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Abstract. A network is called localizable if the positions of all the nodes of the net-
work can be computed uniquely. If a network is localizable and embedded in plane
with generic configuration, the positions of the nodes may be computed uniquely in
finite time. Therefore, identifying localizable networks is an important function. If the
complete information about the network is available at a single place, localizability can
be tested in polynomial time. In a distributed environment, networks with trilatera-
tion orderings (popular in real applications) and wheel extensions (a specific class of
localizable networks) embedded in plane can be identified by existing techniques. We
propose a distributed technique which efficiently identifies a larger class of localizable
networks. This class covers both trilateration and wheel extensions. In reality, exact dis-
tance is almost impossible or costly. The proposed algorithm based only on connectivity
information. It requires no distance information.

Key words: Wireless sensor networks, graph rigidity, localization, localizable networks,
distributed localizability testing.

1 Introduction

A sensor is a small sized and low powered electronic device with limited computational and
communicating capability. A sensor network is a network containing some ten to millions of
sensors. Wireless sensor networks (WSNs) have wide-ranging applications in problems such as
traffic control, habitat monitoring, battlefield surveillance (e.g., intruder detection or giving
assistance to mobile soldiers etc.), fire detection for monitoring forest-fires, disaster manage-
ment, to alert the appearance of phytoplankton under the sea, etc. WSNs can help in gathering
information from regions, where human access is difficult. To react to an event detected by a
sensor, the knowledge about the position of the sensor is necessary. Sensor deployment may
be random. For example, they may be dropped from an air vehicle with no pre-defined infra-
structure. In such cases, the positions of the sensors are completely unknown to start with.
The problem of finding the positions of nodes in a network is known as network localization.

A wireless ad-hoc network embedded in Rm (m-dimensional Euclidean space) may be
represented by a distance graph G = (V,E, d) whose vertices represent computing devices. A
pair of nodes, {u, v} ∈ E if and only if the Euclidean distance between u and v (d(u, v) =
|u − v|) is known. Determining the coordinates of vertices in an embedding of G in Rm may
be considered as graph realization problem [1,2,3,4]. A realization of a distance graph G =
(V,E, d) in Rm is an injective mapping p : V → Rm such that |p(u)−p(v)| = d(u, v), ∀{u, v} ∈
E (i.e., one-to-one assignment of coordinates (x1, . . . , xm) ∈ Rm to every vertex in V so that
the d(u, v) represents the distance between u and v. The pair (G, p) is called a framework of
G in Rm. Two frameworks (G, p) and (G, q) are congruent if |p(u) − p(v)| = |q(u) − q(v)|,
∀u, v ∈ V (i.e., preserving the distances between all pairs of vertices). A framework (G, p) is
rigid, if it has no smooth deformation [5] preserving the edge lengths. The distance graph G is
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generically globally rigid [5], if all realizations with generic configurations (set of points with
coordinates not being algebraically dependent) are congruent. A set A = {α1, . . . , αm} of real
numbers is algebraically dependent if there is a non-zero polynomial h with integer coefficients
such that h(α1, . . . , αm) = 0. The graph G is termed as globally rigid, if all realizations of G
are congruent. In this work, we consider realizations of a distance graph only in plane with
generic configurations. Here onwards, all the discussions and results are concerned only in R2.

In real applications, positions of the nodes of a network may either be 1) estimated [6,7,8,9,10]
within some tolerable error level or 2) uniquely realized. If all realizations of a network are
congruent, the network is called localizable. A distance graph is localizable if and only if it is
globally rigid. Starting from three anchors (nodes with known unique position), all the nodes
in a globally rigid graph can be uniquely realized. If the nodes cannot be localized using the
given information, in several applications location estimation may serve well. Localization of
a network is NP -hard [11] even when it is localizable [12]. Jackson and Jordán [12] proved
that a graph is globally rigid, if and only if it is 3-connected and redundantly rigid. A graph
is 3-connected, if at least three vertices must be removed to make the graph disconnected.
A graph is redundantly rigid, if it remains rigid after removing any edge. Localizability of a
graph can be answered in polynomial time [12] by testing the 3-connectivity and redundant
rigidity when complete network wide information is available in a single machine. To gather
complete network information in a single machine is infeasible or very costly. On the contrary,
finding methods to recognize globally rigid graphs in distributed environments based on local
information is still a challenging problem [13].

The rest of the paper is organized as follows. Section 2 describes motivation and contri-
bution of this work. Section 3 introduces some classes of localizable graphs which include
trilateration graph and wheel extension as their special cases. Section 4 defines the problem.
It also describes a mapping of the problem into triangle bar recognition. Section 5 describes
the proposed distributed algorithm of localizability testing. Section 6 proves correctness and
performance analysis of the algorithm. Finally, we conclude in Section 7.

2 Background and our contribution

The most commonly used technique for localization is trilateration [14,15]. It efficiently local-
izes a trilateration graph starting from three anchors. A trilateration graph is a graph with a
trilateration ordering, π = (u1, u2, . . . , un) where u1, u2, u3 form a K3 and every ui (i > 3) is
adjacent to at least three nodes before ui in π. However, not all localizable networks admit tri-
lateration ordering. Fig. 1 (a) and 1 (b) respectively show a wheel graph and a wheel extension

(a) Wheel
graph

(b) Wheel
extension

(c) Triangle
cycle

(d) Triangle
circuit

(e) Triangle
bridge

(f) Triangle
net

Fig. 1. Examples of some localizable graphs having different properties

graph which have no trilateration ordering. A wheel Wn with n vertices is a graph consisting
of a cycle with n− 1 nodes and a vertex which is adjacent to all vertices on the cycle. A wheel
extension is a graph having an ordering π = (u1, u2, . . . , un) of nodes where u1, u2, u3 form a
K3 and each ui, i > 3, lies in a wheel subgraph containing at least three nodes before ui in π.
A wheel extension is generically globally rigid and its localizability can be identified efficiently
and distributedly [13]. However, there are many more localizable graphs which do not have



wheel extensions. For example, Fig. 1 (c), 1 (d), 1 (e) and 1 (f) are examples of graphs which
are generically globally rigid, but do not have wheel extensions.

