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Abstract. Traditional Byzantine resilient algorithms use2f + 1 vertex-disjoint
paths to ensure message delivery in the presence of up tof Byzantine nodes. The
question of how these paths are identified is related to the fundamental problem
of topology discovery. Distributed algorithms for topology discovery cope with a
never ending task: dealing with frequent changes in the network topology and un-
predictable transient faults. Therefore, algorithms for topology discovery should
be self-stabilizing to ensure convergence of the topology information following
any such unpredictable sequence of events. We present the first such algorithm
that can cope with Byzantine nodes. Starting in an arbitraryglobal state, and in
the presence off Byzantine nodes, each node is eventually aware of all the other
non-Byzantine nodes and their connecting communication links. Using the topol-
ogy information, nodes can, for example, route messages across the network and
deliver messages from one end user to another. We present thefirst deterministic,
cryptographic-assumptions-free, self-stabilizing, Byzantine-resilient algorithms
for network topology discovery and end-to-end message delivery. We also con-
sider the task ofr-neighborhood discovery for the case in whichr and the degree
of nodes are bounded by constants. The use ofr-neighborhood discovery facil-
itates polynomial time, communication and space solutionsfor the above tasks.
The obtained algorithms can be used to authenticate parties, in particular during
the establishment of private secrets, thus forming public key schemes that are
resistant to man-in-the-middle attacks of the compromisedByzantine nodes. A
polynomial and efficient end-to-end algorithm that is basedon the established
private secrets can be employed in between periodical secret re-establishments.

1 Introduction

Self-stabilizing Byzantine resilient topology discoveryis a fundamental distributed task
that enables communication among parties in the network even if some of the compo-
nents are compromised by an adversary. Currently, such topology discovery is becom-
ing extremely important where countries’ main infrastructures, such as the electrical
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smart-grid, water supply networks and intelligent transportation systems are subject to
cyber-attacks. Self-stabilizing Byzantine resilient algorithms naturally cope with mo-
bile attacks [e.g.,? ]. Whenever the set of compromised components is fixed (or dy-
namic, but small) during a period that suffices for convergence of the algorithm, the
system starts demonstrating useful behavior following theconvergence. For example,
consider the case in which nodes of the smart-grid are constantly compromised by an
adversary while local recovery techniques, such as local node reset and/or refresh, en-
sure the recovery of a compromised node after a bounded time.Once the current com-
promised set does not imply a partition of the communicationgraph, the distributed
control of the smart grid automatically recovers. Self-stabilizing Byzantine resilient al-
gorithms for topology discovery and message delivery are important for systems that
have to cope with unanticipated transient violations of theassumptions that the algo-
rithms are based upon, such as unanticipated violation of the upper number of com-
promised nodes and unanticipated transmission interferences that is beyond the error
correction code capabilities.

The dynamic and difficult-to-predict nature of electrical smart-grid and intelligent
transportation systems give rise to many fault-tolerance issues and require efficient so-
lutions. Such networks are subject to transient faults due to hardware/software temporal
malfunctions or short-lived violations of the assumed settings for the location and state
of their nodes. Fault-tolerant systems that areself-stabilizing[? ] can recover after the
occurrence of transient faults, which can drive the system to an arbitrary system state.
The system designers considerall configurations as possible configurations from which
the system is started. The self-stabilization design criteria liberate the system designer
from dealing with specific fault scenarios, risking neglecting some scenarios, and hav-
ing to address each fault scenario separately.

We also consider Byzantine faults that address the possibility of a node to be com-
promised by an adversary and/or to run a corrupted program, rather than merely as-
suming that they start in an arbitrary local state. Byzantine components may behave
arbitrarily (selfishly, or even maliciously) as message senders and as relaying nodes.
E.g., Byzantine nodes may block messages, selectively omitmessages, redirect mes-
sage routes, playback messages, or modify messages. Any system behavior is possible,
when all (or one third or more of) the nodes are Byzantine nodes. Thus, the number of
Byzantine nodes,f , is usually restricted to be less than one third of the nodes [? ? ].

The task ofr-neighborhood network discoveryallows each node to know the set of
nodes that are at mostr hops away from it in the communication network. Moreover,
the task provides information about the communication links attached to these nodes.
The tasktopology discoveryconsiders knowledge regarding the node’s entire connected
component. Ther-neighborhood network discovery and network topology discovery
tasks are identical whenr is the communication graph radius.

