers a history h that minimizes the left side of Inequality 9. The reason for this
is that, if Inequality 9 is true for h, then it is also true for every other history h′. If p̄i[h, 0|σ

∗] = 0,
then the inequality is trivially fulfilled. Hence, consider that p̄i[h, 0|σ

∗] > 0. By Lemma 21, for
every r ∈ {1 . . . τ − 1},

ui[h, r|σ
∗] = ui[h, r + 1|σ∗].

We are left with stage τ . Let uhi = ui[h, 1|σ
∗]. If for every k ∈ N and l ∈ Nk we have DSk[l|h

∗
τ ] =

DSk[l|h
∗
τ−1], where h

∗
r = hist[h, r|σ∗], then

uhi = ui[h, τ |σ
∗].

Otherwise, by Lemma 21,
uhi ≤ ui[h, τ |σ

∗].

Either way, by Lemma 21, for every h′ ∈ H:

−(1− qi[h, 0|σ
∗])γip̄i[h, 0|σ

∗] +
∑τ

r=1 ω
r
i u

h
i ≤

−(1− qi[h
′, 0|σ∗])γip̄i[h

′, 0|σ∗] +
∑τ

r=1 ω
r
i ui[h

′, r|σ∗].
(91)

We can write:
−(1− qi[h, 0|σ

∗])γip̄i[h, 0|σ
∗] +

∑τ
r=1 ω

r
i u

h
i ≥ 0

−a+
ωi−ωτ+1

i

1−ωi
uhi ≥ 0

−a+ ωi(u
h
i + a)− ωτ+1

i uhi ≥ 0,

(92)

where
a = (1− qi[h, 0|σ

∗])γip̄i[h, 0|σ
∗].

Again, this Inequality corresponds to a polynomial with degree τ + 1. If qi[h, 1|σ
∗] = 1, then by

our assumptions qi[h, 0|σ
∗] = 1, a = 0, and the Inequality holds. Suppose then that

qi[h, 1|σ
∗], qi[h, 0|σ

∗] < 1.

The polynomial has a zero in ωi = 1. If p̄i[h, 0|σ
∗] = 0, then a = 0 and the Inequality holds.

Consider, then, that p̄i[h, 0|σ
∗] > 0, which implies that a > 0. In these circumstances, a solution

to 92 exists for ωi ∈ (0, 1) iff the polynomial is strictly concave and has another zero in (0, 1). This
is true iff the polynomial has a maximum in (0, 1). The derivatives yield the following conditions:

1. ∃ωi∈(0,1)u
h
i + a− (τ + 1)ωiu

h
i = 0 ⇒ ∃ωi∈(0,1)ωi =

uh
i +a

(τ+1)uh
i

.

2. −(τ + 1)τuhi < 0 ⇒ uhi > 0.

Condition 1 implies:

uhi τ > a
(1− qi[h, 1|σ

∗])βiτ > (1− qi[h, 1|σ
∗])γip̄i[h, 1|σ

∗]τ + (1− qi[h, 0|σ
∗])γip̄i[h, 0|σ

∗]
βi

γi
> p̄i[h, 1|σ

∗] + p̄i[h, 0|σ
∗] 1

τ
1−qi[h,0|σ∗]
1−qi[h,1|σ∗] .

(93)
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By the assumption that qi[h, 0|σ
∗] ≤ 1− c(1− qi[h, 1|σ

∗]), if Inequality 11 is true, then so is 93.
Furthermore, it also holds that

βi > γip̄i[h, 1|σ
∗] ⇒ uhi > 0,

thus, Condition 2 and 92 are also true for some ωi ∈ (0, 1). By 91, for every h′ ∈ H and i ∈ N ,
Inequality 9 is true, implying by Lemma 20 that σ

∗ is a SPE for some value ωi ∈ (0, 1). This is
a contradiction, proving that if for every i ∈ N we have βi

γi
∈ (v,∞), then σ

∗ is a SPE. By the
definition of ψ, ψ[σ∗] ⊇ (v,∞). ⊓⊔
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C Private Monitoring

C.1 Evolution of the Network

Auxiliary Lemma.

Lemma 55. For every h ∈ H, p
′ ∈ P, i ∈ N , j ∈ Ni, k1, k2 ∈ N , and r ∈ {0 . . . di[k1, k2] +

τ [k1, k2|i, j]−v[k1, k2]−1}, where v[k1, k2] = min[di[k1, k2]−dj [k1, k2], 0], let s
′
i ∈ sig[σ′[h′r]|h

′
r] and

s∗i ∈ sig[σ∗[h∗r ]|h
∗
r ], where h

∗
r = hist[h, r|σ∗], h′r = hist[h, r|σ′], and σ

′ = σ
∗[h|p′]. Then, we have

1. If k2 /∈ CDk1 [p
′|h] or k2 ∈ CDk1 [p

′|h] and di[k1, k2] > r, we have s∗i [k1, k2] = s′i[k1, k2].
2. If k2 ∈ CDk1 [p

′|h] and di[k1, k2] = r, then s∗i [k1, k2] = cooperate and s′i[k1, k2] = defect.
3. Else, s∗i [k1, k2] = s′i[k1, k2] = cooperate.

Proof. Fix i, j, k1, k2, h, and p
′.

Let s′k2 ∈ sig[σ′[h]|h] and s∗k2 ∈ sig[σ∗[h]|h]. For k2 /∈ CDk1 [p
′|h] and hk1 ∈ h,

p′k1 [k2] = pk1 [k2|hk1 ],

and, by Definition 23,
s∗i [k1, k2] = s′i[k1, k2].

If k2 ∈ CDk1 [p
′|h] and r = di[k1, k2], then, by the definition of σ′ and σ

∗,

s′k2 [k1, k2] = defect ,

s∗k2 [k1, k2] = cooperate ,

and, by Definition 23,
s′i[k1, k2] = defect .

s∗i [k1, k2] = cooperate .

If r > di[k1, k2], then
s′i[k1, k2] = s∗i [k1, k2] = cooperate .

To see this, assume first that s′i[k1, k2] = defect . Then, by Definition 23, there must exist a round
r′ > 0 and history hist[h, r′|σ′] after which k2 defects k1. That is, define r′ = r − di[k1, k2]. For
s′′k2 ∈ sig[σ′[h′r′ ]|h

′
r′ ], sk′′2 [k1, k2] = defect , which is true iff p′′k1 [k2] < pk1 [k2|h

′
r′ ]. Since r

′ > 0, this
contradicts the definition of σ′. Hence, s∗i [k1, k2] = cooperate .

If we assume that s∗i [k1, k2] = defect , then by Definition 23, there must exist a round r′ > 0
and history hist[h, r′|σ′] after which k2 defects k1. As before, since r

′ > 0, another contradiction is
reached and we can conclude that we must have s∗i [k1, k2] = cooperate .

For r < di[k1, k2],the result holds immediately. This is because by Definition 23, s′i[k1, k2] =

defect iff |h|+ r ≥ di[k1, k2] and for s′′k2 = h
di[k1,k2]−r
k2

, s′′k2 [k1, k2] = defect . This implies that

s∗i [k1, k2] = defect .

Similarly, if s′i[k1, k2] = cooperate , then s′′k2 [k1, k2] = cooperate , implying that

s∗i [k1, k2] = cooperate .