The main contributions of this paper are as follows. It introduces some elementary class of
localizable graphs triangle cycle, triangle circuit, triangle bridge, triangle notch and triangle
net. Using these elementary classes of graphs, we build up a new family of generically globally
rigid graphs called triangle bar. Trilateration graphs and wheel extensions are special cases
of triangle bars. We propose an efficient distributed algorithm that recognizes triangle bars
starting from a K3 based only on connectivity information. It requires no distance information.
In real applications, exact node distance is impossible or costly. However, several localizable
graphs still fall outside the class triangle bar. To the best of our knowledge, distributedly
recognizing an arbitrary localizable network still is an open problem.

3 Rigidity and localizability of triangle bar

Unique realizability is closely related to graph rigidity [1,2]. The realizability testing of a dis-
tance graph G = (V,E, d) is NP -hard [11]. We expect data are consistent to have a realization,
if the distance information is collected from an actual deployment of devices. A realization of G
may be visualized as a frame constructed by a finite set of hinged rods. The junctions and free
ends are considered as vertices of the realization and rods as the edges. With perturbation on
the frame, we may have a different realization preserving the edge distances. The realizations
obtained by flipping, rotating or shifting the whole structure are congruent. By flip, rotation
or shift on a realization, we mean a part of the realization is flipped, rotated or shifted. If
two globally rigid graphs in R2 share exactly one vertex in common, one of them may be
rotated around the common vertex keeping the other fixed. Such a vertex is called a joint. If
two globally rigid graphs in R2 share exactly two vertices, rotation about these vertices is no
longer possible, but one of the graphs may be flipped, about the line joining the two common
vertices, keeping the other fixed. This pair of vertices is called a flip.

Lemma 1 ([16]). If two globally rigid subgraphs, B1 and B2, of a graph embedded in plane
share at least three non-collinear vertices, then B1 ∪B2 is globally rigid.

In this section, we formally introduce some elementary classes of localizable graphs: triangle
cycle, triangle circuit, triangle bridge, triangle notch, triangle net. Using these elementary
classes, a larger class of localizable graphs triangle bar is formally defined.

3.1 Triangle cycle, triangle circuit and triangle bridge

Let T = (T1, T2, . . . , Tm) be a sequence of distinct triangles such that for every i, 2 ≤ i ≤ m−1,
Ti shares two distinct edges with Ti−1 and Ti+1. Such a sequence T of triangles is called a
triangle stream (Fig. 2 (a)). G(T ) is the graph constructed by taking the union of the Tis in

T3

T5

T6

T4

T2

T1

v

w

u

(a) Triangle chain (b) triangle cycle

x

(c) triangle circuit

e

(d) triangle bridge

Fig. 2. Examples of triangle chain, triangle cycle, triangle circuit and triangle bridge

T . A node u of a triangle Ti is termed a pendant of Ti, if the edge opposite to u in Ti is shared
by another triangle in T . This shared edge is called an inner side of Ti. Each triangle Ti has
at least one edge which is not shared by another triangle in T . Such a non-shared edge is



called an outer side of Ti. In Fig. 2 (a), T4 = {u, v, w} has two pendants v and w. It has two
inner sides uw and uv and one outer side vw. If each of T1 and Tm has unique and distinct
pendants, then G(T ) is termed a triangle chain. Fig. 2 (a) shows an example of triangle chain.
By construction, a triangle chain involves only flips; hence rigid. If T1 and Tm share a common
edge other than those shared with T2 and Tm−1, then the union G(T ) is called a triangle cycle.
In a triangle cycle, each triangle has exactly two inner and one outer sides. Fig. 2 (b) shows
an example of a triangle cycle. Every wheel graph is a triangle cycle.

If G(T ) is not a triangle cycle and T1 and Tm have a unique pendant in common, then
G(T ) is called a triangle circuit (Fig. 2 (c)). The common pendant is called a circuit knot.
x is the circuit knot of the triangle circuit. Let T = (T1, T2, . . . , Tm) be a triangle stream
corresponding to a triangle chain. T1 and Tm have unique and distinct pendants. We connect
these pendants by an edge e. G(T ) ∪ {e} is called a triangle bridge (Fig. 2 (d)). The edge e is
called the bridging edge. The length of a triangle stream T is the number of triangles in it and
is denoted by l(T ).

Lemma 2. 1) Every triangle cycle has a spanning wheel or triangle circuit (a wheel or triangle
circuit which is a spanning subgraph of the triangle cycle). 2) Every triangle circuit has a
spanning triangle bridge (a triangle bridge which is a spanning subgraph of the triangle circuit).

Proof. See Appendix A.1 for the first part. For the second part, see Appendix A.2. ut

We have seen that a rigid realization in R2 may have flip ambiguity, i.e., it may yield
another configuration by applying flip operation only. In R2, if a rigid realization admits no
flip ambiguity, then it is globally rigid. Using this, we shall prove the generically global rigidity
as follows.

Lemma 3. Triangle cycle, circuit and bridge are generically globally rigid.

Proof. A triangle cycle has a spanning wheel or triangle circuit (Lemma 2). A wheel graph is
generically globally rigid. A triangle circuit always has a spanning triangle bridge (Lemma 2).
If we can prove that a triangle bridge is generically globally rigid, the result will follow.

Let G(T ) be a triangle bridge with the triangle stream T = (T1, T2, . . . , Tn) and the
bridging edge e. Consider a generic configuration of G(T ) (Fig. 3). Note that G(T ) contains
n + 2 nodes. G(T ) − e is a spanning triangle chain (a triangle chain which is a spanning
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Fig. 3. A generic configuration of a triangle bridge G(T )

subgraph of the triangle bridge) of G(T ). Since G(T )− e can only have flips, i.e., no smooth
deformation. Therefore, G(T ) also admits no smooth deformation.

