1208.5620v3 [cs.DC] 30 Jan 2013

arXiv

Self-Stabilizing Byzantine Resilient
Topology Discovery and Message Delivery

Shlomi Dolev*, Omri Liba*, and Elad M. Schiller*

! Department of Computer Science, Ben-Gurion Universityheflegev, Beer-Sheva, Israel.
{dolev, liba}@cs.bgu.ac.il
2 Department of Computer Science and Engineering, Chalmeigltsity of Technology,
Goeteborg, Swederlad@chalmers.se

Abstract. Traditional Byzantine resilient algorithms ug¢ + 1 vertex-disjoint
paths to ensure message delivery in the presence of fiByaantine nodes. The
question of how these paths are identified is related to theédnental problem
of topology discovery. Distributed algorithms for topojodjscovery cope with a
never ending task: dealing with frequent changes in thear&ttopology and un-
predictable transient faults. Therefore, algorithms ém@alogy discovery should
be self-stabilizing to ensure convergence of the topologgrination following
any such unpredictable sequence of events. We presentghseifah algorithm
that can cope with Byzantine nodes. Starting in an arbitghobal state, and in
the presence of Byzantine nodes, each node is eventually aware of all ther oth
non-Byzantine nodes and their connecting communicatitsliUsing the topol-
ogy information, nodes can, for example, route messagesstie network and
deliver messages from one end user to another. We presdirstiaeterministic,
cryptographic-assumptions-free, self-stabilizing, &ytine-resilient algorithms
for network topology discovery and end-to-end messageetsli We also con-
sider the task of-neighborhood discovery for the case in whicand the degree
of nodes are bounded by constants. The use-rmdighborhood discovery facil-
itates polynomial time, communication and space solutfonshe above tasks.
The obtained algorithms can be used to authenticate partiparticular during
the establishment of private secrets, thus forming puldig $chemes that are
resistant to man-in-the-middle attacks of the compromBgzintine nodes. A
polynomial and efficient end-to-end algorithm that is basadthe established
private secrets can be employed in between periodical tseeestablishments.

1 Introduction

Self-stabilizing Byzantine resilient topology discovésy fundamental distributed task
that enables communication among parties in the netwonk #éw®me of the compo-
nents are compromised by an adversary. Currently, suchagydiscovery is becom-
ing extremely important where countries’ main infrastures, such as the electrical

* Partially supported by Deutsche Telekom, Rita Altura Tr@siir in Computer Sciences,
Lynne and William Frankel Center for Computer SciencesdkBcience Foundation (grant
number 428/11) and Cabarnit Cyber Security MAGNET Congonti

** Partially supported by the EC, through project FP7-STRB8125, KARYON (Kernel-based
ARchitecture for safetY-critical cCONtrol) and the Europednion Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement No. 257007.

http://arxiv.org/abs/1208.5620v3

smart-grid, water supply networks and intelligent tramggt@n systems are subject to
cyber-attacks. Self-stabilizing Byzantine resilientalthms naturally cope with mo-
bile attacks [e.g.?]. Whenever the set of compromised components is fixed (or dy-
namic, but small) during a period that suffices for conveogeof the algorithm, the
system starts demonstrating useful behavior followingdbwevergence. For example,
consider the case in which nodes of the smart-grid are cothst@ompromised by an
adversary while local recovery techniques, such as loodé¢ meset and/or refresh, en-
sure the recovery of a compromised node after a bounded®mee the current com-
promised set does not imply a partition of the communicatjcaph, the distributed
control of the smart grid automatically recovers. Selbgizing Byzantine resilient al-
gorithms for topology discovery and message delivery amgontant for systems that
have to cope with unanticipated transient violations ofdksumptions that the algo-
rithms are based upon, such as unanticipated violationeotiiper number of com-
promised nodes and unanticipated transmission interéesethat is beyond the error
correction code capabilities.

The dynamic and difficult-to-predict nature of electricalat-grid and intelligent
transportation systems give rise to many fault-tolerasseds and require efficient so-
lutions. Such networks are subject to transient faults diratdware/software temporal
malfunctions or short-lived violations of the assumediisg# for the location and state
of their nodes. Fault-tolerant systems that seH-stabilizing[?] can recover after the
occurrence of transient faults, which can drive the sys@amtarbitrary system state.
The system designers consi@dirconfigurations as possible configurations from which
the system is started. The self-stabilization designrizitéberate the system designer
from dealing with specific fault scenarios, risking negiegtsome scenarios, and hav-
ing to address each fault scenario separately.

We also consider Byzantine faults that address the paoisgibfla node to be com-
promised by an adversary and/or to run a corrupted progratiner than merely as-
suming that they start in an arbitrary local state. Byzanttomponents may behave
arbitrarily (selfishly, or even maliciously) as messagedses and as relaying nodes.
E.g., Byzantine nodes may block messages, selectively messages, redirect mes-
sage routes, playback messages, or modify messages. Asynsyshavior is possible,
when all (or one third or more of) the nodes are Byzantine ao@lkus, the number of
Byzantine nodesf, is usually restricted to be less than one third of the nodé&q [

The task ofr-neighborhood network discoveajlows each node to know the set of
nodes that are at mosthops away from it in the communication network. Moreover,
the task provides information about the communicationdiaktached to these nodes.
The taskopology discovergonsiders knowledge regarding the node’s entire connected
component. The-neighborhood network discovery and network topology @ity
tasks are identical whenis the communication graph radius.

This work presents the first deterministic self-stabilizi@lgorithms for r-
neighborhood discovery in the presence of Byzantine nodiesassume that every
r-neighborhood cannot be partitioned by the Byzantine nddgzarticular, we assume
the existence of at leagtf + 1 vertex-disjoint paths in the-neighborhood, between
any two non-Byzantine nodes, where at m@sByzantine nodes are present in the

r-neighborhood, rather than in the entire netwcriNote that by the self-stabilizing
nature of our algorithms, recovery is guaranteed after @pteai violation of the above
assumption. When is defined to be the communication graph radius, our assangti
are equivalent to the standard assumption for Byzantineemgent in general (rather
than only complete) communication graphs. In particular $kandard assumption is
that2f + 1 vertex disjoint paths exist arate known(see e.g.,7]) while we present
distributed algorithms to find these paths starting in aitranly state.

Related work. Self-stabilizing algorithms for finding vertex-disjoinafihs for at
most two paths between any pair of nodes, and for all verigwidt paths in anony-
mous mesh networks appear #][and in [?], respectively. We propose self-stabilizing
Byzantine resilient procedures for findirig-1 vertex-disjoint paths i@ f +1-connected
graphs. In ?], the authors study the problem of spanning tree constmati the pres-
ence of Byzantine nodes. Nesterenko and Tixejl presented aon-stabilizingand
inconsistent algorithm for topology discovery in the prese of Byzantine nodes —
see the paper’s errata for further details about the alyuoiit flaws.* Awerbuch and
Sipser P] consider algorithms that were designed for synchronatgstetwork and
give topology update as an example. They show how to use dgotitams in asyn-
chronous dynamic networks. Unfortunately, their scheragsfrom a consistent state
and cannot cope with transient faults or Byzantine nodes.

consider the dissemination of information in the preserfcByaantine nodes rather
than self-stabilizing topology discovery. Non-self-stizing Byzantine resilient gossip
in the presence of one selfish node is considere® i | In [?] the authors study
oblivious deterministic gossip algorithms for multi-cimahradio networks with a ma-
licious adversary. They assume that the adversary canpdisne channel per round,
preventing communication on that channel. ™| [the authors consider probabilistic
gossip mechanisms for reducing the redundant transmgssibfiooding algorithms.
They present several protocols that exploit local conmiégtio adaptively correct prop-
agation failures and protect against Byzantine attaclabdhilistic gossip mechanisms
in the context of recommendations and social networks arsidered inP]. In[?] the
authors consider rules for avoiding a combinatorial explog (non-self-stabilizing)
gossip protocol. Note that deterministic and self-stalnij solutions are not presented
in [? ??? 2 7?]. Drabkin et al. P] consider non-self-stabilizing broadcast protocols
that overcome Byzantine failures by using digital signesiiimessage signature gos-
siping, and failure detectors. Our deterministic selbsizaing algorithm merely use
the topological properties of the communication graph tsue@ correct message de-
livery to the application layer in the presence of messagission, modifications and
Byzantine nodes. A non-self-stabilizing broadcastingpgtgm is considered in7].
The authors assume the restricted case in which links andsnofda communication

3 Section4 considers cases in whichand an upper bound on the node degrdeare con-
stants. For these cases, we h&@¥g) disjoint r-neighborhoods. Each of these (disjoint)
neighborhoods may have up foByzantine nodes, and yet the above assumptions about at
least2f + 1 vertex-disjoint paths in the-neighborhood, hold.

4 nttp://vega.cs.kent.edu/-mikhail/Research/topology.errata.html

http://vega.cs.kent.edu/~mikhail/Research/topology.errata.html

network are subject to Byzantine failures, and that fauksdistributed randomly and
independently.

Our contribution. We present two cryptographic-assumptions-free yet sesigee
rithms that are deterministic, self-stabilizing and Bytraa resilient.

We start by showing the existence of deterministic, selbiizing, Byzantine re-
silient algorithms for network topology discovery and eéneend message delivery. The
algorithms convergence time is@(n). They take in to account every possible path and
requiring bounded (yet exponential) memory and boundetdsfygonential) communi-
cation costs. Therefore, we also consider the taskmdighborhood discovery, where
r is a constant. We assume that if theeighborhood of a node hgsByzantine nodes,
there ar@ f +1 vertex independent paths between the node and any non-flyzande
in its r-neighborhood. The obtaineeheighborhood discovery algorithm requires poly-
nomial memory and communication costs and supports detéstiai self-stabilizing,
Byzantine-resilient algorithm for end-to-end messag@°f across the network. Un-
like topology update, the proposed end-to-end messagesdeklgorithm establishes
message exchange synchronization between end-users bzstdd on message recep-
tion acknowledgments.