This proves the result. ⊓⊔
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Proof of Lemma 28. For every h ∈ H, p′ ∈ P, r > 0, i ∈ N , and j ∈ Ni:

DSi[j|h
′
i,r] = DSi[j|h

∗
i,r] ∪ {(k1, k2, r − 1− di[k1, k2] + v[k1, k2])|k1, k2 ∈ N∧

k2 ∈ CDk1 [p
′|h] ∧ r ∈ {di[k1, k2] + 1 . . . di[k1, k2] + τ [k1, k2|i, j] − v[k1, k2]}∧

v[k1, k2] = min[di[k1, k2]− dj [k1, k2], 0]},

where h∗i,r ∈ hist[h, r|σ∗], h′i,r ∈ hist[h, r|σ′], and σ
′ = σ

∗[h|p′] is the profile of strategies where all
players follow p

′ in the first stage.

Proof. Fix h, p′, i, and j. The proof goes by induction on r, where the induction hypothesis is that
for every r ≥ 0, Equality 15 holds for r + 1:

DSi[j|h
′
i,r+1] = DSi[j|h

∗
i,r+1] ∪ {(k1, k2, r − di[k1, k2] + v[k1, k2])|k1, k2 ∈ N∧

k2 ∈ CDk1 [p
′|h] ∧ r + 1 ∈ {di[k1, k2] + 1 . . . di[k1, k2] + τ [k1, k2|i, j] − v[k1, k2]}∧

v[k1, k2] = min[di[k1, k2]− dj [k1, k2], 0]},

We will simplify the notation by first dropping the factor v[k1, k2] = min[di[k1, k2]−dj [k1, k2], 0]
whenever possible, and by removing the redundant indexes k1, k2, i, j, except when distinguishing
between different delays. We will also remove the factor k1, k2 ∈ N . Namely:

– di[k1, k2] = di and dj [k1, k2] = dj .

– v[k1, k2] = v.

– τ [k1, k2|i, j] = τ .

By Definition 24, we have that for every r ≥ 0, h∗r = hist[h, r|σ∗], and s∗i ∈ sig[σ∗[h∗r ]|h
∗
r ],

DSi[j|h
∗
i,r+1] = L1[r + 1|σ∗] ∪ L2[r + 1|σ∗], (94)

where
L1[r + 1|σ∗] = {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ DSi[j|h

∗
i,r] ∧ r

′ + 1 < τ}.

L2[r + 1|σ∗] = {(k1, k2, v)| ∧ s
∗
i [k1, k2] = defect}.

(95)

Similarly, for every r ≥ 0, h′r = hist[h, r|σ′], and s′i ∈ sig[σ′[h′r]|h
′
r],

DSi[j|h
′
i,r+1] = L1[r + 1|σ′] ∪ L2[r + 1|σ′], (96)

where
L1[r + 1|σ′] = {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ DSi[j|h

′
i,r] ∧ r

′ + 1 < τ}.

L2[r + 1|σ′] = {(k1, k2, v)|s
′
i[k1, k2] = defect}.

(97)

For any r ≥ 0, let s′i ∈ sig[σ′[h′r]|h
′
r] and s∗i ∈ sig[σ∗[h∗r ]|h

∗
r ], where h

∗
r = hist[h, r|σ∗], h′r =

hist[h, r|σ′], and σ
′ = σ

∗[h|p′].

By Lemma 55, we have:

1. s∗i [k1, k2] = s′i[k1, k2] for k2 /∈ CDk1 [p
′|h] and k2 ∈ CDk1 [p

′|h] such that di > r.

2. s′i[k1, k2] = defect and s∗i [k1, k2] = cooperate for k2 ∈ CDk1 [p
′|h] such that di = r.

3. s′i[k1, k2] = s∗i [k1, k2] = cooperate for k2 ∈ CDk1 [p
′|h] such that di < r.

By 95, and items 1), 2), and 3) above,

L2[r + 1|σ∗] = {(k1, k2, v)|s
∗
i [k1, k2] = defect}

= {(k1, k2, v)|k2 /∈ CDk1 [p
′|h] ∧ s∗i [k1, k2] = defect}∪

{(k1, k2, v)|k2 ∈ CDk1 [p
′|h] ∧ di > r ∧ s∗i [k1, k2] = defect},

(98)
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Equation 98, 1), 2), and 3) allows us to write:

L2[r + 1|σ′] = {(k1, k2, v)|s
′
i[k1, k2] = defect}

= {(k1, k2, v)|k2 /∈ CDk1 [p
′, h] ∧ s′i[k1, k2] = defect}

∪{(k1, k2, v)|k2 ∈ CDk1 [p
′|h] ∧ s′i[k1, k2] = defect}

= {(k1, k2, v)|k2 /∈ CDk1 [p
′|h] ∧ s∗i [k1, k2] = defect}∪

{(k1, k2, v)|k2 ∈ CDk1 [p
′|h] ∧ di > r ∧ s∗i [k1, k2] = defect}∪

{(k1, k2, v)|k2 ∈ CDk1 [p
′|h] ∧ di = r}

= L2[r + 1|σ∗] ∪ {(k1, k2, v)|k2 ∈ CDk1 [p
′|h] ∧ di = r}.

(99)

Now proceed to the base case, for r = 0. Since h = hist[h, 0|σ∗] = hist[h, 0|σ′], by 95 and 97, it
is true that:

L1[1|σ
′] = L1[1|σ

∗]. (100)

Furthermore, by 99,

L2[r + 1|σ′] = L2[r + 1|σ∗] ∪ {(k1, k2, v)|k2 ∈ CDk1 [p
′|h] ∧ di = 0}

= L2[r + 1|σ∗] ∪ {(k1, k2, r − di + v)|k2 ∈ CDk1 [p
′|h] ∧ 1 ≥ di + 1 ∧ 1 < di + τ − v}

= L2[r + 1|σ∗] ∪ {(k1, k2, r − di + v)|k2 ∈ CDk1 [p
′|h] ∧ r + 1 ∈ {di + 1 . . . di + τ − v}}.

(101)
The base case is true by 94, 96, 100 and 101.
Hence, assume the induction hypothesis for some r ≥ 0 and consider the induction step for

r + 1, which consists in determining the value of DSi[j|h
′
i,r+2].

By the induction hypothesis and by 95,

L1[r + 2|σ′] = {(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ (A ∪B) ∧ r′ + 1 < τ}
= {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ A ∧ r′ + 1 < τ}∪

{(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ B ∧ r′ + 1 < τ},
(102)

where

A = DSi[j|h
∗
i,r+1]

B = {(k1, k2, r − di + v)|k2 ∈ CDk1 [p
′|h] ∧ r + 1 ∈ {di + 1 . . . di + τ − v}.

We have by 95

{(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ A ∧ r′ + 1 < τ}
= {(k1, k2, r

′ + 1)|(k1, k2, r
′) ∈ DSi[j|h

∗
i,r+1] ∧ r

′ + 1 < τ}

= L1[r + 2|σ∗].

(103)

It is also true that

{(k1, k2, r
′ + 1)|(k1, k2, r

′) ∈ B ∧ r′ + 1 < τ}
= {(l1, l2, r

′ + 1)|(l1, l2, r
′) ∈ {(k1, k2, r − di + v)|k2 ∈ CDk1 [p

′|h]∧
r + 1 ∈ {di + 1 . . . di + τ − v}} ∧ r′ + 1 < τ}

= {(k1, k2, r + 1− di + v)|k2 ∈ CDk1 [p
′|h] ∧ r + 1 ∈ {di + 1 . . . di + τ − v} ∧ r + 1− di + v < τ}

= {(k1, k2, r + 1− di + v)|k2 ∈ CDk1 [p
′|h] ∧ r + 1 ∈ {di + 1 . . . di + τ − v − 1}}

= {(k1, k2, r + 1− di + v)|k2 ∈ CDk1 [p
′|h] ∧ r + 2 ∈ {di + 2 . . . di + τ − v}}

(104)
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By 94, 96, 101, 102, 103, and 104,

DSi[j|h
′
i,r+2] = L1[r + 2|σ∗]∪

{(k1, k2, r + 1− di + v)|k2 ∈ CDk1 [p
′|h] ∧ r + 2 ∈ {di + 2 . . . di + τ ]− v}∪

L2[r + 2|σ∗] ∪ {(k1, k2, v)|k2 ∈ CDk1 [p
′|h] ∧ di = r + 1}

= L1[r + 2|σ∗] ∪ L2[r + 2|σ∗]∪
{(k1, k2, r + 1− di + v)|k2 ∈ CDk1 [p

′|h] ∧ r + 2 ∈ {di + 2 . . . di + τ − v}∪
{(k1, k2, r + 1− di + v)|k2 ∈ CDk1 [p

′|h] ∧ di + 1 = r + 2}

= DSi[j|h
∗
i,r+2]∪

{(k1, k2, r + 1− di + v)|k2 ∈ CDk1 [p
′|h] ∧ r + 2 ∈ {di + 1 . . . di + τ − v}.