This work presents the first deterministic self-stabilizing algorithms for r-
neighborhood discovery in the presence of Byzantine nodes.We assume that every
r-neighborhood cannot be partitioned by the Byzantine nodes. In particular, we assume
the existence of at least2f + 1 vertex-disjoint paths in ther-neighborhood, between
any two non-Byzantine nodes, where at mostf Byzantine nodes are present in the



r-neighborhood, rather than in the entire network.3 Note that by the self-stabilizing
nature of our algorithms, recovery is guaranteed after a temporal violation of the above
assumption. Whenr is defined to be the communication graph radius, our assumptions
are equivalent to the standard assumption for Byzantine agreement in general (rather
than only complete) communication graphs. In particular the standard assumption is
that2f + 1 vertex disjoint paths exist andare known(see e.g., [? ]) while we present
distributed algorithms to find these paths starting in an arbitrary state.
Related work. Self-stabilizing algorithms for finding vertex-disjoint paths for at
most two paths between any pair of nodes, and for all vertex-disjoint paths in anony-
mous mesh networks appear in [? ] and in [? ], respectively. We propose self-stabilizing
Byzantine resilient procedures for findingf+1 vertex-disjoint paths in2f+1-connected
graphs. In [? ], the authors study the problem of spanning tree construction in the pres-
ence of Byzantine nodes. Nesterenko and Tixeuil [? ] presented anon-stabilizingand
inconsistent algorithm for topology discovery in the presence of Byzantine nodes –
see the paper’s errata for further details about the algorithm’s flaws.4 Awerbuch and
Sipser [? ] consider algorithms that were designed for synchronous static network and
give topology update as an example. They show how to use such algorithms in asyn-
chronous dynamic networks. Unfortunately, their scheme starts from a consistent state
and cannot cope with transient faults or Byzantine nodes.

The problems ofByzantine gossip[? ? ? ? ? ?] and Byzantine Broadcast[? ? ]
consider the dissemination of information in the presence of Byzantine nodes rather
than self-stabilizing topology discovery. Non-self-stabilizing Byzantine resilient gossip
in the presence of one selfish node is considered in [? ? ]. In [? ] the authors study
oblivious deterministic gossip algorithms for multi-channel radio networks with a ma-
licious adversary. They assume that the adversary can disrupt one channel per round,
preventing communication on that channel. In [? ] the authors consider probabilistic
gossip mechanisms for reducing the redundant transmissions of flooding algorithms.
They present several protocols that exploit local connectivity to adaptively correct prop-
agation failures and protect against Byzantine attacks. Probabilistic gossip mechanisms
in the context of recommendations and social networks are considered in [? ]. In [? ] the
authors consider rules for avoiding a combinatorial explosion in (non-self-stabilizing)
gossip protocol. Note that deterministic and self-stabilizing solutions are not presented
in [? ? ? ? ? ?]. Drabkin et al. [? ] consider non-self-stabilizing broadcast protocols
that overcome Byzantine failures by using digital signatures, message signature gos-
siping, and failure detectors. Our deterministic self-stabilizing algorithm merely use
the topological properties of the communication graph to ensure correct message de-
livery to the application layer in the presence of message omission, modifications and
Byzantine nodes. A non-self-stabilizing broadcasting algorithm is considered in [? ].
The authors assume the restricted case in which links and nodes of a communication

3 Section4 considers cases in whichr and an upper bound on the node degree,∆, are con-
stants. For these cases, we haveO(n) disjoint r-neighborhoods. Each of these (disjoint)r-
neighborhoods may have up tof Byzantine nodes, and yet the above assumptions about at
least2f + 1 vertex-disjoint paths in ther-neighborhood, hold.
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network are subject to Byzantine failures, and that faults are distributed randomly and
independently.
Our contribution. We present two cryptographic-assumptions-free yet securealgo-
rithms that are deterministic, self-stabilizing and Byzantine resilient.

We start by showing the existence of deterministic, self-stabilizing, Byzantine re-
silient algorithms for network topology discovery and end-to-end message delivery. The
algorithms convergence time is inO(n). They take in to account every possible path and
requiring bounded (yet exponential) memory and bounded (yet exponential) communi-
cation costs. Therefore, we also consider the task ofr-neighborhood discovery, where
r is a constant. We assume that if ther-neighborhood of a node hasf Byzantine nodes,
there are2f+1 vertex independent paths between the node and any non-Byzantine node
in its r-neighborhood. The obtainedr-neighborhood discovery algorithm requires poly-
nomial memory and communication costs and supports deterministic, self-stabilizing,
Byzantine-resilient algorithm for end-to-end message delivery across the network. Un-
like topology update, the proposed end-to-end message delivery algorithm establishes
message exchange synchronization between end-users that is based on message recep-
tion acknowledgments.

Detailed proofs appear in the Appendix.

2 Preliminaries

We consider settings of a standard asynchronous system [cf.? ]. The system consists of
a set,N = {pi}, of communicating entities, chosen from a set,P , which we callnodes.
The upper bound on the number of nodes in the system isn = |P |. Each node has a
unique identifier. Sometime we refer to a set,P \ N , of nonexisting nodes that a false
indication on their existence can be recorded in the system.A nodepi can directly com-
municate with itsneighbors, Ni ⊆ N . The system can be represented by an undirected
network of directly communicating nodes,G = (N,E), named thecommunication
graph, whereE = {(pi, pj) ∈ N × N : pj ∈ Ni}. We denoteNk ’s set of indices by
indices(Nk) = {m : pm ∈ Nk} andNk ’s set of edges byedges(Nj) = {pj} ×Nj .

Ther-neighborhood of a nodepi ∈ N is the connected component that includespi
and all nodes that can be reached frompi by a path of lengthr or less. The problem
of r-neighborhood topology discovery considers communication graphs in whichpi’s
degree,δi, is bounded by a constant∆. Hence, when both the neighborhood radius,r,
and the node degree,∆, are constants the number of nodes in ther-neighborhood is
also bounded by a constant, namely byO(∆r+1).