Detailed proofs appear in the Appendix.

2 Preliminaries

We consider settings of a standard asynchronous systef][dfhe system consists of
a set,N = {p;}, of communicating entities, chosen from a g&twhich we callnodes
The upper bound on the number of nodes in the system-s |P|. Each node has a
unique identifier. Sometime we refer to a sBt) IV, of nonexisting nodes that a false
indication on their existence can be recorded in the systemodep; can directly com-
municate with itseighbors V; C N. The system can be represented by an undirected
network of directly communicating nodes, = (N, E), named thecommunication
graph whereE = {(p;,p;) € N x N : p; € N;}. We denoteV,’s set of indices by
indices(Ny) = {m : p,, € Ni} andN,,’s set of edges bydges(N;) = {p;} x N;.

Ther-neighborhood of a node, € NV is the connected component that incluges
and all nodes that can be reached frpnby a path of length- or less. The problem
of r-neighborhood topology discovery considers communioagi@phs in whickp;’s
degreey;, is bounded by a constant. Hence, when both the neighborhood radiys,
and the node degreé), are constants the number of nodes in theeighborhood is
also bounded by a constant, namely®gA™+1).

We model the communication channgleue; ;, from nodep; to nodep; € N; asa
FIFO queuing list of the messages thahas sent tg; andp; is about to receive. When
p; sends message, the operatiorsend inserts a copy ofn to the queugueue; ; of
the one destinatiop;, such thap; € IV;. We assume that the number of messages in
transit, i.e., stored ipueue; ;, is at mostapacity. Oncem arrives p; executeseceive
andm is dequeued.

We assume thai; is completely aware oiV;, as in [?]. In particular, we assume
that the identity of the sending node is known to the recegiaine. In the context of the

studied problem, we say that nogec N is correctif it reports on its genuine neigh-
borhood,V;. A Byzantinenode,p, € N, is a node that can send arbitrarily corrupted
messages. Byzantine nodes can introduce new messages difig ahomit messages
that pass through them. This way they can, e.g., disinformecbnodes about their
neighborhoods, about the neighborhood of other correcesiodr the path through
which messages travel, to name a very few specific misleaatitigns that Byzantine
nodes may exhibit. Note that our assumptions do not resiygtem settings in which
a duplicitous Byzantineode,p,, reports aboutV, differently to its correct neighbors.
In particular,p, can have{N,,, ... Nbsb} reports, such thai,’s identity in N, is dif-
ferent than the one inv,,, whered, is the degree of nodg,. One may use a set of
non-duplicitous Byzantine node$py, , . .. py, }, t0 model each op,’s reports. Thus,
for a 2k + 1 connected graph, the system tolerates no more thar | duplicitous
Byzantine nodes, whetd is an upper bound on the node degree.

We denote” and B to be, respectively, the set of correct and Byzantine nddles.
assume thatB| = f, the identity of B's nodes is unknown to the onesd andB is
fixed throughout the considered execution segment. ThesmiBan segments are long
enough for convergence and then for obtaining sufficienfulserk. We assume that
between any pair of correct nodes there are at [2Ast 1 vertex-disjoints paths. We
denote byG. = (C, ENC x C) thecorrect graphinduced by the set of correct nodes.

Self-stabilizing algorithms never terminat2]f The non-termination property can
be easily identified in the code of a self-stabilizing altfuri: the code is usually a do
forever loop that contains communication operations whith neighbors. An iteration
is said to be complete if it starts in the loop’s first line andg at the last (regardless of
whether it enters branches).

Every nodep;, executes a program that is a sequendatafmic) stepsFor ease of
description, we assume the interleaving model with atoteigs execution; a single step
at any given time. An input event can either be the receiptmieasage or a periodic
timer going off triggering; to send. Note that the system is totally asynchronous and
the (non-fixed) node processing rates are irrelevant todhectness proof.

The states; of a nodep; consists of the value of all the variables of the node (in-
cluding the set of all incoming communication channglgeue;;|p; € N;}. The
execution of a step in the algorithm can change the state afde.nThe ternm(sys-

tem) configuratioris used for a tuple of the forrsy, so, - -, s,), where eaclhs; is
the state of node; (including messages in transit fpr). We define arexecution
E = ¢[0],a]0], c[1],a[l],... as an alternating sequence of system configuratifr)s

and steps[x], such that each configuratiefi: + 1] (except the initial configuration
¢[0]) is obtained from the preceding configuratign| by the execution of the stegz].
We often associate the notation of a step with its executodep,; using a subscript,
e.g.,a;. An executionR (run) isfair if every correct nodep, € C, executes a step
infinitely often in R. Time (e.g. needed for convergence) is measured by the mohbe
asynchronous roungsvhere the first asynchronous round is the minimal prefix ef th
execution in which every node takes at least one step. Tloendeasynchronous round
is the first asynchronous round in the suffix of the run thdbfes the first asynchronous
round, and so on. The message complexity (e.g. needed feegance) is the number
of messages measured in the specific case of synchronougiexec

We define the system’s task by a set of executions cédigal executiong§L F) in
which the task’s requirements hold. A configuratiois a safe configuratiorfor an
algorithm and the task of £/ provided that any execution that startsdns a legal
execution (belongs td F). An algorithm isself-stabilizingwith relation to the task. £
when every infinite execution of the algorithm reaches asafdiguration with relation
to the algorithm and the task.

3 Topology Discovery

The algorithm learns about the neighborhoods that the negbest. Each report mes-
sage contains an ordered list of nodes it passed so faingtarta source node. These
lists are used for verifying that the reports are sent gverl vertex-disjoint paths.

When a report messageyn, arrives to p;, it inserts m to the queue
informedT opology;, and tests the queue consistency until there is enough éndep
dent evidence to support the report. The consistency testitérates over each node
pi such thatp, appears in at least one of the messages storadfinvmedT opology;.
For each such node,, nodep; checks whether there are at ledist 1 messages from
the same source node that have mutually vertex-disjoitispatd report on the same
neighborhood. The neighborhood of each spichthat has at least+ 1 vertex-disjoint
paths with identical neighborhood, is stored in the aRayult;[k] and the total num-
ber of paths that relayed this neighborhood is kegtimnt|k].

We note that there may still be nodgg... € P \ (), for which there is an
entry Result|fake]. For examplejn formedT opology may containf messages, all
originated from different Byzantine nodes, and a messagthat appears in the initial
configuration and supports the (false) neighborhood theaByze messages refer to.
Thesef + 1 messages can contain mutually vertex-disjoint paths, lausl during the
consistency test, a result will be found fBesult[fake]. We show that during the next
computations, the message will be identified and ignored. Th&esult array should
include two reports for each (undirected) edge; the two adhbat are attached to the
edge, each send a report. HenResult includes a set of directed (report) edges. The
termcontradicting edgés needed when examining tli& sult set consistency.

Definition 1 (Contradicting edges) Given two nodesy;, p; € P, we say that the edge
(ps, pj) is contradicting with the setvidence C edges(N;), if (pi, p;) & evidence.
Following the consistency tesp; examines theResult array for contradictions.
Nodep; checks the path of each messagec in formedT opology; with sourcep,.,
neighborhoodeighborhood, and Path,. If every edge(ps, p;) on the path appears
in Result[s] and Result[j], then we move to the next message. Otherwise, we found a
fake supporter, and therefore we reddéeunt|r] by one. If the resulting’ount|r] is
smaller thanf + 1, we nullify ther’'th entry of theResult array. Once all messages are
processed, th&esult array consisting of the (confirmed) local topologies is thipat.
At the endp; forwards the arriving message, to each neighbor that does not appear
in the path ofm. The message sent by includes the node from which arrived as
part of the pathn.
The pseudocode of Algorithml1 In every iteration of the infinite loop; starts to
compute its preliminary topology view by callindompute Results in line 2. Then,

every nodepy, in the queueln formedT opology, nodep; goes over the messages in
the queue from head to bottom. While iterating the queueg¥ery message: with
sourcepy, neighborhoodVy, and visited pattPathy, p; insertsPathy, to opinion|[Ni],
see linel8. After inserting,p; checks if there is a neighborhoddeig; for which
opinion|Neigy| contains at least + 1 vertex-disjoint paths, see lirk9. When such
a neighborhood is found, it is stored in thgesult array (line19). In line 20, p,
stores the number of vertex disjoint paths relayed messt#mgdscontained the se-
lected neighborhood fagr. After computing an initial view of the topology, in ling

p; removes non-existing nodes from the computed topologyelFery message: in
InformedT opology, nodep; aims at validating its visited path. In lir&4, p; checks

if there exists a nodg, whose neighborhood contradicts the visited pathotf such

a node existsp; decreases the associated entry in@heint array (line25). This de-
crease may causgount|r] to be smaller tharf + 1, in this casep; considergy, to be
fake and deletes the local topologyaf from Result[r] (line 26).