Consider a different realization of G(T ) obtained from the current realization through a
sequence of flip operations. Without loss of generality, we assume that T1 remains fixed with
positions (x0, y0), (x1, y1) and (x2, y2) for w and two other nodes in T1 respectively. If T2
is involved in a flip, then the only possibility is the flip that is taken with respect to the
inner edge with T1. Only one point of T2 changes its position. Let (x3, y3) and (x′3, y

′
3) be

the positions of this point in the original and the modified configuration respectively. From
elementary coordinate geometry, x′3 and y′3 can be expressed in the form of φ3

ψ3
and ξ3

η3
where

φ3, ψ3, ξ3 and η3 are non-zero polynomials of x1, y1, x2, y2, x3 and y3 with integer coefficients
such that ψ3 6= 0 and η3 6= 0. Once, the positions of T1 and T2 in the second configuration
are computed (fixed) then only one point of T3 may need to be computed. This node again



may be involved in a flip with respect to the inner edge of T2. If (x4, y4) and (x′4, y
′
4) are the

positions of this point in the original and modified configurations respectively, x′4 and y′4 can

be expressed in the form of
φ′
4

ψ′
4

and
ξ′4
η′4

where φ′4, ψ′4, ξ′4 and η′4 are non-zero polynomials of x2,

y2, x′3, y′3, x4 and y4 with integer coefficients such that ψ′4 6= 0 and η′4 6= 0. In this expression,
if we substitute x′3 and y′3 by expressions involving x1, y1, x2, y2, x3 and y3 (obtained from
the previous equations), x′4 and y′4 can be expressed in the form of φ4

ψ4
and ξ4

η4
where φ4, ψ4,

ξ4 and η4 are non-zero polynomials of x1, y1, x2, y2, x3, y3, x4 and y4 with integer coefficients
such that ψ4 6= 0 and η4 6= 0. Proceeding in this way, finally (x′n+1, y

′
n+1), the position of v,

can be expressed in the form of φ
ψ and ξ

η where φ, ψ, ξ and η are non-zero polynomials of xis
and yis, 1 ≤ i ≤ n + 1, the coordinates of the nodes in the first configuration, with integer
coefficients such that ψ 6= 0 and η 6= 0.

Since v and w are adjacent, d(w, v) (the Euclidean distance between w and v) remains
preserved in both configurations. In terms of the coordinates,

(x′n+1 − x0)2 + (y′n+1 − y0)2 = (xn+1 − x0)2 + (yn+1 − y0)2,

η2(φ− x0ψ)2 + ψ2(ξ − y0η)2 = η2ψ2(xn+1 − x0)2 + η2ψ2(yn+1 − y0)2.
So the coordinates in the original configuration are algebraically dependent. It contradicts
that the configuration is generic. Therefore, no flip is possible. ut

3.2 Triangle notch and triangle net

Consider a sequence T = (T1, T2, . . . , Tm) of triangles. Suppose, for i = 2, 3, · · ·, m, each Ti
shares exactly one edge with exactly one Tj , 1 ≤ j < i. The node opposite to this sharing edge
is called a pendant of Ti in T . Fig. 4 shows an example of such a sequence and x is a pendant
of T2. T1 has no pendant. For 2 ≤ i ≤ m, each Ti has exactly one pendant in T . The graph
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(b)(a)

Fig. 5. (a) Trian-
gle tree (b) u and
v are Extended
nodes

G(T ) corresponding to such a sequence T , is called a triangle tree. Fig. 4 is an example of a
triangle tree with 11 triangles. G(T ) contains no triangle cycle. Otherwise, there always exists
a Tj which shares two edges with some triangles before Tj in T . If a triangle Ti shares no
edge with Tj , j > i, is called a leaf triangle. A leaf triangle shares exactly one edge with other
triangles in T . It has a unique pendant, called a leaf knot. T5, T7 and T11 are leaf triangles
and u, v and w are leaf knots. By construction, any realization of a triangle tree is rigid.

Definition 1. Let G(T ) be a triangle tree. A node v, outside G(T ), is called an extended node
of G(T ), if v is adjacent to at least three nodes, each being i) a pendant in G(T ); or ii) an
extended node of G(T ). Each of the edges which connect the extended node to a pendant or an
extended knot of G(T ) is called an extending edge.

Fig. 5 (a) is a triangle tree, say G(T ). Fig. 5 (b) consists of a replica of the graph in Fig. 5 (a)
and some more nodes and edges. Fig. 5 (a) does not contain u of Fig. 5 (b). u is adjacent to
three pendants w, x and z. So u is an extended node of G(T ). The edges uw, ux and uz are
the extending edges of u. Similarly, v is adjacent to an extended node u and two pendants s
and y. So v is also an extended node of G(T ); where vu, vs and vy are the extending edges.



Definition 2. A graph G is called a triangle notch, if it can be generated from a triangle tree
G′(T ), where G′ is proper subgraph of G, by adding only one extended node v where all the
leaf knots of G′(T ) are adjacent to v. The extended node v is called the apex of G.

Fig. 6 (b) shows an example of a triangle notch with the apex v. The triangle tree from which
it is generated is separately shown in Fig. 6 (a).

ui

uk

Tk

Tj

uj

Ti

v

(a) (b)

Fig. 6. (a) Triangle tree
G(T ) (b) Triangle notch
with apex v

Lemma 4. A triangle notch is generically globally rigid.

Proof. See Appendix A.3. ut

Lemma 5. Let G be a graph obtained from a triangle tree G′(T ) by adding extended nodes,
where G′ is a proper subgraph of G. Any extended node along with all pendants and extended
nodes adjacent to it lie in a generically globally rigid subgraph.

Proof. If the extended node v is adjacent to only pendants of G′(T ), then these pendants
are leaf knots of some triangle tree G′′(T ′) where the triangles of T ′ are all taken from T .
G′′(T ′)∪{v} forms a triangle notch. Fig. 7 (a) shows an example of such a case. By Lemma 4,
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v v

u

w
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y

z

s

(b)(a)

Fig. 7. u and v are extended
nodes where (a) u, v are adja-
cent to pendants only, (b) u, v
are adjacent to both pendant
and extended nodes

G′′(T ′) ∪ {v} is generically globally rigid. Now consider the case when v is adjacent to at
least one extended node. Let u be an extended node which is adjacent to v (Fig. 7 (b)). Since
u is also an extended node of G′(T ), we assume that u lies in a generically globally rigid
subgraph G1 of G and is generated from a triangle tree G′′(T ′) by adding extended nodes
(including u), where T ′ contains triangle only from T . Consider a generic configuration P of
G1. If G1 admits any flip operation in P to yield a different configuration P ′, then proceeding
in a manner similar to that in the proof of Lemma 4, we can show that at least three nodes
(pendants or extended nodes adjacent to v) are algebraically dependent. ut

Definition 3. A graph G is called a triangle net, if it may be generated from a triangle tree
G′(T ) by adding one or more extended nodes and satisfying the following conditions:

1. G contains no triangle cycle, triangle circuit or triangle bridge; and
2. there exists an extended node u such that every leaf knot of G′(T ) is connected to u by a

path (extending path) containing only extending edges.