We model the communication channel,queuei,j, from nodepi to nodepj ∈ Ni as a
FIFO queuing list of the messages thatpi has sent topj andpj is about to receive. When
pi sends messagem, the operationsend inserts a copy ofm to the queuequeuei,j of
the one destinationpj , such thatpj ∈ Ni. We assume that the number of messages in
transit, i.e., stored inqueuei,j, is at mostcapacity. Oncem arrives,pj executesreceive
andm is dequeued.

We assume thatpi is completely aware ofNi, as in [? ]. In particular, we assume
that the identity of the sending node is known to the receiving one. In the context of the



studied problem, we say that nodepi ∈ N is correct if it reports on its genuine neigh-
borhood,Ni. A Byzantinenode,pb ∈ N , is a node that can send arbitrarily corrupted
messages. Byzantine nodes can introduce new messages and modify or omit messages
that pass through them. This way they can, e.g., disinform correct nodes about their
neighborhoods, about the neighborhood of other correct nodes, or the path through
which messages travel, to name a very few specific misleadingactions that Byzantine
nodes may exhibit. Note that our assumptions do not restrictsystem settings in which
a duplicitous Byzantinenode,pb, reports aboutNb differently to its correct neighbors.
In particular,pb can have{Nb1 , . . .Nbδb

} reports, such thatpb’s identity inNbi is dif-
ferent than the one inNbj , whereδx is the degree of nodepx. One may use a set of
non-duplicitous Byzantine nodes,{pb1 , . . . pbδ}, to model each ofpb’s reports. Thus,
for a 2k + 1 connected graph, the system tolerates no more than⌊k/∆⌋ duplicitous
Byzantine nodes, where∆ is an upper bound on the node degree.

We denoteC andB to be, respectively, the set of correct and Byzantine nodes.We
assume that|B| = f , the identity ofB’s nodes is unknown to the ones inC, andB is
fixed throughout the considered execution segment. These execution segments are long
enough for convergence and then for obtaining sufficient useful work. We assume that
between any pair of correct nodes there are at least2f + 1 vertex-disjoints paths. We
denote byGc = (C,E ∩C ×C) thecorrect graphinduced by the set of correct nodes.

Self-stabilizing algorithms never terminate [? ]. The non-termination property can
be easily identified in the code of a self-stabilizing algorithm: the code is usually a do
forever loop that contains communication operations with the neighbors. An iteration
is said to be complete if it starts in the loop’s first line and ends at the last (regardless of
whether it enters branches).

Every node,pi, executes a program that is a sequence of(atomic) steps. For ease of
description, we assume the interleaving model with atomic step execution; a single step
at any given time. An input event can either be the receipt of amessage or a periodic
timer going off triggeringpi to send. Note that the system is totally asynchronous and
the (non-fixed) node processing rates are irrelevant to the correctness proof.

Thestatesi of a nodepi consists of the value of all the variables of the node (in-
cluding the set of all incoming communication channels,{queuej,i|pj ∈ Ni}. The
execution of a step in the algorithm can change the state of a node. The term(sys-
tem) configurationis used for a tuple of the form(s1, s2, · · · , sn), where eachsi is
the state of nodepi (including messages in transit forpi). We define anexecution
E = c[0], a[0], c[1], a[1], . . . as an alternating sequence of system configurationsc[x]
and stepsa[x], such that each configurationc[x + 1] (except the initial configuration
c[0]) is obtained from the preceding configurationc[x] by the execution of the stepa[x].
We often associate the notation of a step with its executing nodepi using a subscript,
e.g.,ai. An executionR (run) is fair if every correct node,pi ∈ C, executes a step
infinitely often inR. Time (e.g. needed for convergence) is measured by the number of
asynchronous rounds, where the first asynchronous round is the minimal prefix of the
execution in which every node takes at least one step. The second asynchronous round
is the first asynchronous round in the suffix of the run that follows the first asynchronous
round, and so on. The message complexity (e.g. needed for convergence) is the number
of messages measured in the specific case of synchronous execution.



We define the system’s task by a set of executions calledlegal executions(LE) in
which the task’s requirements hold. A configurationc is a safe configurationfor an
algorithm and the task ofLE provided that any execution that starts inc is a legal
execution (belongs toLE). An algorithm isself-stabilizingwith relation to the taskLE
when every infinite execution of the algorithm reaches a safeconfiguration with relation
to the algorithm and the task.

3 Topology Discovery

The algorithm learns about the neighborhoods that the nodesreport. Each report mes-
sage contains an ordered list of nodes it passed so far, starting in a source node. These
lists are used for verifying that the reports are sent overf + 1 vertex-disjoint paths.

When a report message,m, arrives to pi, it inserts m to the queue
informedTopologyi, and tests the queue consistency until there is enough indepen-
dent evidence to support the report. The consistency test ofpi iterates over each node
pk such that,pk appears in at least one of the messages stored ininformedTopologyi.
For each such nodepk, nodepi checks whether there are at leastf + 1 messages from
the same source node that have mutually vertex-disjoint paths and report on the same
neighborhood. The neighborhood of each suchpk, that has at leastf +1 vertex-disjoint
paths with identical neighborhood, is stored in the arrayResulti[k] and the total num-
ber of paths that relayed this neighborhood is kept inCount[k].