Upon receiving a message:,
nodep; inserts the message t0 th€ ¢ rnsert(m): Insert itemm to the queue head.
queue, in case it does not a|ready ex-* Remove(l\rlfessagem): Remove itemm from the queue. ’
. . . e Iterator(): Returns an pointer for iterating over the queue's
ist, and Just moves It to the top ofl items by their residence order in the queue.
the queue in case it does. The node® HasNewt(): Tests whether the Iterator is at the queue eng.

e Next() Returns the next element to iterate over.
p; now needs to relay the message e sizeOf() Returns the number of elements in the calling set.
pi got to all neighbors that are not 2 3setrbeci) Koo er e eman <
on the message visited path (liB | s, wheres is the queue item set.
When sendingp; also attaches the
identifier of the node, from which theFig. 1. Queue: general purpose data structure for
message was received, to the visite¥'€Uid items, and its operation list.
path of the message.
Algorithm’s correctness proof. We now prove that within a linear amount of asyn-
chronous rounds, the system stabilizes and every outpegas.IThe proof considers an
arbitrary starting configuration with arbitrary messagesansit that could be actually
in the communication channel or already storeg ils message queue and will be for-
warded in the next steps pf. Each message in transit that traverse correct nodes can
be forwarded within less thafi(|C|) asynchronous rounds. Note that any message that
traverses Byzantine nodes and arrives to a correct nodédait least one Byzantine
node in its path. The reason is that the correct neighboettasgt Byzantine in the path
lists the Byzantine node when forwarding the message. Thissat most the number
of messages that encode vertex-disjoint paths from a nestairce that are initiated or
corrupted by a Byzantine node. Since there are at |gast vertex-disjoint paths with
no Byzantine nodes from any sourggto any nodep; and sincep, repeatedly sends
messages to all nodes on all possible pathsgceives at least + 1 messages fromy,
with vertex-disjoint paths.

The FIFO queue usage and the repeated send operatippeobure that the most
recentf + 1 messages with vertex-disjoint pathsiin formedT opology queue are
uncorrupted messages. Namely, misleading messages thatpwesent in the initial
configuration will be pushed to appear below the néw 1 uncorrupted messages.
Thus, each nodg; eventually has the local topology of each correct node ésitam

Algorithm 1: Topology discovery (code for noge)

Input: Neighborhood,;: The ids of the nodes with which noglg can communicate directly;
Output: Con firmedT opology C P x P: Discovered topology, which is represent by a directed esdge
Variable I'n formedT opology : Queue, see Figurd: topological messages,
(node, neighborhood, path);
Function: NodeDisjointPaths(S): TestS = {(node, neighborhood, path)} to encode at least + 1
vertex-disjoint paths;
Function: PathContradictsN eighborhood(k, Neighborhoody, path): Test that there is no node
p; € N for which there is an edgépy., p;) in the message’s visited pathgth C P x N, such that
(pk, pj) is contradicting withVeighborhoody,;

1 while true do
2 Result < ComputeResults()
3 let Result <— RemoveContradictions(Result)
4 RemoveGarbage(Result)
5 ConfirmedT opology <— Con firmedT opology U (UPkEP Result[k])
6 | foreachp, € N;do sendi, Neighborhood;, D) to py
7 Upon Receive((¢, Neighborhoody, VisitedPath,)) from p;;
begin
8 Insert(pe, Neighborhoody, VisitedPathy U {j})
9 foreachp, € N; do if k ¢ VisitedPath, then sendp,, Neighborhood,, VisitedPath, U {j})
to pr
10 Procedure: Insert(k, Neighborhoody, Visited Pathy);
begin
11 if (k, Neighborhoody,, VisitedPathy) € InformedTopology then
InformedTopology.MoveToHead(m)
12 elseifpy, € N A Neighborhoody, C indices(N) A VisitedPathy, C indices(N) then

InformedTopology.Insert({k, Neighborhoody,, VisitedPathy))
13 Function: ComputeResults();
b

egin
14 foreachpy, € P : (k, Neighborhoody, Visited Pathy) € InformedTopology do
15 let (FirstDisjoint PathsFound, Message, opinion[]) <+
(false, InformedTopology.Iterator(), [0])
16 while Message.hasNext() do
17 (¢, Neighborhood,, VisitedPathy) < Message.Next()
18 if £ = k then opinion[Neighborhood,].Insert({ £, Neighborhood,,
VisitedPathyg))
19 if FirstDisjointPathsFound = false A
NodeDisjointPaths(opinion|Neighborhood,]) then
| (Resultlk], FirstDisjoint PathsFound) <+ (Neighborhoody, true)
20 | Countlk] < opinion[k|[Result[k.SizeO f()
21 | return Result
22 Function: RemoveContradictions(Result);
begin
23 foreach (r, Neighborhood,., VisitedPath,) € InformedT opology do
24 if 3pi, € P : PathContradictsNeighborhood(py, Result[k], VisitedPath,) = true
then
25 if Neighborhood, = Result[r] then Count[r] < Count[r] — 1
26 if Count[r] < fthen Result[r] < 0
27 | return Result
28 Procedure: RemoveGarbage(Result);
begin
29 foreachp, € N do
30 foreachm = (k, Neighborhoody,, VisitedPathy) € InformedTopology :
{k} U Neighborhood), U VisitedPath;, Z PV InformedTopology.IsA fter(m,
opinion[k][Result[k]]) do In formedT opology.Remove(m)

the Result; array). The opposite is however not correct as local togekgf non-
existing nodes may still appear in the result array. For etapin formedT opology;

may include in the first configuratiofi+ 1 messages with vertex-disjoint paths for a
non-existing node. Since aftéfompute Results we know the correct neighborhood
of each correct nodg,, we may try to ensure the validity of all messages. For every
message that encodes a non-existing source node, therdenaistoder, on the mes-
sage path, such that is correct ang,’s neighbor is non-existing, this is true singe
itself is correct. Thus, we may identify these messages gmaré them. Furthermore,
no valid messages are ignored because of this validity check

We also note that, since we assume that the nodes of the sgsteansubset aP,
the size of the queuén formedT opology is bounded. Lemma bounds the needed
amount of node memory (the proof details appear in Se&iofthe Appendix).

Lemma 1 (Bounded memory).At any time, there are at most - 22” messages in
InformedT opology;, wherep, € C,n = |P| andO(nlog(n)) is the message size.

r-neighborhood discovery. Algorithm 1 demonstrates the existence of a deterministic
self-stabilizing Byzantine resilient algorithm for topgly discovery. Lemma shows
that the memory costs are high when the entire system topdso be discovered.
We note that one may consider the taskrafeighborhood discovery. Recall that in
ther-neighborhood discovery task, it is assumed that evargighborhood cannot be
partitioned by Byzantine nodes. Therefore, it is suffictertonstrain the maximal path
length in line9. The correctness proof of the algorithm for thaeighborhood discov-
ery follows similar arguments to the correctness proof @fokithm 1.

4 End-to-End Delivery

We present a design for a self-stabilizing Byzantine resilalgorithm for the transport
layer protocol that uses the output of AlgorittinThe design is based on a function
(namedget Disjoint Paths()) for selecting vertex-disjoint paths that contain a set of
f + 1 correct vertex-disjoint paths. We ugel Disjoint Paths() and ARQ (Automatic
Repeat reQuest) techniques for designing Algoritbnwhich ensures safe delivery
between sender and receiver.

Exchanging messages ovefi+1 correct vertex-disjoint paths We guarantee correct
message exchange by sending messages over a polynomia¢nafnertex-disjoint
paths between the sender and the receiver. We consider@ametct Paths, that in-
cludesf + 1 correct vertex-disjoint paths. Suppose that firmedT opology (see the
output of Algorithml) encodes a sefaths, of 2f + 1 vertex-disjoint paths between
the sender and the receiver. It can be shown thaths includes at mosy incorrect
paths that each contain at least one Byzantine nodeFghs O CorrectPaths. As
we see next_on firmedT opology does not always encodeéuths, thus, one needs to
circumvent this difficultly.

Note that even thougl2f + 1 vertex-disjoint paths between the sender and
the receiver are present in the communication graph, theodsed topology in
Con firmedT opology may not encode the sétaths, becausg of the paths in the set
Paths can be controlled by Byzantine nodes. Namely, the inforomaéibout at least
one edge irnf of the paths in the sdPaths, can be missing i®'on firmedT opology.

We consider the problem of relaying messages over th€'setect Paths when
only Con firmedTI opology is known, and propose three implementations to the func-

The case of constant and A. The sender and the receiver exchange messages by using all
possible paths between them; feasible consideringighborhoods, where the neighborhood
radius,r, and the node degre# are constants.

The case of constantf. For each possible choice ¢f system nodespi, p2,...py,
the sender and the reciter compute a new gréfh:, p2, ... py) that is the result of re-
moving p1, pz, . .. py, from Goue, Which is the graph defined by the discovered topology,
ConfirmedTopology. Let P(p1,p2,...ps) be a set off + 1 vertex-disjoint paths in
G(p1,p2,...pys) (or the empty set whef®(p1, p2,...ps) does not exists) andaths =
Uphmwpf P(p1,p2,-..ps). The sender and the receiver can exchange messages|over

Paths, becausgPaths| is polynomial at least one choice pf,p2,...ps, has a corre-
sponding seP(p1, p2, . .. py) that containgorrect Paths (SectionB of the Appendix).

The case of no Byzantine neighbors The procedure assumes that any Byzantine node
has no directly connected Byzantine neighbor in the comoatian graph. Specifically, thig
polynomial cost solution considers the (extended) gréhh;, that includes all the edges in
con firmedT opology andsuspicious edgesiven three nodesy, p;, pr € P, we say that
nodep; considers the undirected ed@ge;, p;) suspicious, if the edge appears as a directed
edge inCon firmedT opology; for only one direction, e.g(p;, px)-
The extended graplty.,:, may contain fake edges that do not exists in the commuoicati
graph, but Byzantine nodes reports on their existence. fif@less,G... includes all the
correct paths of the communication gragh, Therefore, thef + 1 vertex-disjoint paths
that exists inG' also exists inG..+ and they can facilitate a polynomial cost solution for the
message exchange task (Sectbof the Appendix).