The last extended node added to generate the triangle net is called an apex of the triangle net.
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Fig. 8. (a) Not a triangle net
(b) A triangle net

In Fig. 8 (a), u and v are two extended nodes. The leaf knots t, w and x are connected to
u by extending paths. Other leaf knots y and z are connected to v by extending paths. No
extending path exists between the y and u, and x and v. So the graph shown in Fig. 8 (a) is
not a triangle net. Fig. 8 (b) contains two extended nodes u and v. All the leaf knots w, x, y
and z are connected to u by extending paths. Thus Fig. 8 (b) is an example of a triangle net.
The graph shown in Fig. 8 (b), is generated from a triangle tree by adding extended nodes u
and then v. So v is an apex of G. Triangle notch is a special case of triangle net.

Lemma 6. A triangle net is generically globally rigid.

Proof. See Appendix A.4. ut

3.3 Triangle bar

A graph G is called a triangle bar, if it satisfies one of the followings:

1. G can be obtained from a triangle cycle, triangle circuit, triangle bridge or triangle net by
adding zero or more edges, but no extra node;

2. G = Bi ∪Bj where Bi and Bj are triangle bars which share at least three nodes; or
3. G = Bi∪{v} where Bi is a triangle bar and v is a node not in Bi, and adjacent to at least

three nodes of Bi.

Note that triangle cycle, triangle circuit, triangle bridge and triangle net are also triangle bars.
These triangle bars will be referred as elementary bars.

Fig. 9 shows some examples of triangle bars. The first figure is a triangle cycle. Next two
are triangle nets. The fourth figure shows an example of a triangle bar which is obtained by

Fig. 9.
Examples
of triangle bar

stitching the first three elementary bars through common triangles.

Theorem 1. Triangle bar is generically globally rigid.

Proof. From Lemma 3 and 6, elementary bars are generically globally rigid. Suppose two
triangle bars Bi and Bj share three nodes. Since all the nodes are in generic position, these
three nodes are non-collinear. Using Lemma 1, Bi ∪Bj is generically globally rigid.

Let a triangle bar B be obtained from another triangle bar B′ by adding a node v which is
adjacent to three nodes in B′. In a generic realization of B′, any node placed with three given
distances from known positions has a unique location. So B is generically globally rigid. ut

Theorem 2. Trilateration graph and wheel extension are triangle bars.

Proof. See Appendix 2. ut



4 Problem statement

A triangle bar is a class of graphs which includes trilateration and wheel extension graphs as
special cases. Starting from a triangle of three reference nodes, we find a maximal triangle
bar. Let G(T ) be a triangle tree where T = (T1, T2, . . ., Tn). Three nodes in T1 are chosen
as the reference nodes. This triangle is called seed triangle. Our goal is to identify a maximal
triangle bar containing T1 and then mark the nodes in this triangle bar as localizable.

Problem 1. Consider a distance graph G = (V,E, d), generically embedded in plane with a
seed triangle T1. Find a maximal triangle bar containing T1 in a distributed environment and
mark the nodes of the triangle bar as localizable.

We solve the problem involving only connectivity information. No distance information is
used. Here onwards, we ignore the distance function d and consider the graph G = (V,E). The
stated problem is solved by exploiting flips of triangles in G. In order to solve the problem,
we introduce the notion of flip-triangle graph of G.

4.1 Flip-triangle graph

Given a graph G = (V,E), we construct a graph G = (V, E) with V = {t1, t2, . . ., tN} where ti
represents a triangle Ti in G and {ti, tj} ∈ E if and only if Ti and Tj share an edge in G. The
graph G is termed as flip-triangle graph of G, in short FTG(G). If no ambiguity occurs, we use
ti to denote a vertex of FTG(G) and Ti to refer the corresponding triangle in G. A maximal
tree in FTG(G) is called a flip-triangle tree (FTT ). A connected FTG(G) has unique FTT .
Let T = (T1, T2, . . ., Tm) be a sequence of triangles in G and τ = (t1, t2, . . ., tm) be the
corresponding sequence of nodes in G. If no ambiguity occurs, T also means the subgraph
obtained from the union of Tis in T . Similarly, τ means corresponding subgraph in G. We
describe some properties which are useful for developing the proposed algorithm.

Proposition 1. T is a triangle cycle of length n in G if and only if τ is an n-cycle in G.

Proof. Let T be a triangle cycle in G. By construction, pairs of nodes ti and ti+1 for 1 ≤ i ≤
n− 1, and tm and t1 are adjacent in G. For some i, j (|i− j| > 1) (except t1 and tm), if ti and
tj are adjacent in G then Ti and Tj share an edge. This contradicts that T is a triangle cycle
in G. Therefore, τ is an n-cycle in G.

Conversely, let τ be an n-cycle in G. For some i, j (|i − j| > 1) (except T1 and Tm), if Ti
and Tj share an edge in G then ti and tj are adjacent in G. It contradicts that τ is an n-cycle
in G. Therefore, T is a triangle cycle in G of length n. ut

Proposition 2. T is a triangle tree in G if and only if τ is a tree in G.

Proof. Let T be a triangle tree in G. By construction, τ is connected subgraph in G. In view
of Proposition 1, τ contains a cycle in G if and only if T contains a triangle tree in G. Hence
the result follows. ut

Proposition 3. T is a maximal triangle tree in G if and only if τ is an FTT in FTG(G).

Proof. Let T be a maximal triangle tree in G. τ is a tree in G (Proposition 2). If τ is not an
FTT in FTG(G), there exists a tree τ ′ containing τ as a proper subtree in G. The triangle
tree T ′ corresponding to τ ′ also contains T as a proper subgraph in G. This is contradicts
that T is a maximal triangle tree in G.