We note that there may still be nodespfake ∈ P \ (N), for which there is an
entryResult[fake]. For example,informedTopology may containf messages, all
originated from different Byzantine nodes, and a messagem′ that appears in the initial
configuration and supports the (false) neighborhood the Byzantine messages refer to.
Thesef + 1 messages can contain mutually vertex-disjoint paths, and thus during the
consistency test, a result will be found forResult[fake]. We show that during the next
computations, the messagem′ will be identified and ignored. TheResult array should
include two reports for each (undirected) edge; the two nodes that are attached to the
edge, each send a report. Hence,Result includes a set of directed (report) edges. The
termcontradicting edgeis needed when examining theResult set consistency.

Definition 1 (Contradicting edges).Given two nodes,pi, pj ∈ P , we say that the edge
(pi, pj) is contradicting with the setevidence ⊆ edges(Nj), if (pi, pj) 6∈ evidence.

Following the consistency test,pi examines theResult array for contradictions.
Nodepi checks the path of each messagem ∈ informedTopologyi with sourcepr,
neighborhoodneighborhoodr andPathr. If every edge(ps, pj) on the path appears
in Result[s] andResult[j], then we move to the next message. Otherwise, we found a
fake supporter, and therefore we reduceCount[r] by one. If the resultingCount[r] is
smaller thanf +1, we nullify ther’th entry of theResult array. Once all messages are
processed, theResult array consisting of the (confirmed) local topologies is the output.
At the end,pi forwards the arriving message,m, to each neighbor that does not appear
in the path ofm. The message sent bypi includes the node from whichm arrived as
part of the pathm.
The pseudocode of Algorithm1 In every iteration of the infinite loop,pi starts to
compute its preliminary topology view by callingComputeResults in line 2. Then,



every nodepk in the queueInformedTopology, nodepi goes over the messages in
the queue from head to bottom. While iterating the queue, forevery messagem with
sourcepk, neighborhoodNk and visited pathPathk, pi insertsPathk to opinion[Nk],
see line18. After inserting,pi checks if there is a neighborhoodNeigk for which
opinion[Neigk] contains at leastf + 1 vertex-disjoint paths, see line19. When such
a neighborhood is found, it is stored in theResult array (line 19). In line 20, pi
stores the number of vertex disjoint paths relayed messagesthat contained the se-
lected neighborhood forpk. After computing an initial view of the topology, in line3,
pi removes non-existing nodes from the computed topology. Forevery messagem in
InformedTopology, nodepi aims at validating its visited path. In line24, pi checks
if there exists a nodepk whose neighborhood contradicts the visited path ofm. If such
a node exists,pi decreases the associated entry in theCount array (line25). This de-
crease may causeCount[r] to be smaller thanf + 1, in this casepi considerspk to be
fake and deletes the local topology ofpk fromResult[r] (line 26).

• Insert(m): Insert itemm to the queue head.
• Remove(Messagem): Remove itemm from the queue.
• Iterator(): Returns an pointer for iterating over the queue’s
items by their residence order in the queue.
•HasNext(): Tests whether the Iterator is at the queue end.
•Next() Returns the next element to iterate over.
• SizeOf() Returns the number of elements in the calling set.
•MoveToHead(m): Move itemm to the queue head.
• IsAfter(m, S): Test that itemm is after the itemsm′ ∈
S, whereS is the queue item set.

Fig. 1. Queue: general purpose data structure for
queuing items, and its operation list.

Upon receiving a messagem,
nodepi inserts the message to the
queue, in case it does not already ex-
ist, and just moves it to the top of
the queue in case it does. The node
pi now needs to relay the message
pi got to all neighbors that are not
on the message visited path (line9).
When sending,pi also attaches the
identifier of the node, from which the
message was received, to the visited
path of the message.
Algorithm’s correctness proof. We now prove that within a linear amount of asyn-
chronous rounds, the system stabilizes and every output is legal. The proof considers an
arbitrary starting configuration with arbitrary messages in transit that could be actually
in the communication channel or already stored inpj ’s message queue and will be for-
warded in the next steps ofpj . Each message in transit that traverse correct nodes can
be forwarded within less thanO(|C|) asynchronous rounds. Note that any message that
traverses Byzantine nodes and arrives to a correct node thathas at least one Byzantine
node in its path. The reason is that the correct neighbor to the last Byzantine in the path
lists the Byzantine node when forwarding the message. Thus,f is at most the number
of messages that encode vertex-disjoint paths from a certain source that are initiated or
corrupted by a Byzantine node. Since there are at leastf + 1 vertex-disjoint paths with
no Byzantine nodes from any sourcepk to any nodepi and sincepk repeatedly sends
messages to all nodes on all possible paths,pi receives at leastf +1 messages frompk
with vertex-disjoint paths.