This proves the induction step and concludes the proof. ⊓⊔
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Proof of Lemma 29. For every i ∈ N , j ∈ Ni, h ∈ H, and hi, hj ∈ h:

pi[j|hi] = pi[j|hj ].

Proof. Fix i, j, h, and hi, hj ∈ h. Consider any tuple (k1, k2, r) ∈ DSi[j|hi] and let Ki and Kj

represent the sets used by i and j to compute pi[j|hi] and pi[j|hj ], respectively. By Lemma 28 and
Definitions 23 and 24, it is true that for some r′ ≥ di[k1, k2]:

r = r′ − di[k1, k2] + vi, (105)

|hi| ≥ r′ + 1 and, for si = hr
′+1

i ,

si[k1, k2] = defect , (106)

where vi = min[di[k1, k2]− dj [k1, k2], 0].

By Definition 23, this implies that

|hi| ≥ r′ + di[k1, k2] + 1,

and for hk2 ∈ h and sk2 = h
r′+di[k1,k2]+1
k2

:

sk2 [k1, k2] = defect . (107)

Since r′ ≥ di[k1, k2], if r < 0, then we have by 105

vi < 0 ⇒ di[k1, k2] < dj [k1, k2],

which implies by Definition 23, that j has yet to observe the defection that caused i to add (k1, k2, vi)
to DSi[j|hi]. Consequently, j has not included this tuple in DSj [i|hj ] or inKj . Also, by Definition 24,
i does not include the tuple in Ki, since r < 0.

Consider, now, that r ≥ 0, where by Definition 24 i adds the tuple to Ki. By 105,

r′ ≥ di[k1, k2]− vi ≥ di[k1, k2]− di[k1, k2] + dj [k1, k2] = dj[k1, k2]. (108)

Furthermore, since by Definition 24, r < τ [k1, k2|i, j], we also have by 105

r′ < τ [k1, k2|i, j] + di[k1, k2]− vi. (109)

If di[k1, k2] ≤ dj [k1, k2], then vi < 0, vj = 0, and by 108 and 109 we have

r′ < τ [k1, k2|i, j] + dj [k1, k2]− vj,

r′ + 1 ∈ {dj [k1, k2] + 1 . . . dj [k1, k2] + τ [k1, k2|i, j] − vj},

where vj = min[dj [k1, k2]−di[k1, k2], 0]. By Lemma 28, j adds (k1, k2, r
′−dj [k1, k2]+vj) to DSj[i|hj ],

such that vj = 0 and by 108:

r′ − dj [k1, k2] + vj ≥ 0. (110)

If di[k1, k2] > dj[k1, k2], then vi = 0,

vj = −(di[k1, k2]− dj [k1, k2]),

hence, by 109

dj [k1, k2] + τ [k1, k2|i, j] − vj = τ [k1, k2|i, j] + di[k1, k2]− vi > r′.
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Therefore, by 108,

r′ + 1 ∈ {dj [k1, k2] + 1 . . . dj [k1, k2] + τ [k1, k2|i, j] − vj},

and by Lemma 28 j adds (k1, k2, r
′−dj[k1, k2]+vj) to DSj[i|hj ]. Again, by 105 and the assumption

that r ≥ 0,

r′ − dj [k1, k2] + vj = r′ − di[k1, k2] = r + di[k1, k2]− di[k1, k2]− vi = r ≥ 0. (111)

In any case, by 110 and 111, j adds the tuple to Kj . This proves that i adds the tuple to Ki iff j
adds the tuple to Kj , implying that Ki = Kj. Since pi[j|hi] and pi[j|hj ] are obtained by applying
the same deterministic functions to Ki and Kj , respectively, we have

pi[j|hi] = pi[j|hj ].

⊓⊔
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C.2 Generic Results

Proof of Proposition 30. For every assessment (σ∗,µ∗), if (σ∗,µ∗) is Sequentially Rational,
then, for every i ∈ N , βi

γi
≥ p̄i. Consequently, ψ[σ

∗] ⊆ (v,∞), where v = maxi∈N p̄i.

Proof. Let p∗ = σ
∗[∅]. For hi = ∅, the only history h that fulfills µ∗i [h|hi] > 0 is h = ∅. Therefore,

the equilibrium utility is also

πi[σ
∗|µ∗, ∅] =

∞
∑

r=0

ωr
i (1− qi[p

∗])(βi − γip̄i) =
1− qi[p

∗]

1− ωi
(βi − γip̄i).

If βi

γi
≤ p̄i, then

πi[σ
∗|µ∗, ∅] ≤ 0. (112)

Let σ′i ∈ Σi be a strategy such that, for every hi ∈ Hi, σ
′
i[hi] = 0, and let σ′ = (σ′i,σ

∗
−i), where

0 = (0)j∈Ni
. We have

πi[σ
′|µ∗, ∅] = (1− qi[p

∗])βi + πi[σ
′|(sig[p′|∅])] ≥ (1− qi[p

∗])βi, (113)

where p
′ = (0,p∗

−i). By Lemma 50, qi[p
∗] < 1. Since πi[σ

′|sig[p′|∅]] ≥ 0, it is true that

πi[σ
∗|µ∗, ∅] ≤ 0 < πi[σ

′|µ∗, ∅].

This contradicts the assumption that σ∗ is a SPE. ⊓⊔
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Proof of Lemma 33. For every i ∈ N , hi ∈ Hi, ai ∈ BR[σ∗
−i|µ

∗, hi], and pi ∈ Pi such that
ai[pi] > 0, it is true that for every j ∈ Ni we have pi[j] ∈ {0, pi[j|hi]}.

Proof. Suppose then that there exist i ∈ N , hi ∈ Hi, a
1
i ∈ BR[σ∗

−i|µ
∗, hi], and p

1
i ∈ Pi such that

a1i [p
1
i ] > 0 and there exists j ∈ Ni such that p1i [j] /∈ {0, pi[j|hi]}. Fix any h such that hi ∈ h and

define an alternative a2i ∈ Ai:

– a
1 = (a1i ,p

∗
−i) and a

2 = (a2i ,p
∗
−i), where p

∗ = σ
∗[h].

– Define p2
i ∈ Pi such that for every j ∈ Ni, if p

1
i [j] ≥ pi[j|hi], then p

2
i [j] = pi[j|hi], else, p

2
i [j] = 0.

– Set a2i [p
2
i ] = a1i [p

1
i ] + a1i [p

2
i ] and a

2
i [p

1
i ] = 0.

– For every p
′′
i ∈ Pi \ {p

1
i ,p

2
i }, set a

2
i [p

′′
i ] = a1i [p

′′
i ].

– Define σ1i = σ∗i [hi|p
1
i ] and σ

2
i = σ∗i [hi|p

2
i ].