Conversely, let τ is an FTT . If T is not maximal triangle tree in G, there is a T ′ containing
T as a proper subgraph. T ′ corresponds a tree τ ′ in G (Proposition 2) while τ ′ contains τ as
a proper subtree. This is a contradiction. Hence the result follows. ut



4.2 Solution plan

Consider a graph G = (V,E). A triangle bar may be identified in G by three rules as in
its definition. First, we find elementary bars in G. If possible, then we stitch them via three
common nodes to form a larger triangle bar; or extend a triangle bar B successively by adding
a new node which is adjacent to at least three nodes of B. After computing the FTG(G), the
stated problem is solved in a distributed set up as follows:

1. We identify all the components of G. For each component G′ in G, we compute a corre-
sponding spanning tree FTT (G′) which is a maximal subtree in G.

2. Finding triangle cycles is equivalent to finding the cycles in G = FTG(G) (Proposition 1).
We identify a set of base cycles (a minimal set of cycles such that any cycle of the graph
may be obtained by union of some base cycles and deleting some parts).

3. A triangle chain is also a triangle tree. The generator chains of triangle circuits and bridges
and generator trees of triangle nets are uniquely identified by subtrees in FTG(G) (Propo-
sition 2). We identify other elementary bars in G from the FTT s by suitable extensions.

4. Finally, we stitch or extend these elementary bars to form a maximal triangle bar in G
containing T1; then we mark the nodes in this triangle bar as localizable.

5 Localizability testing

This section describes a distributed technique to find the maximal triangle bar with a seed
triangle T1 in three phases. This triangle bar is reported as the localizable subgraph of G.

5.1 Representation of graph and flip-triangle graph

Each node contains data structures suitable for describing and storing necessary information
for the execution of the algorithm. We assume that each node contains a unique number as
its identification (called node-id) and a list (nbrs) of node-ids of its neighbours. The node
contains no edge distance information. To represent a triangle in computer, we define a data
structure, with type name Trngl, containing: 1) node-ids of the nodes of the triangle; and
2) a list of adjacent nodes in FTG(G) (i.e., triangles sharing its edge in G). In a distributed
environment, the node with minimum node-id among three nodes of a triangle is designated
as the leader. The leader contains all the information of the triangle and processes them. Each
node v additionally contains a list (trngls) of all the triangles containing v as the leader.

5.2 Communication protocols for G and FTG(G)

A communication between two adjacent nodes in FTG(G) (i.e., two triangles sharing an edge
in G) means communication between their leaders which may involve at most 2-hop commu-
nication in G. Intermediate communications via other nodes uses standard communication
tools for G (i.e., communication within G). By a communication between a node si ∈ G and a
node tj ∈ FTG(G) (i.e., triangle Tj), we mean the communication between si and the leader
of Tj . The nodes of G and FTG(G) use different types of signals to indicate the types of the
contents of the messages. We list these signals as follows:

Signal types Significance of the symbol

visit On arrival of this signal a node of FTG(G) wake up and starts processing.

visitNode On arrival of this signal a node of G wake up and starts processing.

child A node in G sends a child signal to its parent to register itself as a child in parent.

cycle A node in G or FTG(G) sends a cycle signal on identification of an elementary bar.



5.3 Phase I: Computing the FTG

Phase-I of the algorithm sets up the basic structure of the FTG(G) using the procedures
recvNbrList( ) and recvTriangle( ) described with pseudo-codes as follows.

1: procedure recvNbrList( ) /* si = current node */
2: Wake on arrival of neighbours (nbrsj) form sj
3: for (each common sk in nbrsj and nbrsi) do /* A triangle T (4sisjsk) is identified. */
4: if (si is the leader of T ) then /* T corresponds new node in FTG(G) */
5: for (each T ′ ∈ si.trngls sharing an edge with T ) do /* Found a new edge TT ′ */
6: Push T ′ into T.trngls and T into T ′.trngls as a neighbour of each other in G.

/* Both of these push operations occur in si, since si is the leader T and T ′. */
7: end for
8: Store the new triangle T into si.trngls in its leader.
9: Send the triangle T to sj and sk to find and set edges with other triangles.

10: end if
11: end for
12: end procedure

1: procedure recvTriangle( ) /* si = current node */
2: Wake on arrival of a triangle T (4sjsksl) such that j < k < l
3: for (each T ′ ∈ si.trngls sharing an edge with T ) do /* Found a new edge TT ′ for G */
4: Push T into T ′.trngls as a neighbour of T ′ in FTG(G). /* si is the leader of T ′ */
5: end for
6: if (i ∈ {j, k, l}, say i = l) /* Note that beyond 1-hop, i /∈ {j, k, l} */
7: Send the triangle T to all neighbours of the current node except sj and sk
8: end procedure

Proposition 4. 1. All the processes in Phase I are synchronized.
2. The algorithm guarantees the progress and finite termination of Phase I.
3. Number of communications from each node is thrice the number of neighbours.
4. Phase I of the algorithm computes the FTG(G).

Proof. On arrival of a triangle message T , recvTriangle( ) wakes up. If the node is the
leader of T , it stores the triangle information. It also checks, if T shares an edge with the
existing triangles in the list trngls. Note that each triangle in the list trngls share an edge
with T . We call these triangles as neighbour triangles of T .

Synchonization: Each node starts by sending its neighbour list (nbrs) to every neighbour.
When a node si receives the neighbour list from a node sj , it identifies all triangles which
contain si and sj as two nodes. Each of two processes in Phase I is atomic. Any order of
insertions of triangles into the neighbour triangle list will finally give the same result.

Progress and finite termination: Every node executes recvNbrList( ) exactly one for a
neighbour list each neighbour. Each For loop runs over neighbour lists which are finite in size.
Since the processes are atomic and loops runs on finite neighbour list, progress is guaranteed.
In recvTriangle( ), If block conditions are false beyond 1-hop from si and stops resending
T . Assumed channels are reliable, every message reaches its destination in finite time. We use
Lamport’s logical clock. In each node, the value of logical clock does not exceed thrice the
number of neighbours; one neighbour list and two triangle messages from each neighbour. It
also follows the number of communications from a node.