The FIFO queue usage and the repeated send operations ofpk ensure that the most
recentf + 1 messages with vertex-disjoint paths inInformedTopology queue are
uncorrupted messages. Namely, misleading messages that were present in the initial
configuration will be pushed to appear below the newf + 1 uncorrupted messages.
Thus, each nodepi eventually has the local topology of each correct node (stored in



Algorithm 1: Topology discovery (code for nodepi)
Input: Neighborhoodi: The ids of the nodes with which nodepi can communicate directly;
Output: ConfirmedTopology ⊂ P × P : Discovered topology, which is represent by a directed edgeset;
Variable InformedTopology : Queue, see Figure1: topological messages,

〈node, neighborhood, path〉;
Function: NodeDisjointPaths(S): TestS = {〈node, neighborhood, path〉} to encode at leastf + 1

vertex-disjoint paths;
Function: PathContradictsNeighborhood(k,Neighborhoodk, path): Test that there is no node

pj ∈ N for which there is an edge(pk, pj) in the message’s visited path,path ⊆ P ×N , such that
(pk, pj) is contradicting withNeighborhoodk;

1 while true do
2 Result ← ComputeResults()
3 let Result ← RemoveContradictions(Result)
4 RemoveGarbage(Result)
5 ConfirmedTopology ← ConfirmedTopology ∪ (

⋃
pk∈P Result[k])

6 foreachpk ∈ Ni do send(i, Neighborhoodi, ∅) to pk

7 Upon Receive(〈ℓ, Neighborhoodℓ, V isitedPathℓ〉) from pj ;
begin

8 Insert(pℓ, Neighborhoodℓ, V isitedPathℓ ∪ {j})
9 foreachpk ∈ Ni do if k 6∈ V isitedPathℓ then send(pℓ, Neighborhoodℓ, V isitedPathℓ ∪ {j})

to pk

10 Procedure:Insert(k, Neighborhoodk, V isitedPathk);
begin

11 if 〈k, Neighborhoodk, V isitedPathk〉 ∈ InformedTopology then
InformedTopology.MoveToHead(m)

12 else ifpk ∈ N ∧Neighborhoodk ⊆ indices(N) ∧ V isitedPathk ⊆ indices(N) then
InformedTopology.Insert(〈k, Neighborhoodk, V isitedPathk〉)

13 Function: ComputeResults();
begin

14 foreachpk ∈ P : 〈k, Neighborhoodk, V isitedPathk〉 ∈ InformedTopology do
15 let (FirstDisjointPathsFound, Message, opinion[])←

(false, InformedTopology.Iterator(), [∅])
16 while Message.hasNext() do
17 〈ℓ,Neighborhoodℓ, V isitedPathℓ〉 ←Message.Next()
18 if ℓ = k then opinion[Neighborhoodℓ].Insert(〈 ℓ, Neighborhoodℓ,

V isitedPathℓ〉)
19 if FirstDisjointPathsFound = false ∧

NodeDisjointPaths(opinion[Neighborhoodℓ ]) then
(Result[k], F irstDisjointPathsFound) ← (Neighborhoodℓ, true)

20 Count[k]← opinion[k][Result[k.SizeOf()

21 return Result

22 Function: RemoveContradictions(Result);
begin

23 foreach〈r,Neighborhoodr, V isitedPathr〉 ∈ InformedTopology do
24 if ∃pk ∈ P : PathContradictsNeighborhood(pk, Result[k], V isitedPathr) = true

then
25 if Neighborhoodr = Result[r] then Count[r]← Count[r]− 1
26 if Count[r] ≤ f then Result[r] ← ∅

27 return Result

28 Procedure:RemoveGarbage(Result);
begin

29 foreachpk ∈ N do
30 foreachm = 〈k, Neighborhoodk, V isitedPathk〉 ∈ InformedTopology :

{k} ∪Neighborhoodk ∪ V isitedPathk 6⊆ P ∨ InformedTopology.IsAfter(m,

opinion[k][Result[k]]) do InformedTopology.Remove(m)

the Resulti array). The opposite is however not correct as local topologies of non-
existing nodes may still appear in the result array. For example,InformedTopologyi



may include in the first configurationf + 1 messages with vertex-disjoint paths for a
non-existing node. Since afterComputeResults we know the correct neighborhood
of each correct nodepk, we may try to ensure the validity of all messages. For every
message that encodes a non-existing source node, there mustbe a nodepℓ on the mes-
sage path, such thatpℓ is correct andpℓ’s neighbor is non-existing, this is true sincepi
itself is correct. Thus, we may identify these messages and ignore them. Furthermore,
no valid messages are ignored because of this validity check.

We also note that, since we assume that the nodes of the systemare a subset ofP ,
the size of the queueInformedTopology is bounded. Lemma1 bounds the needed
amount of node memory (the proof details appear in SectionA of the Appendix).

Lemma 1 (Bounded memory).At any time, there are at mostn · 22n messages in
InformedTopologyi, wherepi ∈ C, n = |P | andO(n log(n)) is the message size.

r-neighborhood discovery. Algorithm1 demonstrates the existence of a deterministic
self-stabilizing Byzantine resilient algorithm for topology discovery. Lemma1 shows
that the memory costs are high when the entire system topology is to be discovered.
We note that one may consider the task ofr-neighborhood discovery. Recall that in
ther-neighborhood discovery task, it is assumed that everyr-neighborhood cannot be
partitioned by Byzantine nodes. Therefore, it is sufficientto constrain the maximal path
length in line9. The correctness proof of the algorithm for ther-neighborhood discov-
ery follows similar arguments to the correctness proof of Algorithm1.