Fig. 2. Implementation proposals for the functigat Disjoint Paths().

tion getDisjoint Paths() in Figure2. The value ofCon firmedT opology is a set of
directed edgesp;, p;). An undirected edge is approved if both;, p;) and (p;, p;)
appear inCon firmedT opology. Other edges irCon firmedT opology are said to
be suspicious. For each of the proposed implementationsshegs in SectionB

of the Appendix that a polynomial number of paths are usedthatithey contain
CorrectPaths. Thus, the sender and the receiver can exchange messagga psily-
nomial number of paths and message send operations, bezatlsgath is of linear
length.

Ensuring safe message delivery We propose a way for the sender and the receiver,
that exchange a message over the pathgiisjoint Paths(), to stop considering
messages and acknowledgments sent by Byzantine nodesrépegtedly send mes-
sages and acknowledgments over the selected vertexrligatihs. Before message
or acknowledgment delivery, the sender and the receivezaxp receive each mes-
sage and acknowledgment at leéstpacity - n 4+ 1) consecutive times over at least
f + 1 vertex independent paths, and by that provide evidencehkatmessages and
acknowledgments were indeed sent by them.

We employ techniques for labeling the messages (in an ARB)stgcording vis-
ited path of each message, and counting the number of receiessage over each
path. The sender sends messages to the receiver, and theereesponds with ac-
knowledgments after these messages are delivered to thieadiom layer. Once the
sender receives the acknowledgment, it can fetch the nessage that should be sent

to the receiver. The difficulty here is to guarantee that #redsr and receiver can in-
deed exchange messages and acknowledgments between titestp@ considering
messages and acknowledgments sent by Byzantine nodes.

The sender repeatedly sends messag&hich is identified bym.ARQ Label, to
the receiver over all selected paths. The sender does mosstalingmn before it is
guaranteed that was delivered to the application layer of the receivingesit¥hen the
receiver receives the message, thesétisited Path encodes the path along whigh
was relayed over. Before delivery, the receiver expectsdeivern at least capacity -

n + 1) consecutive times from at leagt+ 1 vertex independent paths. Waiting for
(capacity - n + 1) consecutive messages on each path, ensures that the repgive
at least one message which was actually sent recently byetites Once the receiver
deliversm to the application layer, the receiver starts to repeatadknhowledge with
the labelm.ARQ Label over the selected paths (while recording the visited pathg.
sender expects to receines acknowledgment at leasipacity-n+1 consecutive times
from at leastf + 1 vertex independent paths before concluding thatas delivered to
the application layer of the receiving-side.

Once the receiver delivers a message to the application, lgngereceiver starts to
repeatedly acknowledge the recently delivered messagelwweselected paths. In ad-
dition, the receiver also restarts its counters and the fagaeived messages upon a
message delivery to the application layer. Similarly thedee count acknowledgments
to the current label used, when the sender receives atdeastity - n + 1 acknowl-
edgments ovef + 1 vertex-disjoint paths, the sender fetches the next messamgehe
application layer, changes the label and starts to sendeilvenressage.

The pseudocode of Algorithm2 In every iteration of the infinite loo; fetches
Message, preparesM essage’s label (line 3) and starts sending/essage over the
selected paths, see the procedBre:antine FaultT olerantSend(M essage). When
p; gets enough acknowledgments fafessage (line 4), p; stops sending the current
message and fetches the next. Upon receiving a messageanodep; testsmsg's des-
tination (line6). Whenp; is notmsg’s destination, it forwardsusg to the next node on
msg’s intended path, after updatingsg’s visited path. Whem; is msg’s destination,
p; checksmsg’s type (line9). Whenmsg's type isData, p; inserts the message pay-
load and label to the part of the data structure associatédtiaé message source, i.e.,
the sender, and the message visited path (Beln line 12, nodep; checks whether
f + 1 vertex-disjoint paths relayed the message at leasicity - n + 1 times, where
capacity is an upper bound on the number of messages in transit oveniaaoication
link. If so, p; delivers themsg to the application layer (lin@0), clears the entire data
structure and finally sends acknowledgments on the seleetibd until a new message
is confirmed. Moreover, in lin@1 we signal that we are ready to receive a new mes-
sage. Whennsg's type isAC' K, we act almost as when the message is of #pea.
When the condition in lind.8 holds, we signal that the message was confirmed at the
receiver by settingdpproved to betrue, in line 18 We note that the code of Algo-
rithm 2 considers only one possible pair of source and destinatianany-source to
many-destination version of this algorithm can simply usseparate instantiation of
this algorithm for each pair of source and destination.

Algorithm 2: Self-stabilizing Byzantine resilient end-to-end delivép;’s code)

1
2
3
4

5

10
11
12
13
14

15
16

17
18
19
20
21

22
23

24

25
26

Interface: FetchMessage(): Gets messages from the upper layer. We denoterpyut M essageQueue the
unbounded queue of all messages that are to be delivered tte#tination;

Interface: Deliver Message(Source, Message): Deliver an arriving message to the higher layer. We
denote byOutput MessageQueue the unbounded queue of all messages that are to be delivered t
the higher layer. We assume that it always contains at leadast message inserted to it;

Input: C'on firmedT opology: The discovered topology (represented by a directed edgseseAlgorithml);

Data Structure: Transport layer messagesSource, Destination, Visited Path, Intented Path,

ARQLabel, Type, Payload), whereSource is the sending nodd)estination is the
target node} isited Path is the actual relay patintented Path is the planned relay path,
ARQ Label is the sequence number of the stop-and-wait ARQ protocdl7aype € { Data,
ACK } message type, where DATA and ACK are constant;

Variable Message: the current message being sent;

Variable ReceivedMessages[j][Path] : queue ofp;'s messages that were relayed over p&thth;

Variable Con firmations|j][Path] : p;'s acknowledgment queue for messages that were relayedravi;

Variable label: the current sequence number of the stop-and-wait ARQ pogto

Variable Approved: A Boolean variable indicating whethéd essage was accepted at the destination;

Function: NodeDisjointPaths(S): TestS, a set of paths, to encode at legist- 1 vertex-disjoint paths;

Function: FloodedPath(MessageQueue, m) : Testwhethern is encoded by the firstapacity - n + 1
messages il essageQueue.;

Function: get Disjoint Paths(ReportedT opology, Source, Destination) : Get a set of vertex-disjoint
paths betwee§ource andDestination in the discovered graptReportedT opology (Figure2).;

Function: ClearQueue(Source) : Delete all data inRReceived Messages|[Source][*];

Function: Clear AckQueue(Destination) : Delete all data irC'on firmations[Destination][x];

while true do

Clear AckQueue(Message.Destination)

(Message, label) < (FetchMessage(), label + 1 modulo 3)

while Approved = false do ByzantineFaultTolerantSend(Message)

Upon Receive(msg) From p;;

begin

if msg.Destination # ithen
msg.VisitedPath < msg.VisitedPath U {j}
send(msg) to next (msg.Intended Path)

else ifmsg.Type = Data then
ReceivedMessages[msg.Source][msg.V isited Path].insert({ msg.Payload,
msg.ARQLabel))
let Paths < {Path : FloodedPath(Con firmations|msg.Source][Path], msg)}
if NodeDisjointPaths(Paths) then

NewMesssage < true

Con firm(msg.Source, m.ARQLabel, m.Payload)

elseifmsg.Type = ACK then
if label = msg.ARQ Label then

let Paths < {Path : FloodedPath(Con firmations|msg.Source|[Path],
(msg.Payload, msg.ARQLabel))}
if NodeDisjointPaths(Paths) then Approved < true

Function: Con firm(Source, ARQLabel, Payload);

begin

if CurrentLabel # ARQ Label then Deliver Message(Source, Payload)
(CurrentLabel, NewMessage) < (ARQLabel, false)

ClearQueue(Source)

while NewMessage = false do ByzantineFaultTolerantSend({ Source, ARQ Label,
ACK, Payload))

Function: ByzantineFaultTolerantSend({Destination, ARQLabel, Type, Payload));
begin

let Paths < getDisjointPaths(ConfirmedTopology, i, Destination)

foreach Path € Paths do send (i, Destination,), Path, ARQLabel, Type, Payload)) to
first(Path)

Confirmations[msg.Source][msg.VisitedPath].insert({(msg.Payload, msg. ARQ Label))

Correctness proof. We show that message delivery guarantees hold after a bdunde
convergence period. The proof is based on the system'syatuilrelay messages over
f + 1 correct vertex-disjoint messages (Fig@)e and focuses on showing safe mes-
sage delivery between the sender and the receiver. Afteimythat the sender fetches
messages infinitely often, we show that within four suchHes; the message delivery
guarantees hold; receiver-side delivers all of the seadee€ssages and just them. The
proof in detail appears in Secti@of the Appendix.

Let us consider messages, and their acknowledgements, that arrive at least
(capacity - n + 1) times overf + 1 vertex-independent paths, to the receiver-side,
and respectively the sender-side, with identical payl@adslabels. The receiver, and
respectively the sender, has #adenceahatm wasindeed sent by the sendand re-
spectively,acknowledged by the receivd@he sender and the receivaear their logs
whenever they have such evidences about he proof shows that, after a finite conver-
gence period, the system reaches an execution in which Hlogvflog events reoccur:
(Fetch) the sender clears its log, fetches messagend sends it to the receiveRA{
Get) the receiver gets the evidence thatvas indeed sent by the sendé@eg(iver) the
receiver clears its log, delivers, and acknowledge it to the sender, agdGet) the
sender gets the evidence thatvas acknowledged by the receiver. Namely, the system
reaches a legal execution.