– Set σ1 = (σ1i ,σ
∗
−i) and σ

2 = (σ2i ,σ
∗
−i).

Notice that for any j ∈ Ni, p
1
i [j] ≥ p2i [j] and p1i [j] ≥ pi[j|hi] iff p2i [j] ≥ pi[j|hi]. Thus, by

Definition 2, for every s ∈ S,
pri[s|a

1
i , h] = pri[s|a

2
i , h].

pr[s|a1, h] = pr[s|a2, h].
(114)

Moreover, for some j ∈ Ni, p
1
i [j|hi] > p2i [j|hi], thus, it is true that

ui[a
1] < ui[a

2]. (115)

Recall that
πi[σ

1|h] = ui[a
1] + ωi

∑

s∈S

πi[σ
1|(h, s)]pr[s|a1, h],

πi[σ
2|h] = ui[a

2] + ωi

∑

s∈S

πi[σ
2|(h, s)]pr[s|a2, h].

By 114 and the definition of σ1 and σ
2,

∑

s∈S

πi[σ|(h, s)]pr[s|a
1, h] =

∑

s∈S

πi[σ|(h, s)]pr[s|a
2, h].

It follows from 115 that, for every h ∈ H such that hi ∈ h,

πi[σ
1|h] < πi[σ

2|h].

Consequently,
πi[σ

1|hi] < πi[σ
2|hi].

This is a contradiction, since a1i ∈ BR[σ∗
−i|hi] by assumption, concluding the proof. ⊓⊔
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Proof of Lemma 34. For every i ∈ N and hi ∈ Hi, there exists ai ∈ BR[σ
∗
−i|µ

∗, hi] and pi ∈ Pi

such that ai[pi] = 1.

Proof. Fix i and hi. If BR[σ∗
−i|µ

∗, hi] only contains pure strategies for the stage game, since
BR[σ∗

−i|µ
∗, hi] is not empty, the result follows. Suppose then that there exists a mixed strategy

a1i ∈ BR[σ∗
−i|µ

∗, hi]. We know from Lemma 33 that every such ai attributes positive probability
to one of two probabilities in {0, pi[j|hi]}, for every j ∈ Ni. Denote by P∗

i [hi] the finite set of
profiles of probabilities that fulfill the condition of Lemma 13, i.e., for every pi ∈ P∗

i [hi] and j ∈ Ni,
pi[j] ∈ {0, pi[j|hi]}. Define P∗[h] similarly for any h ∈ H.

For any h ∈ H such that hi ∈ h, we can write

πi[σ
1|h] =

∑

pi∈P∗
i
[hi]

(ui[p] + ωiπi[σ
1|(h, sig[p|h])])a1i [pi], (116)

where p = (pi,p
∗
−i) and p

∗ = σ
∗[h].

For any p
1
i ∈ P∗

i [hi] such that ai[p
1
i ] > 0, let σ1i = σ∗i [hi|a

1
i ], σ

1 = (σ1i ,σ
∗
−i), σ

′
i = σ∗i [hi|p

1
i ], and

σ
′ = (σ′i,σ

∗
−i).

There are three possibilities:

1. πi[σ
1|µ∗, hi] = πi[σ

′|µ∗, hi].
2. πi[σ

1|µ∗, hi] < πi[σ
′|µ∗, hi].

3. πi[σ
1|µ∗, hi] > πi[σ

′|µ∗, hi].

In possibility 1, it is true that there exists a′i ∈ BR[σ∗
−i|µ

∗, hi] such that a′i[p
1
i ] = 1 and the

result follows. Possibility 2 contradicts the assumption that a1i ∈ BR[σ∗
−i|µ

∗, hi].
Finally, consider that possibility 3 is true. Recall that a1i being mixed implies a1i [p

1
i ] < 1. Thus,

there must exist p2
i ∈ P∗

i [hi], σ
′′
i = σ∗i [hi|p

2
i ], and σ

′′ = (σ′i,σ
∗
−i), such that a1i [p

2
i ] > 0 and

πi[σ
′|µ∗, hi] < πi[σ

′′|µ∗, hi]. (117)

Here, we can define a2i ∈ Ai such that:

– a2i [p
2
i ] = a1i [p

1
i ] + a1i [p

2
i ];

– a2i [p
1
i ] = 0.

– For every p
′′
i ∈ P∗

i [hi] \ {p
1
i ,p

2
i }, a

2
i [p

′′
i ] = a1i [p

′′
i ].

Now, let σ2i = σ∗i [hi|a
2
i ], and σ

2 = (σ2i ,σ
∗
−i).

By 116, it holds that for every h ∈ H such that hi ∈ h:

πi[σ
1|h] = l1 + πi[σ

′|h]a1i [p
1
i ] + πi[σ

′′|h]a1i [p
2
i ],

πi[σ
2|h] = l2 + πi[σ

′′|h]a2i [p
2
i ],

where
l1 =

∑

p′′∈P∗[h]\{p1
i
,p2

i
}

(ui[p
′′] + ωiπi[σ

1|h, s′′])a1i [p
′′
i ],

l2 =
∑

p′′∈P∗[h]\{p1
i ,p

2
i }

(ui[p
′′] + ωiπi[σ

2|h, s′′])a2i [p
′′
i ],

and s′′ = sig[p′′|h].
By the definition of a2i , we have that l1 = l2. It follows that

πi[σ
1|h]− πi[σ

2|h] = πi[σ
′|h]a1i [p

1
i ] + πi[σ

′′|h]a1i [p
2
i ]− πi[σ

′′|h](a1i [p
2
i ] + a1i [p

1
i ])

= (πi[σ
′|h]− πi[σ

′′|h])a1i [p
1
i ].
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Consequently, by 117,

πi[σ
1|µ∗, hi]− πi[σ

2|µ∗, hi] =
∑

h∈H µ
∗
i [h|hi](πi[σ

1|h]− πi[σ
2|h])

=
∑

h∈H µ
∗
i [h|hi](πi[σ

′|h]− πi[σ
′′|h])a1i [p

1
i ]

= (πi[σ
′|µ∗, hi]− πi[σ

′′|µ∗, hi])a
1
i [p

1
i ]

< 0.

Thus,
πi[σ

1|µ∗, hi] < πi[σ
2|µ∗, hi],

contradicting the assumption that a1i ∈ BR[σ∗
−i|µ

∗, hi]. This concludes the proof. ⊓⊔
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Proof of Lemma 35. For every i ∈ N and hi ∈ Hi, there exists pi ∈ Pi and a pure strategy
σi = σ∗i [hi|pi] such that:

1. For every j ∈ Ni, pi[j] ∈ {0, pi[j|hi]}.
2. For every ai ∈ Ai, πi[σi,σ

∗
−i|µ

∗, hi] ≥ πi[σ
′
i,σ

∗
−i|µ

∗, hi], where σ
′
i = σ∗i [hi|ai].

Proof. Consider any i ∈ N and hi ∈ H. From Lemma 34, it follows that there exists ai ∈
BR[σ∗

−i|µ
∗, hi] and pi ∈ Pi such that ai[pi] = 1. By Lemma 33, every such ai and pi such that

ai[pi] = 1 fulfill Condition 1. Condition 2 follows from the definition of BR[σ∗
−i|µ

∗, hi]. ⊓⊔

Proof of Lemma 36. If the PDC Condition is fulfilled and (σ∗,µ∗) is Preconsistent, then (σ∗,µ∗)
is Sequentially Rational.