4 End-to-End Delivery

We present a design for a self-stabilizing Byzantine resilient algorithm for the transport
layer protocol that uses the output of Algorithm1. The design is based on a function
(namedgetDisjointPaths()) for selecting vertex-disjoint paths that contain a set of
f +1 correct vertex-disjoint paths. We usegetDisjointPaths() and ARQ (Automatic
Repeat reQuest) techniques for designing Algorithm2, which ensures safe delivery
between sender and receiver.
Exchanging messages overf+1 correct vertex-disjoint paths We guarantee correct
message exchange by sending messages over a polynomial number of vertex-disjoint
paths between the sender and the receiver. We consider a set,CorrectPaths, that in-
cludesf +1 correct vertex-disjoint paths. Suppose thatConfirmedTopology (see the
output of Algorithm1) encodes a set,Paths, of 2f + 1 vertex-disjoint paths between
the sender and the receiver. It can be shown thatPaths includes at mostf incorrect
paths that each contain at least one Byzantine node, i.e.,Paths ⊇ CorrectPaths. As
we see next,ConfirmedTopology does not always encodePaths, thus, one needs to
circumvent this difficultly.

Note that even though2f + 1 vertex-disjoint paths between the sender and
the receiver are present in the communication graph, the discovered topology in
ConfirmedTopology may not encode the setPaths, becausef of the paths in the set
Paths can be controlled by Byzantine nodes. Namely, the information about at least
one edge inf of the paths in the setPaths, can be missing inConfirmedTopology.

We consider the problem of relaying messages over the setCorrectPaths when
only ConfirmedTopology is known, and propose three implementations to the func-



The case of constantr and∆. The sender and the receiver exchange messages by using all
possible paths between them; feasible consideringr-neighborhoods, where the neighborhood
radius,r, and the node degree∆ are constants.
The case of constantf . For each possible choice off system nodes,p1, p2, . . . pf ,
the sender and the reciter compute a new graphG(p1, p2, . . . pf ) that is the result of re-
moving p1, p2, . . . pf , from Gout, which is the graph defined by the discovered topology,
ConfirmedTopology. Let P(p1, p2, . . . pf ) be a set off + 1 vertex-disjoint paths in
G(p1, p2, . . . pf ) (or the empty set whenP(p1, p2, . . . pf ) does not exists) andPaths =⋃

p1,p2,...pf
P(p1, p2, . . . pf ). The sender and the receiver can exchange messages over

Paths, because|Paths| is polynomial at least one choice ofp1, p2, . . . pf , has a corre-
sponding setP(p1, p2, . . . pf ) that containsCorrectPaths (SectionB of the Appendix).
The case of no Byzantine neighbors The procedure assumes that any Byzantine node
has no directly connected Byzantine neighbor in the communication graph. Specifically, this
polynomial cost solution considers the (extended) graph,Gext, that includes all the edges in
confirmedTopology andsuspicious edges. Given three nodes,pi, pj , pk ∈ P , we say that
nodepi considers the undirected edge(pk, pj) suspicious, if the edge appears as a directed
edge inConfirmedTopologyi for only one direction, e.g.,(pj , pk).
The extended graph,Gext, may contain fake edges that do not exists in the communication
graph, but Byzantine nodes reports on their existence. Nevertheless,Gext includes all the
correct paths of the communication graph,G. Therefore, the2f + 1 vertex-disjoint paths
that exists inG also exists inGext and they can facilitate a polynomial cost solution for the
message exchange task (SectionB of the Appendix).

Fig. 2. Implementation proposals for the functiongetDisjointPaths().

tion getDisjointPaths() in Figure2. The value ofConfirmedTopology is a set of
directed edges(pi, pj). An undirected edge is approved if both(pi, pj) and (pj , pi)
appear inConfirmedTopology. Other edges inConfirmedTopology are said to
be suspicious. For each of the proposed implementations, weshow in SectionB
of the Appendix that a polynomial number of paths are used andthat they contain
CorrectPaths. Thus, the sender and the receiver can exchange messages using a poly-
nomial number of paths and message send operations, becauseeach path is of linear
length.
Ensuring safe message delivery We propose a way for the sender and the receiver,
that exchange a message over the paths ingetDisjointPaths(), to stop considering
messages and acknowledgments sent by Byzantine nodes. Theyrepeatedly send mes-
sages and acknowledgments over the selected vertex-disjoint paths. Before message
or acknowledgment delivery, the sender and the receiver expect to receive each mes-
sage and acknowledgment at least(capacity · n + 1) consecutive times over at least
f + 1 vertex independent paths, and by that provide evidence thattheir messages and
acknowledgments were indeed sent by them.