Computation of FTG(G): Each node receives a neighbour list of a neighbour exactly once.
Consider an arbitrary triangle T (4sisjsk) in G (Fig. 10) while i < j < k. Let T is received by
si, the leader node of T . recvNbrList( ) inserts T into si.trngls. No other node incorporates



T , though sj and sk also identify T . It may be adjacent to the edges in FTG(G) due to sharing
its edges with other triangles. The inner for loop in recvNbrList( ) sets up the edges which
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Fig. 10. Examples showing all possible trian-
gle communications

are obtained while T shares an edge with the triangles whose leader is si. si also sends a
triangle message T to sj and sk to find and set other edges with T in FTG(G). T shares no
edge in G beyond 1-hop. The edges in FTG(G) between T and other triangles with leaders
other than si are set by recvTriangle( ). When sj (or sk) receives T , it checks whether T
shares any triangle in its list trngls sends to sends T to its neighbours other than si and sj .
Thus T reaches all the nodes which contains a triangle that may share an edge with T . ut

5.4 Phase II: Finding FTT s and elementary bars

For finding elementary bars, we may assume that G is connected; otherwise, we proceed with
the component containing the seed triangle T1. Phase-II identifies the FTT of G containing
t1(i.e., T1 in G); then elementary bars. This process is triggered by t1 in G sending a visit
signal to its adjacent nodes in G.

Representation of FTT s of G and elementary bars: For this purpose, each node in G
(a triangle in G) contains additional five fields:

1. status (assumes 0 or visited, initially 0) is used to indicate the status regarding the
processing of the node. After the required processing of a node, status is set to visited.

2. elementLst is a list of elementary bars in which this particular node (triangle) is a con-
stituent part; initially it is empty.

3. parent contains the immediate ancestor of the triangle in a FTT of G. The seed triangle
has no parent; and it is treated as root node.

4. children is a list containing direct descendants in G. These are used to set the trees in G.
5. hearLst holds the list of received triangles with some extra information that help in

identifying elementary bars.

Each node in G also contains similar five fields to store the information regarding pendants,
extended knots and elementary bars.

Finding the FTT and base cycles in G′: The FTT of G containing T1 are identified by
distributed BFS on G. If we take any FTT and add to it a new edge from E a set of base cycles
of G may be obtained. The details of these steps are described in procedure visitTriangle( ).

On arrival of visit signal into ti ∈ V, visitTriangle( ) in leader node of Ti sets its
status to visited. ti.parent is assigned the value tj . This helps in backtracking in the tree
in FTG(G). After visiting ti, the process sends visit signal to all neighbours in FTG(G). At
the same time, ti sends a visitNode signal with Ti to the pendant sk of Ti with respect to
Tj in G for finding elementary bars other than triangle cycles. It sends back a child signal to
the sender tj to inform itself as a child. The child signal is handled (handler is not described
separately) by inserting its sender into the list children. If ti is already visited by some other



1: procedure visitTriangle( ) /* ti=
current node of G′ */

2: Wake on a visit signal from tj ∈ V
3: if (status 6= visited) then
4: Set parent← tj , status← visited
5: Send a visit signal to all adjacent

nodes in G′ other than tj

6: Send a child signal to tj to indicate
that si is a child of sj

7: Send a visitNode signal to sk ∈
Ti − Tj with Ti qualified as
triangle

8: else /* a base cycle is identified by titj
*/

9: Push TiTj into elementLst to indi-
cate that ti lies in the cycle
TiTj

10: Send a cycle signal to tj and
parent with TiTj as elemen-
tary bar-id

11: end if
12: end procedure

1: procedure elementaryBars(xi) /* xi is
the current (ti ∈ V or si ∈ V ) */

2: Wake on arrival of a cycle signal with
elementary bar identity as bar-id

3: if (bar-id is qualified as delete) then
4: Delete bar-id from elementLst

5: else if (bar-id /∈ elementLst) then
6: Push bar-id into elementLst

7: Send a cycle signal to parent with
bar-id

8: else /* Elementary bars in G′ are traced
*/

9: Send a cycle signal with bar-id
qualified as delete to its
parent

10: end if
11: end procedure

1: procedure visitNode( ) /* si=current node
in G */

2: Wake on a visitNode signal with Xj (= Tj

or sj)
3: Push Xj into hearLst

4: if (status 6= visited) then
5: Set parent← Xj , status← visited
6: if (Xj = Tj) /* si ∈ Tj , let

Tj = 4sisksm */
7: Send a visitNode signal with si to

all sm ∈ nbrs− {sk, sl}
8: Send a child signal to parent to inform

that si is a child
9: else if (Xj = Tj) then /* if parent = Tk

*/
10: Send a cycle signal to tj and tk with

TjsiTk as elementary bar-id
11: else if (Xj = sj) then
12: if (parent = Tk) then /* a bridge or

net */
13: Send a cycle signal to sj and

tk with sjsiTk as elementary
bar-id

14: else if (parent = sk) then
15: if (mark = extended) then
16: Send

a visitNode signal with
si to all sm ∈ nbrs− {sk}

17: Send a cycle signal to sj and sk
with sjsisk as elementary
bar-id

18: else if (size(hearLst) = 3) then
19: Set mark← extended
20: for all (sj ∈ hearLst) do
21: Send a cycle signal to sk

and sj with sjsisk as
bar-id

22: end for
23: end if
24: end if
25: end if
26: end procedure

node tk, a base cycle in FTG(G) is identified with titj and sends a cycle signal with titj to
tj and tk. A cycle in FTG(G) corresponds a triangle cycle in G (Proposition 1). A triangle
cycle G, corresponding to a base cycle in FTG(G), contains at least one new triangle which is
not a part of any other triangle cycle in G. The outcome of the procedure may be summarized
below in an proposition.

Proposition 5. visitTriangle( ) identifies the FTT and triangle cycles of G containing T1.

Finding triangle circuits and triangle bridges in G′: Triangle cycles are identified by
handling cycle signals. In view of the Proposition 3, a FTT generate maximal triangle tree
in G. These maximal trees provide maximal triangle bars including appropriate edges and
extended knots. The steps are described in the procedure visitNode( ).



On arrival of a visitNode signal with Xj (either a triangle Tj or a node sj), a node
si ∈ V wakes up and visitNode( ) stores Xjs into a list hearLst. If si is being visited for
the first time as a node in G, si set its status as visited and parent to Xj for backtracking.
If Xj = Tj and si is a pendant of Tj , si sends a visitNode signal with si to all neighbours
other those in Tj . Otherwise, if si 1) receives a triangle Tj and its parent is a triangle Tk,
a triangle circuit is identified; 2) receives a node sj and its parent is a triangle Tk (either a
pendant or extended knot), a triangle bridge or net is identified; and 3) if three visitNode
signals, it identifies itself as an extended knot and as well as a triangle net. If si marks himself
as an extended knot it sends visitNode signal with si to all neighbours except its parent for
identifying other extended knots and nets. Note that visitNode signal with triangle is sent
only to a pendant from the process visitTriangle( ). The final outcome of this process is
described below.