Proof. Assume that Inequality 16 holds for every player i, history hi and D ⊆ Ni[hi]. In particular,
these assumptions imply that, for each pi ∈ Pi such that pi[j] ∈ {0, pi[j|hi]} for every j ∈ Ni, we
have

πi[σ
∗|hi] ≥ πi[σi,σ

∗
−i|hi], (118)

where σi = σ∗i [hi|pi]. By Lemma 35, there exists one such pi such that σi is a local best response.
Consequently, by 118, for every ai ∈ Ai and σ

′
i = σ∗i [h|ai],

πi[σ
∗|hi] ≥ πi[σ

′
i,σ

∗
−i|hi].

By Property 27, (σ∗,µ∗) is Sequentially Rational. ⊓⊔
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Proof of Lemma 38. If the assessment (σ∗,µ∗) is Preconsistent and Sequentially Rational and
G is redundant, then for every i ∈ N and j ∈ Ni, there exists k ∈ N \ {i}, x ∈ PS[s, i], and
x′ ∈ PS[j, k], such that k ∈ x and i /∈ x′.

Proof. Suppose that there exists a player i ∈ N , and a neighbor j ∈ Ni such that for every
k ∈ N \ {i}, x′ ∈ PS[j, k], and x ∈ PS[s, i], we have k /∈ x or i ∈ x′. Define Dj ⊆ N and D ⊆ Ni as:

Dj = {k ∈ N \ {i}|∃
x∈PS[j,k]i /∈ x}.

D = {j ∈ Ni|∀k∈Dj
∀x∈PS[s,i]∀x′∈PS[j,k]k /∈ x ∨ i ∈ x′}.

(119)

Let RSD = ∪j∈DDj . By our assumptions, D is not empty. Define σ′i = σ∗i [hi|p
′
i] for every hi ∈ H

such that:

– For every j ∈ D, p′i[j] = 0.
– For every j ∈ Ni \D, p′i[j] = pi[j|∅].

Let σ′ = (σ′i,σ
∗
−i).

Notice that, for every k ∈ N \ {i},

CDi[p
′|h] = D.

CDk[p
′|h] = ∅.

(120)

For every j ∈ D and k ∈ N \ (RSD ∪ {i}), we have that dk[i, j] = ∞. Therefore, by Lemma 28
and by 120, for every l ∈ Nk, r ≥ 0,

DSk[l|h
′
k,r] = DSk[l|h

∗
k,r], (121)

where h′k,r ∈ hist[∅, r|σ′] and h∗k,r ∈ hist[∅, r|σ′].
By Definition 24 and 121, we have that for every r ≥ 0,

pk[l|h
′
k,r] = pk[l|h

∗
l,r]. (122)

Consequently, by 119 and 122, for every r > 0, there exist p
∗ = σ

∗[hist[∅, r − 1|σ∗]] and
p
′ = σ

′[hist[∅, r − 1|σ′]] such that for every x ∈ PS[s, i] and k ∈ x \ {i} we have p
∗
k = p

′
k.

It follows from Lemma 53 of Appendix A that for every r ≥ 0

qi[∅, r|σ
∗] = qi[∅, r|σ

′]. (123)

By the definition of p′
i, for every r ≥ 0,

p̄i[∅, r|σ
′] < p̄i[∅, r|σ

∗]. (124)

By the definition of ui[h, r|σ], from 123 and 124, we have for every r ≥ 0

ui[∅, r|σ
∗] < ui[∅, r|σ

′].

This implies that
∞
∑

r=0

ωr
i (ui[∅, r|σ

∗]− ui[∅, r|σ
′]) < 0.

Since h = ∅ is the only history such that µi[h|∅] = 1, by Theorem 37, (σ∗,µ∗) cannot be Sequentially
Rational, which is a contradiction. ⊓⊔
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C.3 Redundancy may Reduce Effectiveness

Proof of Theorem 39. If G is redundant and there exist i ∈ N , j ∈ Ni, and k ∈ N−1
i such that

for every x ∈ PS[j, k] we have i ∈ x, then Equality 17 holds.

Proof. Assume that there exist i ∈ N , j ∈ Ni, and k ∈ N−1
i such that for every x ∈ PS[j, k] we

have i ∈ x. This implies by Definition 23 that

dk[i, j] = ∞. (125)

Define σ′i = σ∗i [hi|p
′
i] for every hi ∈ Hi, such that p′i[j] = 0 and p′i[l] = pi[l|hi] for every

l ∈ Ni \ {j} and let σ′ = (σ′i,σ
∗
−i).

Notice that

p̄i[∅, r|σ
′] = p̄i[∅, r|σ

∗]− pi[j|∅].

By Theorem 37, if (σ∗,µ∗) is Sequentially Rational, then, for every r ≥ 0 and the empty history:

∑∞
r=0 ωi(ui[∅, r|σ

∗]− ui[∅, r|σ
′]) ≥ 0

∑∞
r=0 ωi((1 − qi[∅, r|σ

∗])(βi − γip̄i[∅, r|σ
∗])−

(1− qi[∅, r|σ
′])(βi − γip̄i[∅, r|σ

′])) ≥ 0

∑∞
r=0 ωi((qi[∅, r|σ

′]− qi[∅, r|σ
∗])(βi − γip̄i[∅, r|σ

∗])
−(1− qi[∅, r|σ

′])γipi[j|∅] ≥ 0.

(126)

By Lemma 49, since G is connected from s and qi is continuous in [0,1], for every r ≥ 0:

lim
σ∗→1

qi[∅, r|σ
∗] = qi[1] = 0. (127)

Now, let p
∗ = σ

∗[∅], p′ = (p′
i,p

∗
−i), h

′
k,r ∈ hist[∅, r|σ′], and h∗k,r ∈ hist[∅, r|σ∗]. We have that

for every l ∈ N \ {i}:

CDl[p
′|∅] = ∅, (128)

and

CDi[p
′|∅] = {j}. (129)

It follows immediately by Definition 24 and Lemma 28 that, for every k ∈ N and l ∈ Nk such
that dk[i, j] = ∞, and r ≥ 0,

DSk[l|h
′
k,r] = DSk[l|h

∗
k,r].

pk[l|h
′
k,r] = pk[l|h

∗
k,r].

(130)

For any r ≥ 0, let

p
′′ = lim

σ∗→1

σ
′[h′r].

Since G is redundant, there is a path x ∈ PS[s, k] such that i /∈ x. Furthermore, by 125, for
every l ∈ x \ {i}, dl[i, j] = ∞. By 130, this implies that p′′l [a] = 1 for every a ∈ Nl.

Therefore, by Lemma 49 and, since G is connected from s and qi is continuous in [0, 1], for every
r ≥ 0,

lim
σ∗→1

qi[∅, r|σ
′] = qi[p

′′] = 0. (131)
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By 126, 127, and 131,

limσ∗→1

∑∞
r=0 ωi(ui[∅, r|σ

∗]− ui[∅, r|σ
′])) =

limσ∗→1

∑∞
r=0 ωi((qi[∅, r|σ

′]− qi[∅, r|σ
∗])(βi − γip̄i[∅, r|σ

∗])
−(1− qi[∅, r|σ

′])γipi[j|∅]) =

limσ∗→1−(1− qi[∅, r|σ
′])γipi[j|∅]) =

−γi < 0.

(132)

Therefore, in the limit, the PDC Condition is never fulfilled for any values of βi, γi, and ωi ∈
(0, 1), which implies by Theorem 37 that (σ∗,µ∗) is not Sequentially Rational for an arbitrarily
large reliability and

lim
σ∗→1

ψ[σ∗|µ∗] = ∅.

⊓⊔
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C.4 Coordination is Desirable

Proof of Theorem 41. If the graph is redundant and σ
∗ does not enforce coordination, then

there is a definition of σ∗ such that:

lim
σ∗→1

ψ[σ∗|µ∗] = ∅.