First we prove that everetch occurs infinitely often, in the way of proof by con-
tradiction. Let us assume (towards a contradiction) thatsénder fetches message
and then never fetches another messageThe sender sends and counts acknowl-
edgments that has's label. According to the algorithm, the sender can fet@hrtaxt
messagen’ # m, when it has the evidence that was indeed acknowledged by the
receiver. The receiver acknowledge$ reception when it has the evidence thatvas
indeed sent by the sender. After nullifying its logs, theereer repeatedly senda’s
acknowledgments until it has evidences for other messagedhat were indeed sent
by the sender aftem. By the assumption that the sender never fetechést m, we
have that the receiver keeps on acknowledgingntil m’ # m arrives from the sender.
Thereforeym arrives from the sender to the receiver, and the receiveradiedgesn
to the sender. Thus, a contradiction that the sender newdrefen’ - m.

The rest of the proof shows that (eventually) between evemetvent of typd-etch,
also the eventR-Get, Deliver andS-Get occur (and in that order). We show that this
is guaranteed within four occurrences of eveatch. Following the fetch of each of
the first three messages and before the next one, the sendehawe evidence that
the receiver executed evebtliver, i.e., clearing the receiver’s log. Note that during
convergence, this may surely be false evidence. Just bfgfimt@ng a new message in
eventFetch, the sender must clear its logs and reassign a label valyehsavalue is
0. There must be a subsequent fetch with labdiecause, as explained above, event
Fetch occurs (infinitely often). Since the sender clears its logsventFetch, from
now on and until the next eveRretch, any corrupted message found in the sender’s log
must be of Byzantine origin. Therefore, the next time sewges the evidence that
was acknowledged by the receiver, the receiver has trulg donNote that between any
such two (truthful) acknowledgments (with different laf)ebay with label], 2, . . ., the
receiver must execute eveldeliver and clean its log, see Algorith) line 22. Since

the sender sends ové#-1 correct paths, and the receiver’s logs are clear, evetia|
receiver will have evidence for the message with ldbéls corrupted messages origi-
nate only from Byzantine nodes and there are at nfagich nodes, the receiver’s log
may not contain evidence for non-sender messages. To a®dtarting from the-th
message, the receiver will confirm all of the sender’s messaand will not confirm
non-sender messages.

5 Extensions and Conclusions

As an extension to this work, we suggest to combine the dtgus forr-neighborhood
network discovery and the end-to-end capabilities in otdeallow the use of end-
to-end message delivery within theneighborhoods. These two algorithms can be
used by the nodes, under reasonable node density assusitiodiscovering their-
neighborhoods, and, subsequently, extending the scopeiofend-to-end capabilities
beyond their-neighborhood, as we describe in the following. We instfudther re-
mote nodes to relay topology information, and in this wayemilinformation on remote
neighborhoods. One can consider an algorithm for studypegiic remote neighbor-
hoods that are defined, for example, by their geographioregissuming the usage of
GPS inputs; a specific direction and distance from the tapoéxploring node defines
the exploration goal. The algorithm nominat+ 1 nodes in the specific direction
to return further information towards the desired directidhe sender uses end-to-end
communication to the curreff + 1 nodes in thédront of the current exploration, asks
them for theirr-neighborhood, and chooses a new se2 pf+ 1 nodes for forming a
new front. It then instructs each of the current nodes in thieenit front to communicate
with each node in the chosen new front, to nominate the nemt fiodes to form the
exploration front.

To ensure stabilization, this interactive process of remoformation collection
should never stop. Whenever the current collection proces&stigates beyond the
closestr-neighborhood, we concurrently start a new collection psscin a pipeline
fashion. The output is the result of the last finalized coltetprocess. Thus, having a
correct output after the first time a complete topology itigegion is finalized.

In this work we presented two deterministic, self-stabiligByzantine-resilience al-
gorithms for topology discovery and end-to-end messageatgl We have also consid-
ered an algorithm for discoveringneighborhood in polynomial time, communication
and space. Lastly, we mentioned a possible extension fdokmg and communicating
with remoter-neighborhoods using polynomial resources as well.

The obtained end-to-end capabilities can be used for coruatimy the public keys
of parties and establish private keys, in spitef aforrupted nodes that may try to con-
duct man-in-the-middle attacks, an attack that the clab&ablic key infrastructure
(PKI) does not cope with. Once private keys are establisinedypted messages can
be forwarded over any specifit+ 1 node independent paths, one of which must be
Byzantine free. The Byzantine free path will forward the rgpted message to the
receiver while all corrupted messages will be discardexdcesour system should be
self-stabilizing, the common private secret should bestafdished periodically.

A Correctness of Algorithm 1

Lemma 1 (Bounded memory)Let p; € C be a correct node. At any time, there
are at mostn - 22" messages innformedTopologyany;, wheren = |P| and
O(|P|log(]P])) is the message size.

Proof. The queueln formedT opologyany;, is made up of messages in the form
(node, neighborhood, visitedpath). All nodes that appear in the message, i.e., in the
first, second or third entry of the tuple are M. The first entry, i.e. the node name
is one ofn possibilities. The second and third entries are subsef¢.ofhus each of
them ha2™ possibilities. In total there can be at m@st- 2" - n messages in every
InformedT opologyany;.

Definition 2 specifies the requirements of the network topology disgoteesk. Def-
inition 3 considers correct paths and Definitdboonsiders uncorrupted graph topology
messages.

Definition 2 (Legal output). Given correct node; € C, we say thap;’s output is
legal if it encodes graptouiput = (Vout, Four): (1) C C Vouy € CUB C N, and
2 (EN(Cx(C) CEwt CTECNXN.

Definition 3 (Correct path). We saypath C N is a correctone if all its nodes are
correct, i.e.,path C C.

Definition 4 (Valid message).In Algorithm 1, we refer to a messagen =
(k, Neighborhoody,, VisitedPathy,) as a valid message when: (1), € C and
VisitedPath encodes a correct path in the communication gra@hthat starts in
Dk, and (2)Neighborhoody, = indices(Ny).

Lemma?2 shows that eventually correct paths do not relay non validsages.
Namely, invalid messages can only exist as the result ofB{Zantine interventions
that corrupt messages, or (2) transient faults, which ooaly prior to the arbitrary
starting configuration considered.

We note that we consider asymptotic behavior in the follghemma and thus,
capacity is omitted from the number of asynchronous round until $tzgiion.

Lemma 2 (Eventually valid messages).et R be a fair execution of Algorithrh that
starts in an arbitrary configuration. Withi® (| V'|) asynchronous rounds, the system
reaches a configuration after which only valid messageseleeyed on correct paths.

5 This is a common way to argue about self-stabilization, wesiter executions that start in an
arbitrary configuration that follows the last transientlfarecalling that if additional transient
faults occur a new arbitrary configuration is reached frontivlautomatic convergence starts.

Proof. Let ¢ € R be the starting configuration. Suppose thahcludes an invalid
messagem = (¢, Neighborhood,, VisitedPathy), in transit between correct nodes.
The lemma is obviously correct for the case thas relayed by Byzantine nodes during
the first O(|N|) asynchronous rounds dt. Therefore, we consider only the correct
paths,path, over whichm is relayed during the firsb(]N|) asynchronous rounds of
R. We show that, withirO(|V|) asynchronous rounds, no correct nodednh relays
m.

Letp;, p; € path be correct neighbors on the correct path. Suppose thatnires-
sagem is in transit fromp; to p;. Upon the arrival of message to p; (line 7), p; sends
m; = (¢, Neighborhood, VisitedPathy U {j}) to any neighbop, € path on the
path for whichp, € N; A k & VisitedPathy, see line9.

Nodep; addsp;’s identifier tom’s visited pathVisited Path,, see lined. The same
argument holds for any correct neighbqrs,p’; € path whenp; sends message’; to
the next node ipath, nodep;. Therefore, withifpath \ Visited Path,| asynchronous
rounds, it holds thalV; N (path \ Visited Pathy) = {p/;, p}}

Note thatp, makes sure thaVisitedPath), does not encode loops, i.@; ¢
Visited Path), see lined. Therefore, node; does not relay messagé to py..

Definition 5 considers queues that their recent valid messages encledsgt+ 1
vertex-disjoint paths. Moreover, the invalid ones encddaast f such paths.

Definition 5 (Valid queue). Let p;,pr. € C be two correct nodes. We say thats
queue,InformedT opology;, is valid (with respect top,) whenever there is a pre-
fix, ValidIn formation; i, of messages in the queudn formedT opology;, such
that: (1) there is a subsel/alid = {m, = (k, Neighborhoody, VisitedPathy) :
myeisvalid} C ValidInformation,, for which the set{VisitedPath,} en-
codes at leastf + 1 vertex-disjoint paths, and (2) the setpvalid = {m, =
(k, Neighborhoody,, VisitedPathg) : mygisinvalid} C ValidInformation; , for
which the se{Visited Path,} encodes at mogt vertex-disjoint paths.

Claim A shows that, withinO(|C|) asynchronous rounds, correct paths propagate
valid messages.

Claim. Let path C C be a correct path from; to p;. Suppose that;, = (i, N;,0)

is a (valid) message that sends, see liné. Within O(|path|) asynchronous rounds,
messagen; is relayed orpath, and arrives apy, asm; = (i, N;, path). Namely,path

is m}'s visited path.

Proof. Letc € R be the first configuration that follows the startof’s propagation
in path. l.e.,c is the configuration that immediately follows the step in ethhodep;
sendsn; by executing line. Letp,., p; € path be two correct neighbors on the path.
Without the loss of generality, suppose that npgdeends message; directly to node
pr, 1.€., Inc, nodep,. is just about to receiver;. The proof arguments hold also when
assuming thap; sends message,; = (i, N;, {r}) to the next node iath. Thus,
generality is not lost.