Proposition 6. All triangle circuits and triangle bridges in G′ are identified by visitNode( ).

Identifying triangle nets in G′: On arrival of a cycle signal into xi (either a node in
FTG(G) or pendant or extended knots in G), elementaryBars( ) inserts elementary bar-id
into the elementLst and in turn sends the same cycle signal to its parent until it finds a node
in FTG(G) containing same elementary bar-id in respective elementLst. If a matching bar-id
is found, it sends cycle signal with this bar-id qualified as delete. If it finds bar-id qualified as
delete and bar-id is deleted from elementLst and sends delete signal same bar-id qualified
as delete to its parent until the root node t1 in FTG(G) is reached.

5.5 Phase III: Identifying the maximal triangle bar containing T1

visitNode( ) and elementaryBars( ) provide a maximal triangle bar for the FTT . Thus, we
have obtained a setM of maximal triangle bars for the FTT containing T1. Maximal triangle
bars for a FTT do not share any triangle in this FTT . From M, two maximal triangle bars
M1 and M2 which have three nodes in common are replaced by M1 ∪M2. Repeat these until
no replacement. This task may be achieved by sending a special signal from all nodes of M1

(assuming that M1 contains T1) to their neighbours. Another Mi sends this special signal if
it hears this signal from three nodes. Finally, a maximal triangle bar in G will be identified.

Proposition 7. The maximal triangle bar of G containing T1 is identified in polynomial time
with O(|E|) one-hop communications over the network.

Mark localizable nodes: At the end of Phase-II when t1.elementLst is empty, t1 set its status
as localizable. The triangle T1 (i.e., t1) triggers the Phase-III by sending the elementLst to all
its adjacent nodes (children) in G. On arrival of an elementary bar list into xi (ti ∈ FTG(G)
or si ∈ G), markLocalizable( ) starts execution. If the current node, xi, lies in an elementary

1: procedure markLocalizable(xi) /* xi is the current (ti ∈ V or si ∈ V ) */
2: Wake on arrival of an elementary bar list, say barLst
3: if (barLst ∩ elementLst 6= ∅ and status 6= localizable) then
4: Set status← localizable
5: Send a message with elementLst to all nodes in xi.children
6: end if
7: end procedure

bar in the received list and is not marked as localizable, the process marks xi as localizable
and sends xi.elementLst to all nodes in xi.children.



Theorem 3. If an elementary bar contains T1, then all the nodes (in G) of these bars are
marked as localizable through markLocalizable( ) (identifying the bar through T1) in the
complete run of the algorithm.

Proof. The result follows from the statements in Proposition 1, 2, 5 6. ut

6 Performance analysis of the algorithm

Synchronization, Correctness and Progress: Phase I computes the FTG(G). Its syn-
chronization, progress, finite termination and correctness of are proved in Proposition 4. Phase
II uses BFS tool to find the trees in a connected FTG(G). This ensures that the FTT s are
found correctly (Proposition 3). Theorems 1 and 3 establish the correctness of Phase II and
III of the algorithm.

Each of the procedures in the algorithm may contain loop which run over a list either nbrs
or trngls. The sizes of these lists do not exceed the number of neighbours of a node. The loops
executes without waiting for any signal. Therefore, the finite termination of each procedure in
any individual node is guaranteed. Since the transmission medium is reliable, every message
sometime reaches the destination. Thus, executions in the whole system terminate in finite
time.

Time complexity: We have used Lamport’s logical clock. The maximum value of this logical
clock in any node does not exceed thrice the number of its neighbours (Proposition 4). Phase
I communicates no message beyond 2-hop. The running time complexity of recvNbrList( )
in each node is O(n) in the worst case. Therefore, the worst case time complexity of Phase
I is O(n2) in total. Time complexity for communication in Phase II and III is guided by the
BFS of FTG(G) in distributed way. A visit signal from t1 will reach any other ti in FTG(G)
along its shortest path in between them. In worst case, it may be equal |V |. This dominates
time required to find extended knots. Thus, the worst case time complexity is equal to the
number of nodes in G, i.e., O(n). Thus the overall time complexity of the execution in the
whole system is O(n2).

Energy complexity: Since message communication dominates the leading consumer of en-
ergy, we only count the communications for energy analysis. Every node sends the neighbour
list nbrs only once. It counts n (number of nodes in the network) transmissions. A node
executes recvNbrList( ) once for each of its neighbours. recvNbrList( ) sends a triangle
message for a newly obtained triangle whose leader is a different. The total number of these
triangle messages is |E| maximum. recvNbrList( ) also sends a flip message for a newly
obtained flip with a triangle whose leader is a different node. The total number of such flip
messages does not exceed |E|. Thus the number message transmissions in Phase I is O(|E|).
It is easy to see that, in Phase II and Phase III, each node communicates with its neighbours
constant number of times. Hence, the total energy dissipation is O(|E|) in worst.

7 Conclusion

In this paper, we consider the problem of localizability of nodes as well as networks. We do not
compute the positions of nodes. So, exact distances are not necessary and error in distance
measurements does not affect the localizability testing. We propose an efficient distributed
technique to solve this problem for a specific class of networks, triangle bar. The proposed
technique is better than both trilateration and wheel extension techniques. We also illustrate



some network scenarios which are wrongly reported as not localizable by wheel extension tech-
nique, but the proposed algorithm recognizes them as localizable in a distributed environment.
The proposed algorithm runs with O(|V |3) time complexity and energy complexity of O(|E|)
in the worst case.