We employ techniques for labeling the messages (in an ARQ style), recording vis-
ited path of each message, and counting the number of received message over each
path. The sender sends messages to the receiver, and the receiver responds with ac-
knowledgments after these messages are delivered to the application layer. Once the
sender receives the acknowledgment, it can fetch the next message that should be sent



to the receiver. The difficulty here is to guarantee that the sender and receiver can in-
deed exchange messages and acknowledgments between them, and stop considering
messages and acknowledgments sent by Byzantine nodes.

The sender repeatedly sends messagem, which is identified bym.ARQLabel, to
the receiver over all selected paths. The sender does not stop sendingm before it is
guaranteed thatm was delivered to the application layer of the receiving-side. When the
receiver receives the message, the setm.V isitedPath encodes the path along whichm
was relayed over. Before delivery, the receiver expects to receivem at least(capacity ·
n + 1) consecutive times from at leastf + 1 vertex independent paths. Waiting for
(capacity · n + 1) consecutive messages on each path, ensures that the receiver gets
at least one message which was actually sent recently by the sender. Once the receiver
deliversm to the application layer, the receiver starts to repeatedlyacknowledge with
the labelm.ARQLabel over the selected paths (while recording the visited path).The
sender expects to receivem’s acknowledgment at leastcapacity·n+1 consecutive times
from at leastf +1 vertex independent paths before concluding thatm was delivered to
the application layer of the receiving-side.

Once the receiver delivers a message to the application layer, the receiver starts to
repeatedly acknowledge the recently delivered message over the selected paths. In ad-
dition, the receiver also restarts its counters and the log of received messages upon a
message delivery to the application layer. Similarly the sender count acknowledgments
to the current label used, when the sender receives at leastcapacity · n + 1 acknowl-
edgments overf +1 vertex-disjoint paths, the sender fetches the next messagefrom the
application layer, changes the label and starts to send the new message.
The pseudocode of Algorithm2 In every iteration of the infinite loop,pi fetches
Message, preparesMessage’s label (line 3) and starts sendingMessage over the
selected paths, see the procedureByzantineFaultT olerantSend(Message). When
pi gets enough acknowledgments forMessage (line 4), pi stops sending the current
message and fetches the next. Upon receiving a messagemsg, nodepi testsmsg’s des-
tination (line6). Whenpi is notmsg’s destination, it forwardsmsg to the next node on
msg’s intended path, after updatingmsg’s visited path. Whenpi is msg’s destination,
pi checksmsg’s type (line9). Whenmsg’s type isData, pi inserts the message pay-
load and label to the part of the data structure associated with the message source, i.e.,
the sender, and the message visited path (line10). In line 12, nodepi checks whether
f + 1 vertex-disjoint paths relayed the message at leastcapacity · n + 1 times, where
capacity is an upper bound on the number of messages in transit over a communication
link. If so, pi delivers themsg to the application layer (line20), clears the entire data
structure and finally sends acknowledgments on the selectedpaths until a new message
is confirmed. Moreover, in line21 we signal that we are ready to receive a new mes-
sage. Whenmsg’s type isACK, we act almost as when the message is of typeData.
When the condition in line18 holds, we signal that the message was confirmed at the
receiver by settingApproved to be true, in line 18. We note that the code of Algo-
rithm 2 considers only one possible pair of source and destination.A many-source to
many-destination version of this algorithm can simply use aseparate instantiation of
this algorithm for each pair of source and destination.



Algorithm 2: Self-stabilizing Byzantine resilient end-to-end delivery (pi’s code)
Interface: FetchMessage(): Gets messages from the upper layer. We denote byInputMessageQueue the

unbounded queue of all messages that are to be delivered to the destination;
Interface: DeliverMessage(Source, Message): Deliver an arriving message to the higher layer. We

denote byOutputMessageQueue the unbounded queue of all messages that are to be delivered to
the higher layer. We assume that it always contains at least the last message inserted to it;

Input: ConfirmedTopology: The discovered topology (represented by a directed edge set, see Algorithm1);
Data Structure: Transport layer messages:〈Source, Destination, V isitedPath, IntentedPath,

ARQLabel, Type, Payload〉, whereSource is the sending node,Destination is the
target node,V isitedPath is the actual relay path,IntentedPath is the planned relay path,
ARQLabel is the sequence number of the stop-and-wait ARQ protocol, and Type ∈ {Data,
ACK}message type, where DATA and ACK are constant;

Variable Message: the current message being sent;
Variable ReceivedMessages[j][Path] : queue ofpj ’s messages that were relayed over pathPath;
Variable Confirmations[j][Path] : pj ’s acknowledgment queue for messages that were relayed overPath;
Variable label: the current sequence number of the stop-and-wait ARQ protocol;
Variable Approved: A Boolean variable indicating whetherMessage was accepted at the destination;
Function: NodeDisjointPaths(S): TestS, a set of paths, to encode at leastf + 1 vertex-disjoint paths;
Function: FloodedPath(MessageQueue, m) : Test whetherm is encoded by the firstcapacity · n + 1

messages inMessageQueue.;
Function: getDisjointPaths(ReportedTopology, Source,Destination) : Get a set of vertex-disjoint

paths betweenSource andDestination in the discovered graph,ReportedTopology (Figure2).;
Function: ClearQueue(Source) : Delete all data inReceivedMessages[Source][∗];
Function: ClearAckQueue(Destination) : Delete all data inConfirmations[Destination][∗];