We show that, within one asynchronous roupdsendsn,. to p,. Upon the arrival
of messagen; to p, (line 7), nodep, sends the message. to any neighbor, such as,

forwhichp; € N, Ar & VisitedPath; = (), see line9. Since the same argument holds
whenp; sendsm; to the next node ipath, we have that withirjpath| asynchronous
rounds,m/, is delivered to nodey,.

O

Lemma3 shows that queues get to become valid.

Lemma 3 (Eventually valid queues).Let R be a fair execution of Algorithri that
starts in an arbitrary configuration angd,, p,, € C be any pair of correct nodes. The
system reaches a configuration in which the quéué prmedT opology;, is valid (with
respect tay), within O(|N|) asynchronous rounds.

Proof. Letc € R be a configuration achieved in Lemm@avithin O(|N|) asynchronous
rounds. We show that withi@®(| N |) asynchronous rounds afterthe system reaches a
configuration in which'n formedT opology;, is valid (with respect tgy), see Defini-
tion 5.

In configuratione, all messages in transit on correct paths are valid, see lae2nm
Thus, the only messages enterihgf ormedT opology; are either valid or have passed
through Byzantine nodes. Denate,,..-;.,- t0 be the top message the queue (i.e., the
last message entered into the quelieformedI opology; in configurationc. More-
over, ValidIn formation; ;. includes all the messages Im formedT opology;, that
are between the queue’s head ang,,-;c.-

We show that conditiofl) of Definition5 holds. There aréf + 1 vertex-disjoint
paths betweep; andp,. At most f nodes are Byzantine and thus, there are at least
f + 1 vertex-disjoint paths between and p;, that are correct. By ClaindA within
O(|C]) asynchronous rounds, a valid messagg, is received on allf + 1 (correct)
vertex-disjoint paths. Message,, is inserted toln formedT opology; after config-
uration c. Therefore,my, is in front of mpg,rier. Hence, the seValid = {m, =
(¢, Neighborhoody, VisitedPathy) : my is valid} C ValidIn formation, j, contains
at leastf + 1 valid messages whose respective visited pathisited Pathy, are vertex-
disjoint.

We show that conditiori2) of Definition 5 holds. Any invalid messages, that
is sent after configuration) must go through a Byzantine node, see Len2na

Claim. Suppose that messageis relayed through a Byzantine node after configura-
tion ¢, then in any following configuration, whibe: is still in transit, there is a Byzantine
node in the visitedPath.

Proof. Observe the first correct nogg after the last Byzantine nodenm’s path.pj
is correct, thus it insertsto the visited pathb is the last on the path and so the visited
path must contain it until end of transit or passing througliffierent Byzantine. [

Each such Byzantine node is recorded in the message patiglaee A. Since
there are at mosf Byzantine nodes, there could be at m@gssuch messages with
vertex-disjoint paths. This completes the proof conditi®nand the lemma.

Lemma6 shows that correct information gets confirmed, and reqedmition 6.

Definition 6 (Message confirmation). We say that messagem; =
(k, Neighborhoody, VisitedPathy,) is confirmed (by node p;) when
Neighborhoody, C Con firmedT opology;.

Lemma 4 (Eventually confirmed messages)et R be a fair execution of Algorithrh
that starts in an arbitrary configuration angl, pr, € C be any pair of correct nodes.
Within O(| N|) asynchronous rounds, the system reaches a configuratiemnvefich the
fact that messager; = (k, Neighborhoody, VisitedPathy,) is confirmed, implies
that Neighborhoody, = indices(Ny).

Proof. Let ¢ € R be the first configuration in whichn formedT opology; is a valid
queue and nodg; completes a full iteration of the do forever loop that startkne 1.
By Lemma3, the system reacheswithin O(|N|) asynchronous rounds.

We know that in configuratiom, the arrayResult; satisfies thatResult;[k] =
indices(Ng). We go through the computation &lesult in lines2 to 4.

o ComputeResults(), line 2. Let Res;[k] = indices(N;) be
ComputeResults()’s return value with respect to noge. We show thatRes;[k] =
indices(Ny). Moreover, we show that the neighborhood that will be fouritl e
that which is represented Wialid = {m, = (k, Neighborhoody, VisitedPathy) :
my is valid} C ValidIn formation, .

We recall that the s€tVisited Path,} encodes at leagt+ 1 disjoint paths. Also in
the prefixV alidIn formation; ; one can not fingf + 1 invalid messages with vertex-
disjoint messages; See Definitibn

The function must choose the message containing the naigbbd
Neighborhoody,. Otherwise, we have chosen a different neighborhoodkfosay
Neighborhood), # Neighborhood), = indices(Ny). That is, at the time of checking
line 19 with neighborhoodVeighborhood, = Neighborhood),, there were at least
f + 1 vertex-disjoint paths impinion|[Neighborhood,]. This is in contradiction to
condition(2) of Definition 5. Moreover in line20, it holdsCount[k] > f + 1, since at
least all the correct paths were counted.

° RemoveContradictions(), line 3. Let Res; = ComputeResults()
and ResRemoveContradictions; = RemoveContradictions(Res;) (line 3).
We show that ResRemoveContradictions;[r] = indices(N,). The function
RemoveContradictions() modifies Res;[r] only in line 26 by nullifying it when-
everCount[r] < f. \We demonstrate that, for any correct pa&tisited Pathy, there
exists nop, for which PathContradictsNeighborhood(pe, Res;[{], Visited Pathy,)
= true, which is the condition in [in@4.

We explain that there is no noge and a contradicting edge;, p;) with the
set Res;[¢]. By the assumption thatisited Path;, is correct and that nodg, €
Visited Pathy, we have thap, € C'is correct. ThufRes; [¢] = indices(Ny), see previ-
ous item of this claim ol ompute Results(). Visited Pathy, is correct, and therefore
(p;, pe) Mmust be inVisited Pathy,.

° RemoveGarbage(), line 4. This procedure does not modifiles; =
RemoveContradictions(ComputeResults()). We have shown thaResult;[k] =
indices(Ny). Thus, only the correct neighborhood is confirmed for everyect node

DPk-

Lemma5 shows that eventually there are no fake nodes.

Lemma5 (Eventually no fake nodes).Let R be a fair execution of Algorithni
that starts in an arbitrary configuratiory; € N be any node, angy € P \ (N)
be a node that is not included in the communication gragh, Within O(|N|)
asynchronous rounds, the system reaches a configuratien aftich (p,,p;) ¢
Con firmedT opology;

Proof. Let ¢ € R be the configuration reached with#(|N|) asynchronous rounds
according to Lemmad. For any correct nodey; € C, we show that ire, the execution
of RemoveContradictions() results inCount;[¢] < f and nullifiesResult;[¢].

We start by showing that for every paththat relays a message which encodes
the setResult;[¢], and does not contain Byzantine nodes, a contradictionusdan
RemoveContradictions(). Namely, the if conditions of lin@4 holds.

Note that,p may not be a correct path even though it contains no Byzantides.
For example may contain nodeg, that are not even in the communication graph, i.e.,
p= € P\ (N).

Letp,. € N be the first correct node on path Such a node exists, becayses
correctand on the pagh Sincep,. is correct, after the execution 6fompute Results(),
we have thap,’s neighborhood).,, is encoded iResult;[r|, see Lemmd.

Denote the last edge in the path., ps), wherep, € P\ (N). Note that node
is not a node in the system and singesult;[r] encodesV,’s neighborhood, we have
thatp, & Result;[r]. Thus, the edgép.., ps) is contradicting with the seResult;|[r].
Namely, by the condition in lin4, we have that lin@5 must decreas€ount|(].

We note that immediately before the functi®amoveContradictions() returns,
the integelC'ount[¢] may count only incorrect paths, which contain at least onesaBy
tine node. Since there are at mgsByzantine nodeg;ount[¢] < f as needed.

Theoreml demonstrates the self-stabilization properties.

Theorem 1 (Self-stabilization).Let R be a fair execution of Algorithrh that starts in
an arbitrary configuration angh; € C be a correct node. Withi® (| N|) asynchronous
rounds, the system reaches a safe configuration after whistoutput is always legal,
see Definitior.

Proof. The systems reaches configuratiore R of Lemma4 within O(|N|) asyn-
chronous rounds. We show thatis a safe configuration by showing that the out-
put is legal, we must show thdton firmedT opology; encodes a graptv,uipur =
(Vouta Eout)v such that(l) C C Vouts (2) (Eﬂ(C X C)) C Eout, (3) Vour CCUB C
N,and(4) Eou: C(EN(CxC))U(Bx (N))CPxN.

For every correct nodg, € C, we have thatVy, is confirmed inc, see Lemma.
Thus,pi € V,.: and condition(1) holds.

Let (p;, px) be an edge in the communication graph between two correesoc
show(p;, pr) € Eou- Sincep; is correct, it is inserted t@'on firmedT opology;, see
Lemmad. Thus,(p;,pr) € edges(N;) A edges(N;) C Con firmedT opology; in c,
thus condition(2) holds as well.

There is nop, € P \ (N) and nodep; € N, such that(pp,;) €
Con firmedT opology;, see Lemmab. Thus,V,,, € CU B C N and E,,; C
(EN(CxC)U(Bx(N))CPxN.le.,conditiong3) and(4) hold inc.

B Implementation proposals forget DisjointPaths()

We consider the problem of relaying messages over the’setect Paths when
only Con firmedT opology is known, and propose three implementations to the func-
tion getDisjointPaths(). The value ofCon firmedT opology is a set of directed
edges(p;, pj). An undirected edge is approved if bath;, p;) and(p;, p;) appear in
Con firmedT opology. Other edges if'on firmedT opology are said to be suspicious.
The arguments used here assume that the system is in a séfpication with respect

to Algorithm 1. For each of the proposed implementations, we show|tRaths| is
polynomial andCorrectPaths C Paths. Thus, the sender and the receiver can ex-
change messages using a polynomial number of paths and geessiad operations,
because each path iuths is of linear length.