Proof. In the aforementioned circumstances, define σ
∗ such that for every i ∈ N , j ∈ Ni, and

hi ∈ Hi,

pi[j|hi] > 0 ≡ pi[j|hi] = pi[j|∅]. (133)

By the assumption that σ∗ does not enforce coordination, there exists i ∈ N and j ∈ Ni such
that for every r > 0 there is k ∈ N−1

i for which

r ≤ dk[i, j] ∨ r ≥ dk[i, j] + τ [i, j|k, i] + 1. (134)

Fix r. Let σ′i = σ∗i [∅|p
′
i] and σ

′ = (σ′i,σ
∗
−i), such that

– p′i[j] = 0.
– For every k ∈ Ni \ {j}, p

′
i[k] = pi[k|∅].

For p′ = σ
′[∅], we have

CDi[p
′|∅] = {j}, (135)

and for every k ∈ N \ {i}
CDk[p

′|∅] = ∅. (136)

By Lemma 28 and Definition 24, and by 135, and 136, we have for every a ∈ N and b ∈ Na,
h′a,r ∈ hist[∅, r|σ′], and h∗a,r ∈ hist[∅, r|σ∗]:

DSa[b|h
′
a,r] = DSa[b|h

∗
a,r] ∪ {(k1, k2, r − 1− da[k1, k2] + v[k1, k2])|k1, k2 ∈ N∧

k2 ∈ CDk1 [p
′|∅] ∧ r ∈ {da[k1, k2] + 1 . . . da[k1, k2] + τ [k1, k2|a, b]− v[k1, k2]}∧

v[k1, k2] = min[da[k1, k2]− db[k1, k2], 0]}

= ∅ ∪ {(i, j, r − 1− da[i, j] + v[i, j])|v[i, j] = min[da[i, j] − db[i, j], 0]}.

(137)

For DSk[i|h
′
k,r], we have v[i, j] = 0, since di[i, j] = 0. Therefore, by 137,

pa[b|ha,r] = pa[b|∅]. (138)

Also, for every a ∈ N \ (Ni ∪ N−1
i ∪ {k, i}) and b ∈ Na, by Definition 24 and the definition of

σ
∗ in this context, a does not react to a defection of i from j, which implies that:

DSa[b|h
′
a,r] = {(i, j, r − 1− da[i, j] + v[i, j])|v[i, j] = min[da[i, j] − db[i, j], 0]}.

pa[b|h
′
a,r] = pa[b|h

∗
a,r] = pa[b|∅].

(139)

Since the graph is redundant, there exists x ∈ PS[s, k] such that, for every a ∈ (Ni ∪ N−1
i ∪

{i}) \ {k}, a /∈ x. Thus, by 138 and 139, for

p
′ = lim

σ∗→1

σ
′[hist[∅, r|σ′]],

there exists a path x ∈ PS[s, i] such that for every a ∈ x \ {i} and b ∈ Na we have

p′a[b] = 1.
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By Lemma 49, given that qi is continuous in [0, 1], for every r > 0,

limσ∗→1(qi[∅, r|σ
∗]− qi[∅, r|σ

′]) = 0.

limσ∗→1(ui[∅, r|σ
∗]− ui[∅, r|σ

′]) =
limσ∗→1(1− qi[∅, r|σ

∗])(βi − γip̄i[∅, r|σ
∗])− (1− qi[∅, r|σ

′])(βi − (γip̄i[∅, r|σ
∗] + pi[j|h

∗
ir ])) =

limσ∗→1−γipi[j|∅] < 0.
(140)

Therefore, in the limit, the PDC Condition is never fulfilled for any values of βi and γi, which
implies by Theorem 37 that (σ∗,µ∗) is never Sequentially Rational and:

lim
σ∗→1

ψ[σ∗|µ∗] = ∅.

⊓⊔
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C.5 Impact of Delay

Auxiliary Lemmas. Lemma 56 shows that the utility obtained by i during the τ stages that
follow stage d̄i after any defection by i is null. This is because during that period i is necessarily
punished by every in-neighbor.

Lemma 56. For every i ∈ N , h ∈ H and hi ∈ h, D ⊆ Ni[hi], and r ∈ {d̄i + 1 . . . d̄i + τ},
ui[h, r|σ

′] = 0, where σ
′ = (σ∗i [hi|p

′
i],σ

∗
−i) and i drops every node from D in p

′
i.

Proof. By Definition 42, since di[i, j] = 0 for every i, then, for every k ∈ N−1
i , max[dk[i, j], di[i, j]] =

dk[i, j] and:
τ [i, j|k, i] ≤ d̄i.
τ [i, j|k, i] = d̄i − dk[i, j] + τ.

(141)

Notice that for p′ = σ
′[h]

CDi[p
′|h] = D, (142)

and for every j ∈ N \ {i}
CDj[p

′|h] = ∅. (143)

By Lemma 28 and by 141, for every k ∈ N−1
i and r ∈ {d̄i + 1 . . . d̄i + τ}:

DSk[i|h
′
k,r] = DSk[i|h

∗
k,r] ∪ {(k1, k2, r − 1− dk[k1, k2] + v[k1, k2])|k1, k2 ∈ N∧

k2 ∈ CDk1 [p
′|h] ∧ r ∈ {dk[k1, k2] + 1 . . . di[k1, k2] + τ [k1, k2|k, i] − v[k1, k2]}∧

v[k1, k2] = min[dk[k1, k2]− di[k1, k2], 0]},

= DSk[i|h
∗
k,r] ∪ {(i, j, r − 1− dk[i, j] + v[i, j])|j ∈ D∧

r ∈ {dk[i, j] + 1 . . . dk[i, j] + τ [i, j|k, i] − v[i, j]}∧
v[i, j] = min[dk[i, j] − di[i, j], 0]}

= DSk[i|h
∗
k,r] ∪ {(i, j, r − 1− dk[i, j] + v[i, j])|j ∈ D∧

r ∈ {dk[i, j] + 1 . . . dk[i, j] + τ [i, j|k, i] − v[i, j]} ∧ v[i, j] = 0}

⊇ DSk[i|h
∗
k,r] ∪ {(i, j, r − 1− dk[i, j])|j ∈ D ∧ r ∈ {d̄i + 1 . . . d̄i + τ}}

= DSk[i|h
∗
k,r] ∪ {(i, j, r − 1− dk[i, j] + v[i, j])}

(144)

where h∗k,r ∈ hist[h, r|σ∗] and h′k,r ∈ hist[h, r|σ′].

By 144 and Definition 24, it follows that, for every r ∈ {d̄i + 1 . . . d̄i + τ},

pk[i|h
′
k,r] = 0,

which by Lemma 51 leads to
qi[h, r|σ

′] = 1.
ui[h, r|σ

′] = 0.
(145)

This concludes the proof. ⊓⊔
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Lemma 57 proves that all punishments of a node i are concluded after stage d̄i + τ that follows
any defection of i.

Lemma 57. For every i ∈ N , h ∈ H and hi ∈ h, D ⊆ Ni[hi], and r > d̄i + τ ,

ui[h, r|σ
′] = ui[h, r|σ

∗],

where σ
′ = (σ∗i [hi|p

′
i],σ

∗
−i) and i drops every node from D in p

′
i.

Proof. Notice that for p′ = σ
′[h] and j ∈ N \ {i}

CDi[p
′|h] = D.

CDj[p
′|h] = ∅.