In centralized environment localizability testing can be carried out in polynomial time.
Though the proposed algorithm recognizes a class of localizable networks distributedly, several
localizable networks remains unrecognized by this technique. For localizability testing, we only
consider a maximal triangle bar of G which includes the anchor triangle T1 in G = (V,E, d).
Our future plan is to extend localizability testing considering other triangle bars in FTG(G).
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A Appendix

A.1 Proof of the first part of Lemma 2

Proof. A wheel graph Wn with n nodes is a triangle cycle with n−1 triangles. A triangle cycle
with three or four triangles is a wheel W4 or a wheel W5 (Fig. 11) respectively. These wheels
show the existence of spanning wheels for some triangle cycles. Consider a sufficiently large
triangle cycle G(T ) with the triangle stream T = (T1, T2, . . . , Tn) which has no spanning wheel.
If we consider three consecutive triangles in T , then we have at least one node with degree at
least four. Consider such a node v with deg(v) ≥ 4. If deg(v) = 4, then the edges incident on
v lie in three consecutive triangles Ti, Ti+1, Ti+2 (Fig. 12 (a)). Deleting the outer side e of

Fig. 11. Triangle cycle with
three and four triangles
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Fig. 12. Triangle cycles without spanning wheel

Ti+1 (i.e., G(T )− e) gives a spanning triangle circuit of G(T ). Suppose, deg(v) = m > 4. The
edges adjacent to v lie in m − 1 consecutive triangles Ti+1, Ti+2, . . ., Ti+m−1 (Fig. 12 (b)).
Deleting the outer side of Ti+1 gives a spanning triangle circuit of G(T ). ut

A.2 Proof of the second part of Lemma 2

Proof. Let G(T ) be a triangle circuit with triangle stream T = (T1, T2, . . ., Tn) and circuit
knot v (Fig. 13). v is the only pendant for both T1 and Tn. T2 and T3 share the edge f and w
is the corresponding pendant in T2. T1 has two outer sides which are incident on v; one edge
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Fig. 13. Triangle circuit T gives a spanning triangle
bridge T − e

is incident on w and the other is incident on f . If e is the outer side of T1 incident on f , then
G(T )− e gives a spanning triangle bridge of G(T ). ut

A.3 Proof of Lemma 4

Proof. Let G be a triangle notch generated from a triangle tree G(T ) with the apex v. G
contains n + 2 nodes ui, i = 1, 2, . . ., n + 2. All the leaf knots of G(T ) are adjacent to v.
Fig. 6 (b) shows an example of such a graph. The leaf knots ui, uj and uk of G(T ) are adjacent
to v. Consider a generic configuration P of G where v is realized as (x, y) and ui as (xi, yi) for
i = 1, 2, . . ., n+ 2. G(T ) can have only flips. If possible, let a flip operation on P generate a
different configuration P ′ with coordinates (x′, y′) for v and (x′i, y

′
i) for ui, i = 1, 2, . . ., n+ 2.

Without loss of generality, we assume that the leaf triangle Ti, with a leaf knot ui, remains



fixed in both the configurations P and P ′. Consider another leaf triangle Tj with leaf knot
uj . Let Tij be the unique triangle stream from Ti to Tj in the graph G(T ). Proceeding in a
manner similar to that in the proof of Lemma 3, each of x′j and y′j can be expressed in the

form of φ
ψ where φ and ψ are two non-zero polynomials of the coordinates of the points in

Tij − {ui} with integer coefficients such that ψ 6= 0. From elementary coordinate geometry
in R2, x′ and y′ can also be expressed similarly in terms of the coordinates of the points in
Tij . Similarly, from the triangle stream Tjk, x′k and y′k have similar expressions involving the
coordinates of the points in Tjk − {ui, v}. Since, the edge distance between uk and v is given,
then at least the coordinates of ui, v and uk are algebraically dependent. This contradicts the
assumption that every three nodes in P are in general position. So the union of Tij , Tjk and v
in P admits no flip; and the union is generically globally rigid. Since, the leaf triangles chosen
are arbitrary and any triangle lies on at least one triangle stream between some pair of leaf
triangles, the generic global rigidity of G follows. ut

A.4 Proof of Lemma 6

Proof. Consider a triangle net G generated by a triangle tree G(T ) where T = (T1, T2, . . . , Tn).
If ur is an apex of G, then the extended nodes have an ordering u1, u2, . . ., ur. Consider a
generic configuration of G (e.g. Fig. 14). The extended node added to G(T ) is u1 which is

Fig. 14. Triangle nets with ex-
tended nodes u and v where
(a) u, v are adjacent to pen-
dants only, (b) u, v are adja-
cent to both pendant and ex-
tended nodes
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adjacent to only pendants. These pendants are leaf knots of a triangle tree, which is a subgraph
of G(T ). This triangle tree is a triangle notch; hence it is generically globally rigid (Lemma 4).

Consider a leaf knot y (e.g., Fig. 14). Let P be an extending path which connects y to
the apex ur. In view of Lemma 5, considering the extended nodes along P and combining the
corresponding generically globally rigid graphs, G is generically globally rigid. ut

A.5 Proof of Theorem 2

Proof. Let G be a trilateration graph having a trilateration ordering π = (u1, u2, . . . , un) where
u1, u2 and u3 are in K3. u4 is adjacent to three nodes before u4 in π. So u1, u2, u3 and u4 form
a K4 which is a triangle cycle and consequently a triangle bar. Suppose π′ = (u1, u2, . . . , ui),
4 ≤ i < n forms a triangle bar B′. The node ui+1 is adjacent to at least three nodes in B′.
Therefore, B′ ∪ {vi+1} is a triangle bar. By mathematical induction, G is a triangle bar.

Consider a wheel extension graph G with a node ordering π = (u1, u2, . . ., un). u1, u2 and
u3 are in K3 and ui (i ≥ 4) lies in a wheel containing at least three nodes in π before ui. So,
u4 lies on a wheel, say W1, which contains u1, u2 and u3. If any, let uj , j > 4, be the first
node in π such that uj does not lie on W1. uj lies on another wheel, say W2, which shares
at least three nodes with W1. Therefore, W1 ∪W2 is generically globally rigid (by Lemma 1).
Similarly, let uk, if any, be the first node in π such that uk does not lie on W1 ∪W2. Assume
uk lies on a wheel W3 which shares three nodes with W1 ∪W2. By Lemma 1, W1 ∪W2 ∪W3

is generically globally rigid. Proceeding in this way, we can obtain, W = (W1,W2, . . . ,Wm), a
finite sequence of wheels such that each Wi shares at least three nodes on some Wjs before Wi

in W and G =
m⋃
i=1

Wi, m ≥ 1. Wheel graph is triangle cycle. Hence, G is a triangle bar. ut
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