The case of constant and A. The sender and the receiver exchange messages
by using all possible paths between them. This is feasiblg when considering:-
neighborhoods, rather than the entire connected compowbete the neighborhood
radius,r, and the node degre# are constants.

The case of constanff. This procedure entails sending a message on a path set,
Paths, where|Paths| is polynomial andCorrect Paths C Paths.

For each possible choice of system nodespi,ps,...ps, the sender and
the receiver compute a new graph(pi,pe,...ps) that is the result of removing
P1,D2,...Df, from Goyue, Which is the graph defined by the discovered topology,
Con firmedT opology. Let P(p1,p2,...ps) be a set off + 1 vertex-disjoint paths
in G(p1,p2,...py) (or the empty set whefP(p1,p2,...ps) does not exists) and
Paths = Upl,pz,___pf P(p1,p2,...ps). We show polynomial message cost by showing
that|Paths| is polynomial. We also show that for at least one choicgi0p2, . .. py,
has a corresponding sB{(p1, p2, . . . py) that contain€orrect Paths.

First we show that this procedure only sends messages thepglynomial num-
ber of paths. There a®(nf) possible chooses ¢f system nodes. Thu&(n/) path
sets are computed, and sinté a constant, this number is polynomial. Moreover, each
such set contains at mogt- 1 simple paths of linear length, becaysenly computes
sets,P(p1, p2, .. .py), Of size f + 1. Thus, the sender and the receiver can exchange
messages using a polynomial number of paths and messagesaations.

We show thatCorrectPaths C Paths. Consider the permutation choice,
p1,Dp2, ...y, inwhich the set actually contains the set of Byzantine saaléhe system.
ThusG(p1,p2, . .. py) contains only correct nodes. Furthermore, at I¢ast paths that
were present irz,,,; are still present irG(p1, ps, ... py), sinceG(p1,p2, ... ps) Was
obtained from&,,,; by the removal off (Byzantine) nodeg, p, ... ps. Hence, there
are at leasf + 1 correct vertex-disjoint paths i&(p1, p2, ... ps), iN P(p1, p2,...py)
and inPaths.

The case of no Byzantine neighbors The procedure assumes that any Byzan-
tine node has no directly connected Byzantine neighboreénctimmunication graph.
Specifically, this polynomial cost solution considers tbgénded) grapl..., that in-
cludes all the edges iton firmedT opology andsuspicious edgesiven three nodes,
pi,Pj, Px € P, we say that nodg; considers the undirected ed@e,, p;) suspicious,
if the edge appears as a directed edg€dm firmedT opology; for only one direction,

e.9.(pj, pr)-

The extended grapldy..;, may contain fake edges that do not exists in the com-
munication graph, but Byzantine nodes reports on theitexie. Nevertheless;..,;
includes all the correct paths of the communication gr&phTherefore, thef + 1
vertex-disjoint paths that exists @ also exists inG.,; and they can facilitate a poly-
nomial cost solution for the message exchange task, as isnax.

Let G’ = (N, Eg/) be the graph computed froflon firmedT opology and its
suspicious edges. We demonstrate tha$ edges E¢-, contains the edge&, of the
communication graphG. Let us considee = (p;, px) € E¢ and show that € Egr.
When bothp; andp;, are correct, the correctness of Algoritiimpliese € Eg.
Suppose thai; is correct angh, is Byzantine, and consider the different cases in which
pi. decides to report (or not to report) abetds part of its local neighborhood. Namely,
eithere € ConfirmedT opology, Or e is a suspicious edge, becayseaeports about
e, andp; decides to report, and respectively, not to report. Siice G’, G’ must
contain2f + 1 vertex-disjoint paths between any sengerand receivep,., because
G does. Moreover, the same arguments implies that there may mestf incorrect
paths, which contain each at least one Byzantine node. Hémme are at least + 1
correct vertex-disjoint paths iRaths.

C Correctness of Algorithm 2

Definitions7, 8 and9 are needed for Clair@, Claim C and Lemméb.

Definition 7 (Confirmation). Given configuratiore, we say that message is con-
firmed (by the receivenwvhenm € OutputMessageQueue.

Definition 8 (Approve). Given fair executionR, of Algorithm2, we say that message
m = (Source, Destination, VisitedPath, IntentedPath, ARQ)Label, DAT A,
Payload) is being approved (by the sendgg,....) during the first atomic step,
asender, IN Which the sender executes lih8 whereSource = sender ARQ Label =
m.ARQ Label and Payload = m.Payload, see linel7. Denote bytqpproved the con-
figuration that immediately follows,...4.,-- Given configuratiore that appears after
Capproved IN R, we say that message is approved (by the senden) configurationc.

Definition 9 (Clear-sender-receiver).Given configuratiore, we say that the sender
is clear (with respect to the receivei) the queueCon firmations|receiver] =)
in c. Moreover, the receiver iglear (with respect to the sender)if the queue
ReceivedM essages|[sender] = 0 in c.

Claim C shows that a message that is relayed on a correct path ivedcai the
destination withinO(| N|) asynchronous rounds. Moreover, the destination recdiees t
message with correct visiting set.

Claim. Let R be a fair execution of Algorithn2 that starts in a safe configuratian,
with respect to Algorithmi. Let psource, paest € C be pair of correct nodes. Lej.,.q
be the configuration immediately following a step in whigh.,.,... sends messag¥d sg
on a correct patPath = psource, P1s P25 - - - Pdest fTOM SOUICEpgource, t0 destination,
Ddest- Within O(|N|) asynchronous rounds,.s: receives\ sg with a visiting set con-
taining all nodes oPath exceptpes:-

Proof. Upon the arrival of message to p; (line 5), nodep; asserts that he is not
the destinationp,.s¢, (line 6). Immediately afterp;, sends the message to the next
neighborp; 1, see lineB. Since the same argument holds whersendsn to the next
node inpath, we have that withinPath| asynchronous rounds; is delivered to node

DPdest-

Claim C says that when the sender repeatedly sends mesgagefor a duration of
at leastO(|N|) asynchronous rounds, the receiver eventually confirmsagesd sg.

Claim. Let R be a fair execution of Algorithn?2 that starts in a safe configura-
tion, ¢, with respect to Algorithml. Let ps,p. € C be a pair of correct send-
ing and receiving nodes. Suppose that, for a duration of astlé®(capacity -
|N|) asynchronous roundgi’s steps include only the execution of the function
Byzantine FaultTolerantSend(Msg) in the loop of line4. Within that period, the
system reaches configuration...;,. in which p,. confirmsM sg.

Proof. Denotec,.,,q4 as the configuration immediately following the first step inigh

ps sends messagd/sg in R, see line26. Within O(capacity - |[N|) asynchronous
rounds, the first frame containinty/ sg arrives atp,, see ClaimC. Moreover, after
anotherO(capacity - |[N|) asynchronous rounds, every correct path relays message
M sg at leastO(capacity - | N|) times. This is correct since every asynchronous round,
ps sends a new frame containidg sg on each of thef + 1 vertex-disjoint paths.
Moreover, by ClaimC, the last frame sent on &lf + 1 paths arrives after another
O(capacity - |NY).

Assume, in the way of proof by contradiction, thidtsg is not confirmed by,.. This
implies that the queueReceivedM essages[ps][*], In p, containing messages sent
from p, were not cleared at least sineg,.q4, see line22. Thus,p, containscapacity -
n~+1 indications ofM sg on f 41 vertex-disjoint paths. Denotg,: as the configuration
immediately after the arrival of theapacity - n + 1)-th frame of thef + 1'th path to
relay capacity - n + 1 frames containing/ sg. Immediately after;,s:, ps must go
through linel2, because the conditions in lid® hold. Thus, a contradiction and sg
is confirmed withinO(capacity - |N|) asynchronous rounds.

Claim C says that when the receiver is sending acknowledgments abnassage,
that message eventually becomes approved. We note that Clabnsiders acknowl-
edgments sent from the receiver to the sender, rather thesages sent from the sender
to the receiver, as in Clair@.

Claim. Let R be a fair execution of Algorithn?2 that starts in a safe configura-
tion, ¢, with respect to Algorithml. Let ps,p, € C be a pair of correct send-
ing and receiving nodes. Suppose that, for a duration of astlé(capacity -
|N|) asynchronous roundg,’s steps include only the execution of the function
ByzantineFaultTolerantSend(Ack) in the loop of line23. That is,p, is sending
acknowledgments on messatjesg. Within that period, the system reaches configura-
tion ¢,cceive IN Which p, approves\y sg, see Definitior8.

Proof. Denotec,.,,4 as the configuration immediately following the first step inigh
pr sends acknowledgmemtck in R, see line23. Within O(capacity - |[N|) asyn-
chronous rounds, the first frame containiagk arrives atp,, see ClainC. Moreover,

after anothe©(capacity-|N|) asynchronous rounds, every correct path relays message
Ack at leastO(capacity - |N|) times. This is correct since every asynchronous round,
p- sends a new frame containitdek on each of thef + 1 vertex-disjoint paths.
Moreover, by ClaimC, the last frame sent on &lf + 1 paths arrives after another
O(capacity - |NY).

The queuesion firmations[p,|[+] are cleared only when a message sent ts
approved, see lin2 Sincep, is acknowledging the current messafiésg, by sending
Ack, the only message that can be approvedig. This is true since each patRath,
may contain at mostapacity - |[N| acknowledgments for other messages in the path
gueues.

Assume, in the way of proof by contradiction, thiatsg is not approved by,.