(146)

By Lemma 28 and by 146, for every k ∈ N , l ∈ Nk, and r > d̄i + τ ,

DSk[l|h
′
k,r] = DSk[l|h

∗
k,r] ∪ {(k1, k2, r − 1− dk[k1, k2] + v[k1, k2])|k1, k2 ∈ N∧

k2 ∈ CDk1 [p
′|h] ∧ r ∈ {dk[k1, k2] + 1 . . . dk[k1, k2] + τ [k1, k2|k, l]− v[k1, k2]}∧

v[k1, k2] = min[dk[k1, k2]− dl[k1, k2], 0]},

= DSk[l|h
∗
k,r] ∪ {(i, j, r − 1− dk[i, j] + v[i, j])|j ∈ D∧

r ∈ {dk[i, j] + 1 . . . dk[i, j] + τ [i, j|k, l] − v[i, j]}∧
v[i, j] = min[dk[i, j] − dl[i, j], 0]}

= DSk[l|h
∗
k,r] ∪A

(147)

where h∗k,r ∈ hist[h, r|σ∗] and h′k,r ∈ hist[h, r|σ′].
The goal now is to show that for every (i, j, r′) ∈ A, we have r′ < 0. Fix any j.
By Definition 42, for every k ∈ N and l ∈ Nk such that

g = max[dk[i, j], dl [i, j]] > d̄+ τ, (148)

we have
τ [i, j|k, l] = 0.

Thus, by 148, if g = dk[i, j], then we have v[i, j] = 0 and

dk[i, j] + τ [i, j|k, l] − v[i, j] = dk[i, j].

Thus, there is no r such that

r ∈ {dk[i, j] + 1 . . . dk[i, j] + τ [i, j|k, l] − v[i, j]},

which implies that A = ∅ and the result is true.
If g = dl[i, j], then we have v[i, j] = dk[i, j] − dl[i, j] and

dk[i, j] + τ [i, j|k, l] − v[i, j] = dl[i, j].
r′ = r − 1− dk[i, j] + v[i, j] = r − 1− dl[i, j].

Here, if r′ ≥ 0, then dl[i, j] ≤ r − 1 and there is no r > d̄i + τ such that

r ∈ {dk[i, j] + 1 . . . dk[i, j] + τ [i, j|k, l] − v[i, j]},

which implies that A = ∅. So, either A = ∅ or r′ < 0, which concludes the step for any k ∈ N and
l ∈ Nk that fulfill 148.
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Consider now that
g = max[dk[i, j], dl [i, j]] < d̄i + τ, (149)

which results by Definition 42 in
τ [i, j|k, l] = d̄i + τ − g.

Notice that
dk[i, j] − v[i, j] = g,

which implies that

dk[i, j] + τ [i, j|k, l] − v[i, j] = g + d̄i + τ − g = d̄i + τ.

Thus, by 148 there is no r > d̄i + τ such that

r ∈ {dk[i, j] + 1 . . . dk[i, j] + τ [i, j|k, l] − v[i, j]},

which implies that A = ∅.
This allows us to conclude that for every k ∈ N , l ∈ Nk, and r > d̄i + τ ,

DSk[l|h
′
k,r] = DSk[l|h

∗
k,r] ∪A,

where for every (i, j, r′) ∈ A we have r′ < 0. By Definition 24, i adds (k1, k2, r
′′) ∈ DSk[l|h

∗
k,r] to K

if and only if i adds (k1, k2, r
′′) to DSk[l|h

′
k,r]. Therefore,

pk[l|h
′
k,r] = pk[l|h

∗
k,r].

qi[h, r|σ
′] = qi[h, r|σ

∗].
ui[h, r|σ

′] = ui[h, r|σ
∗].

(150)

This concludes the proof. ⊓⊔
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Proof of Lemma 44. If (σ∗, µ∗) is Preconsistent, Assumption 43 holds, and Inequality 18 is
fulfilled for every i ∈ N , hi ∈ Hi, and h ∈ H such that µ∗i [h|hi] > 0, then (σ∗,µ∗) is Sequentially
Rational:

−
d̄i
∑

r=0

ωr
i ((1− qi[h, r|σ

∗])γip̄i[h, r|σ
∗] + ǫβi) +

d̄i+τ
∑

r=d̄i+1

ωr
i ui[h, r|σ

∗] ≥ 0.

Proof. Fix i, hi, and h. Define σ
′ = (σ∗i [hi|p

′
i],σ

∗
−i) for any D ⊆ Ni[hi], where:

– For every j ∈ D, p′i[j] = 0.
– For every j ∈ Ni \D, p′i[j] = pi[j|hi].

By Assumption 43, for every r ∈ {0 . . . d̄i},

p̄i[h, r|σ
′] ≥ 0.

qi[h, r|σ
∗]− qi[h, r|σ

′] ≥ ǫ.
ui[h, r|σ

∗]− ui[h, r|σ
′] = (1− qi[h, r|σ

∗])(βi − γip̄i[h, r|σ
∗])− (1− qi[h, r|σ

′])(βi − γip̄i[h, r|σ
′])

≥ −(1− qi[h, r|σ
∗])γi − (qi[h, r|σ

∗]− qi[h, r|σ
′])βi

≥ −(1− qi[h, r|σ
∗])γi − ǫβi.

(151)
By Lemma 56, for every r ∈ {d̄i + 1 . . . d̄i + τ},

ui[h, r|σ
′] = 0. (152)

Finally, by Lemma 57, for every r ≥ d̄i + τ + 1,

ui[h, r|σ
∗] = ui[h, r|σ

′]. (153)

It follows from 151, 152, and 153 that:

∑∞
r=0 ω

r
i (ui[h, r|σ

∗]− ui[h, r|σ
′]) ≥

−
∑d̄i

r=0 ω
r
i ((1− q∗i [h, r|σ

∗])γip̄i[h, r|σ
∗] + ǫβi) +

∑d̄i+τ

r=d̄i+1
ωr
i u

∗
i [h, r|σ

∗].

Therefore, if Inequality 18 is fulfilled for every i ∈ N , hi ∈ Hi, and h ∈ H such that µ∗i [h|hi] > 0,
then the PDC Condition holds. Consequently, by Theorem 37, (σ∗,µ∗) is Sequentially Rational.

⊓⊔
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Proof of Lemma 46. If (σ∗,µ∗) is Preconsistent, Assumptions 43 and 45 hold, and Inequality 19
is fulfilled for every h, i ∈ N , and r, r′ ≤ d̄i+τ such that qi[h, r

′|σ∗] < 1, then there exist ωi ∈ (0, 1)
for every i ∈ N such that (σ∗,µ∗) is Sequentially Rational:

βi
γi
> p̄i[h, r|σ

∗]
1

A
+ p̄i[h, r

′|σ∗]
1

B − C
,

where

– A = 1− ǫ(d̄i+1)
(1−qi[h,r|σ∗])τ .

– B = τ
c
.

– C = ǫ(d̄i+1)
1−qi[h,r′|σ∗] .

Proof. Consider the above assumptions and assume by contradiction that (σ∗,µ∗) is not Sequen-
tially Rational.

The proof considers history h1 that minimizes the first component of Inequality 18 and h2 that
minimizes the second component, for any history h ∈ H. More precisely, fix h and i:

h1 = argminhist[h,r|σ∗]|r∈{0...d̄i}
− ((1 − qi[h, r|σ

∗])γip̄i[h, r|σ
∗] + ǫβi).

h2 = argminhist[h,r|σ∗]|r∈{d̄i+1...d̄i+τ}ui[h, r|σ
∗].

(154)

Let uh2
i = ui[h2, 0|σ

∗]. We can write:

−
∑d̄i

r=0 ω
r
i ((1 − q∗i [h, r|σ

∗])γip̄i[h, r|σ
∗] + ǫβi) +

∑d̄i+τ

r=d̄i+1
ωr
i u

∗
i [h, r|σ

∗] ≥

−
∑d̄i

r=0 ωi((1 − qi[h1, 0|σ
∗])γip̄i[h1, 0|σ

∗] + ǫβi) +
∑d̄i+τ

r=1 ωr
i u

h2
i =

−a
1−ω

d̄i+1
i

1−ωi
+

ω
d̄i+1
i −ω

d̄i+τ+1
i

1−ωi
uh2
i ,

(155)

where

a = (1− qi[h1, 0|σ
∗])γip̄i[h1, 0|σ

∗] + ǫβi.

We want to fulfill

−a
1−ω

d̄i+1
i

1−ωi
+

ω
d̄i+1
i −ω

d̄i+τ+1
i

1−ωi
uh2
i ≥ 0

−a+ ωd̄i+1
i (uh2

i + a)− ωd̄i+τ+1
i uh2

i ≥ 0.
(156)

Again, this inequality corresponds to a polynomial with degree τ + 1. If q∗i [h1, 0|σ
∗] = 1, then

by our assumptions qi[h2, 0|σ
∗] = 1, a = 0, and the Inequality holds. Suppose then that

qi[h1, 0|σ
∗], qi[h2, 0|σ

∗] < 1.

The polynomial has a zero in ωi = 1. If a = 0, then the Inequality holds. Consider, then, that
a > 0. In these circumstances, a solution to 156 exists for ωi ∈ (0, 1) iff the polynomial is strictly
concave and has another zero in (0, 1). This is true iff the polynomial has a maximum in (0, 1). The
derivatives yield the following conditions:

1. ∃ωi∈(0,1)(d̄i + 1)(uh2
i + a)− (τ + d̄i + 1)ωiu

h2
i = 0 ⇒ ∃ωi∈(0,1)ωi =

(d̄i+1)(u
h2
i +a)

(τ+d̄i+1)u
h2
i

.

2. −(τ + d̄i + 1)τuh2
i < 0 ⇒ uh2

i > 0.
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By our assumptions, Condition 1 implies that:

uh2
i τ > (d̄i + 1)a

(1− qi[h2, 0|σ
∗])βiτ > (1− qi[h2, 0|σ

∗])γip̄i[h2, 0|σ
∗]τ + (1− qi[h1, 0|σ

∗])γip̄i[h1, 0|σ
∗] + ǫβi

((1− qi[h2, 0|σ
∗])τ − ǫ(d̄i + 1))βi > (1− qi[h2, 0|σ

∗])γip̄i[h2, 0|σ
∗]τ + (1− qi[h1, 0|σ

∗])γip̄i[h1, 0|σ
∗]

βi

γi
((1− qi[h2, 0|σ

∗])τ − ǫ(d̄i + 1)) > (1− qi[h2, 0|σ
∗])p̄i[h2, 0|σ

∗]τ + (1− qi[h1, 0|σ
∗])p̄i[h1, 0|σ

∗].

(157)
Solving in order to the benefit-to-cost ratio,

(1−qi[h2,0|σ∗])p̄i[h2,0|σ∗]τ
(1−qi[h2,0|σ∗])τ−ǫ(d̄i+1)

= p̄i[h2, 0|σ
∗] 1

1−
ǫ(d̄i+1)

(1−qi [h2,0|σ
∗])τ

= p̄i[h2, 0|σ
∗] 1

A
.

where A = 1− ǫ(d̄i+1)
(1−qi[h2,0|σ∗])τ .

Continuing, by Assumption 45, it is true that

(1− qi[h2, 0|σ
∗])

(1− qi[h1, 0|σ∗])
≥

1

c
.

Therefore,
(1−qi[h1,0|σ∗])p̄i[h1,0|σ∗]
(1−qi[h2,0|σ∗])τ−ǫ(d̄i+1)

= p̄i[h1, 0|σ
∗] 1

(1−qi[h2,0|σ
∗])τ

(1−qi[h1,0|σ
∗])

−
ǫ(d̄i+1)

(1−qi[h1,0|σ
∗])

≤ p̄i[h1, 0|σ
∗] 1

τ
c
−

ǫ(d̄i+1)

1−qi [h1,0|σ
∗]

= p̄i[h1, 0|σ
∗] 1

B−C
.

where:

– B = τ
c
.

– C = ǫ(d̄i+1)
1−qi[h1,0|σ∗] .

In summary, we have

βi

γi
> p̄i[h2, 0|σ

∗] 1
1−A

+ p̄i[h1, 0|σ
∗] 1

B−C
⇒

βi

γi
((1 − qi[h2, 0|σ

∗])τ − ǫ(d̄i + 1)) > (1− qi[h2, 0|σ
∗])p̄i[h2, 0|σ

∗]τ + (1− qi[h1, 0|σ
∗])p̄i[h1, 0|σ

∗].

(158)
Consequently, if Inequality 19 is true, then so is 157. Furthermore, it also holds that

βi > γip̄i[h1, 0|σ
∗] ⇒ uhi > 0.

That is, Inequality 19 implies Conditions 1 and 2 of the polynomial for any h and some ωi ∈
(0, 1), which by transitivity implies that 156 is true. By 155, Inequality 18 is fulfilled for every history
h. Lemma 44, allows us to conclude that (σ∗,µ∗) is Sequentially Rational. This is a contradiction,
proving the result. ⊓⊔
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Proof of Theorem 47. If (σ∗,µ∗) is Preconsistent, Assumptions 43 and 45 hold for ǫ ≪ 1, and
τ ≥ d̄+ 1, then there exists a constant c > 0 such that ψ[σ∗|µ∗] ⊇ (v,∞), where

v = max
i∈N

max
h∈H

p̄i[h, 0|σ
∗](1 + c).

Proof. The idea is to simplify Inequality 19 for ǫ≪ 1 and τ ≥ d̄+ 1.
Recall that

A = 1−
ǫ(d̄i + 1)

(1− qi[h, r|σ∗])τ
.

Thus, this yields

1

A
=

(1− qi[h, r|σ
∗])τ

(1− qi[h, r|σ∗])τ(1 − ǫ d̄i+1
τ

)
≤

(1− qi[h, r|σ
∗])τ

(1− qi[h, r|σ∗])τ(1− ǫ)
≈ 1.

Moreover, by Assumption 45,

1
B−C

= 1
τ
c
−

ǫ(d̄i+1)

1−qi[h,r|σ
∗]

=

1−qi[h,r|σ∗]
(1−qi[h,r|σ∗]) τ

c
−ǫ(d̄i+1)

≤

(1−qi[h,r|σ∗])
(1−qi[h,r+τ |σ∗])τ−ǫ(d̄i+1)

≤

(1−qi[h,r|σ∗])
(1−qi[h,r+τ |σ∗]−ǫ)(d̄i+1)

≈

(1−qi[h,r|σ∗])

(1−qi[h,r+τ |σ∗])(d̄i+1)
≤

(1−qi[h,r|σ∗])
(1−qi[h,r+τ |σ∗](d̄i+1))

≤

c
d̄i+1

.

Thus, for any r, r′ ≥ 0,

p̄i[h, r|σ
∗]
1

A
+ p̄i[h, r

′|σ∗]
1

B − C
≤ p̄i[h, r|σ

∗] + p̄i[h, r
′|σ∗]

c

d̄i + 1
.

Thus, there exists a constant c′ = c
d̄i+1

such that if for every i we have

βi
γi
> max

h∈H
p̄i[h|σ

∗](1 + c′) ≥ p̄i[h, r|σ
∗] + p̄i[h, r

′|σ∗]
c

d̄i + 1
,

then Inequality 19 is fulfilled for every h, r, and r′, and for some ωi ∈ (0, 1). By Lemma 46, this
implies (σ∗,µ∗) is Sequentially Rational and the result follows. ⊓⊔
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