By the arguments above,’s queuesCon firmations[p,][*], which containg,’s
acknowledgments that; received, were not cleared at least sifgg,q, see line2.
Thus,ps containscapacity - n + 1 indications ofAck on f + 1 vertex-disjoint paths.
Denoter;,,: as the configuration immediately after the arrival of thepacity-n+1)-th
frame of thef + 1'th path to relaycapacity - n+ 1 frames containingick. Immediately
afterc;qs:, ps Must go through lind 8, because the conditions in lidd hold. Thus, a
contradiction and\/ sg is approved withirO(capacity - | N|) asynchronous rounds.

Lemma6 shows that the senders repeatedly fetch messages.

Lemma 6. Let R be a fair execution of Algorithi@ that starts in a safe configuration,
¢, with respect to Algorithnl. Letp,, p, € C be pair of correct sending and receiving
nodes. Moreover; is the configuration that immediately follows th¢h time inR in
which p, fetches a message from the input queue. For e¥etlye system reaches
within O(¢ - |N|) asynchronous rounds.

Proof. By the code of Algorithn®2, on every iteration of the do forever loop (lings
to 4), a message is fetched in lirg This do forever loop includes another loop in
line 4. We prove the lemma by showing that the loop of lkhés completed within
O(|N|) asynchronous rounds.

The proof considers the case in which the sengerdoes not wait in linel for a
long time before considering the case in whicldoes wait. We show that for the latter
case, the receiver,., confirmsp,’s current message. After confirming the message, the
receiver,p,., begins sending acknowledgments to the sendefMhe proof shows that
after the acknowledgments are semt,approves the message and fetches a new one.
We show this by considering the case in whjghrepeatedly sends acknowledgments
for a sufficient amount of time, and a case in which it does not.

Suppose that,; does not wait in linet more thanO(capacity - | N|) asynchronous
rounds. In this cases, starts the infinite loop again withi®(capacity - |N|) asyn-
chronous rounds, and fetch a new message, se&.limbus, for the case in which
does not wait in linet more thanO(capacity - |[N|) asynchronous rounds, the lemma
is correct.

Suppose that, is executing lingt and waits for acknowledgments on messagey
for more thanO(capacity - |N|) asynchronous rounds. Thys, floods2f + 1 vertex-
disjoint paths with the messadésg, see Figur@. Eventually, the receivep,., receives
message/ sg for O(capacity - |N|) times onf + 1 vertex-disjoint paths and confirms

M sg, see ClainC. After confirming it, the receiver sends acknowledgment8 pa- 1
vertex-disjoint paths until confirming a new messagdeg.,..,. This is true because the
condition in line23 holds only when a new message is confirmed, se€llthe

Let us consider the case in which, duri@jcapacity - |[N|) asynchronous rounds,
messageV sg,.., does not arrive to the receiver. By Clai@) eventually the sender
receives the acknowledgments tapacity - n+ 1 times onf + 1 vertex-disjoint paths.
Claim C also says that the sender considers the message acceptesl fegeiver. In
line 18, the sender assigipproved = true. Thus, the condition in lind holds and
the sender fetches the next message, se8lidence, the system reaches configuration
cretc, thatimmediately follows a step in which the senger fetches the next message.
Thus, for the case in which, durii@(capacity - | N|) asynchronous rounds, message
M sg.eo dO€S not arrive to the receiver, the lemma is correct.

We continue by considering the case in which, dur@apacity - |[N|) asyn-
chronous rounds, messagitsg,.,, does arrive to the receiver. Let,,, s be the config-
uration that immediately follows the step in whighconfirmsM sg. Since the receiver
confirms M sg, we have thap, is clear (with respect to the sender) in configuration
Ceonyt, S€€ Definition9 and line22

If Msgnew Was sent by the sender, it must have been fetched@fterdcescn iS
reached when messagésg,..., is fetched. It may be the case however, thatg,,c.,
was not sent by the sender. Messadeg.,.., was confirmed by f + 1 vertex-disjoint
paths. Since there are at mgByzantine nodes, at least one of these pafthgh, must
be correct. Moreover, in.,, the receiver is clear, thus thepacity - n + 1 thatp,
counts inReceivedM essages[ps|[*] have all been received after configuratiop,, ;.
Note that the sender sends at least one of these messagassdat mostapacity - n
messages could be in the edgeshafth at any given configuration. Thus the sender
sendsM sgnew, Which p, fetches immediately befor€.... |.e., the system reaches
Cfetch-

Theoreml says that, starting from the fourth (or even the third) mgsdhat the
sender fetches, the receiver confirms the sender's mes3dgeproof of Theoren is
based on Lemm@, which says that, in every sequence of four messages tha¢ttter
is fetching, the receiver confirms the fourth (or even thedjhinessage.

Lemma 7. Let R be a fair execution of Algorithi@ that starts in a safe configuration,
cstart, With respect to Algorithni. Letc;, be a configuration that immediately follows
the h-th step in which the sender fetches thx¢h input queue messagey;,. Within
O(|N|) asynchronous rounds, the receiver confirms message

Proof. Claim. In ¢y, the sender is clear (with respect to the receiver), see iDefir®.
Proof. By definition,c,; immediately follows atomic steps, in which, after clearing
the confirmation queue in lin® the sender fetches message and sends it. O

Claim. Between the configuratiors andcy, there is a configuration).ccciver—cicar iN
which the receiver is clear (with respect to the sender).

Proof. Suppose, without the loss of generality, that immediatéra e, qer— crear
the sender is waiting for a message with labelBy lemma6, the sender even-
tually fetches the next message. The sender can only fetcewanmessage once

Approved is true, see lingl. Moreover,Approved is only set totrue once the queue
Con firmations|receiver][x] contains2f + 1 flooded paths, see lin#8. Thus, the
sender countgf + 1 vertex-disjoint paths that relayed acknowledgments wathel
1. Moreover, the sender is clear iQ.,qer—ciear- HENCE, CcONfiguratione,der— ciear
contains no message @fon firmations|receiver|[x]. Starting fromcsender—clear, the
sender receiveaipacity - n + 1 acknowledgments of + 1 vertex-disjoint paths for
the current message with lablelNote that at least one of the®¢ + 1 paths,Path, is
correct, because there af@yzantine. SincéPath| < n and each edge oRath may
contain at mostapacity messages, we have that at least one of the acknowledgments
thatincludesPath as its visiting path, is sent by the receiver betwegRnae,— cieqrr and
Conﬁguratiomreceiver—send € R. We show thatreceiver—send = Creceiver—clear-

This means that aftefsc,qer—ciear, the sender clears the confirmations queue,
Con firmations|receiver][x], and fetches the next message, assigning it the &bel
see linex2 through line4. By similar arguments, we know that the receiver sends at
least one acknowledgment with lal2el

To conclude, there is a configuratiene R in which the receiver is sending ac-
knowledgments with label, and then a configuratiosi in which the receiver sends
acknowledgments with label. Moreover, between two consecutive executions of
line 23, the receiver has to go through li2@. Thus, the receiver cleared it's message
queuesCon firmations[sender|[x], immediately before configuration..civer —ciear

andcreceiver—send = Creceiver—clear- O

Let us consider configuratia ccciver—ciear from the end of proof of Clainc.

The next message to be sent atel.civer—cicar, IS M4, the message fetched in
¢4, With label0. Betweenc,.cceiver—clear @Ndcey, all messages sent by the sender have
the label2. By arguments stated above, the messagethat is the next message to
be confirmed after,.ccciver—ciearr» MuUst have been sent by the sender at least once
SINCE Creceiver—clear- The sender, sends only messages with ldbahd 2. More-
over, the last message to be confirmed had a l2b&hus,Current Label = 2, see
line 21. Any sent message with labelis not inserted to the confirmations queue,
Con firmations|[sender][*] betweert, cceiver—ciear @Nd the configuration that imme-
diately follows the next sender’s fetch, see IR@ Thus, by line3, the next message to
be confirmed is a message with labewhich must ben,.

Theorem 1 (Self-stabilization) Let R be a fair execution of Algorithr that starts in

an arbitrary configuration. WithirO(| V|) asynchronous rounds, the system reaches a
safe configuratiom after which: (1) for every step?” where the sender sendsthere

is a corresponding step;* € R where the receiver confirms messageand (2) for
every step”, there is a corresponding step;* € R, that occurs before” and in
which the sender sendas.

Proof. Let ¢ be the configuration that Clai@ denote ag,, which the system reaches
within O(| N|) asynchronous rounds, see Lemén&etm,; be thei-th message fetched.
Suppose that> 4. Lemma7 considers the four consecutive messagess, . . . m;

and says that the receiver confirms messageThus, condition (1) holds.
Condition (2) follows from arguments similar to the ones dism the
proof of Claim C. Namely, for the case of > 5, messagem; ; is con-

firmed, see lemmar. Immediately after the receiver confirms,;_;, it clears
the queueReceivedMessages[sender][], see lines20 to 22. Thus, there ex-
ists a configurationc,.cceiver—ciear 1N Which the receiver is clear (with respect
to the sender) before;, see Definition9. Moreover, a message is confirmed
only if the queueReceivedM essages[sender][x] contains2f + 1 flooded paths,
see line 12 These flooded paths implies that in configuration the queue
ReceivedM essages[sender][«] contains capacity - n + 1 indications of m; on
2f + 1 node disjoint paths. Thusy; is confirmed only after a period that follows
Creceiver—clear @Nd includes its reception at leagpacity - n + 1 times on each of the
2f + 1 vertex-disjoint paths.

Recall that we assume that there are at nfoBlyzantine nodes in the system. At
least one pathPath, of the above f + 1 paths is correct. MoreoveiPath| < n and
each edge oPath may contain at mostapacity messages. Thus, at least one of the
capacity - n + 1 message that were relayed on the correct patth, was sent by the
sender. This completes the correctness proof.