1 while true do
2 ClearAckQueue(Message.Destination)
3 (Message, label) ← (FetchMessage(), label + 1modulo 3)
4 while Approved = false do ByzantineFaultTolerantSend(Message)

5 Upon Receive(msg) From pj ;
begin

6 if msg.Destination 6= i then
7 msg.V isitedPath ← msg.V isitedPath ∪ {j}
8 send(msg) to next (msg.IntendedPath)

9 else ifmsg.Type = Data then
10 ReceivedMessages[msg.Source][msg.V isitedPath].insert(〈msg.Payload,

msg.ARQLabel 〉)
11 let Paths← {Path : FloodedPath(Confirmations[msg.Source][Path], msg)}
12 if NodeDisjointPaths(Paths) then
13 NewMesssage ← true

14 Confirm(msg.Source,m.ARQLabel,m.Payload)

15 else ifmsg.Type = ACK then
16 if label = msg.ARQLabel then

Confirmations[msg.Source][msg.V isitedPath].insert(〈msg.Payload, msg.ARQLabel〉)
17 let Paths← {Path : FloodedPath(Confirmations[msg.Source][Path],

〈msg.Payload, msg.ARQLabel 〉)}
18 if NodeDisjointPaths(Paths) then Approved← true

19 Function: Confirm(Source,ARQLabel, Payload);
begin

20 if CurrentLabel 6= ARQLabel then DeliverMessage(Source, Payload)
21 (CurrentLabel, NewMessage) ← (ARQLabel, false)
22 ClearQueue(Source)
23 while NewMessage = false do ByzantineFaultTolerantSend(〈 Source, ARQLabel,

ACK, Payload〉)

24 Function: ByzantineFaultTolerantSend(〈Destination, ARQLabel, Type, Payload〉);
begin

25 let Paths← getDisjointPaths(ConfirmedTopology, i, Destination)
26 foreachPath ∈ Paths do send(〈i,Destination, ∅, Path,ARQLabel, Type, Payload〉) to

first(Path)



Correctness proof. We show that message delivery guarantees hold after a bounded
convergence period. The proof is based on the system’s ability to relay messages over
f + 1 correct vertex-disjoint messages (Figure2), and focuses on showing safe mes-
sage delivery between the sender and the receiver. After proving that the sender fetches
messages infinitely often, we show that within four such fetches, the message delivery
guarantees hold; receiver-side delivers all of the sender’s messages and just them. The
proof in detail appears in SectionC of the Appendix.

Let us consider messages,m, and their acknowledgements, that arrive at least
(capacity · n + 1) times overf + 1 vertex-independent paths, to the receiver-side,
and respectively the sender-side, with identical payloadsand labels. The receiver, and
respectively the sender, has theevidencethatm wasindeed sent by the sender,and re-
spectively,acknowledged by the receiver.The sender and the receiverclear their logs
whenever they have such evidences aboutm. The proof shows that, after a finite conver-
gence period, the system reaches an execution in which the following events reoccur:
(Fetch) the sender clears its log, fetches messagem, and sends it to the receiver, (R-
Get) the receiver gets the evidence thatm was indeed sent by the sender, (Deliver) the
receiver clears its log, deliversm, and acknowledge it to the sender, and (S-Get) the
sender gets the evidence thatm was acknowledged by the receiver. Namely, the system
reaches a legal execution.

First we prove that eventFetch occurs infinitely often, in the way of proof by con-
tradiction. Let us assume (towards a contradiction) that the sender fetches messagem
and then never fetches another messagem′. The sender sendsm and counts acknowl-
edgments that hasm’s label. According to the algorithm, the sender can fetch the next
message,m′ 6= m, when it has the evidence thatm was indeed acknowledged by the
receiver. The receiver acknowledgesm’s reception when it has the evidence thatm was
indeed sent by the sender. After nullifying its logs, the receiver repeatedly sendsm’s
acknowledgments until it has evidences for other messages,m′, that were indeed sent
by the sender afterm. By the assumption that the sender never fetchesm′ 6= m, we
have that the receiver keeps on acknowledgingm until m′ 6= m arrives from the sender.
Therefore,m arrives from the sender to the receiver, and the receiver acknowledgesm
to the sender. Thus, a contradiction that the sender never fetchesm′ 6= m.

The rest of the proof shows that (eventually) between every two event of typeFetch,
also the eventsR-Get, Deliver andS-Get occur (and in that order). We show that this
is guaranteed within four occurrences of eventFetch. Following the fetch of each of
the first three messages and before the next one, the sender must have evidence that
the receiver executed eventDeliver, i.e., clearing the receiver’s log. Note that during
convergence, this may surely be false evidence. Just beforefetching a new message in
eventFetch, the sender must clear its logs and reassign a label value, say, the value is
0. There must be a subsequent fetch with label1, because, as explained above, event
Fetch occurs (infinitely often). Since the sender clears its logs in eventFetch, from
now on and until the next eventFetch, any corrupted message found in the sender’s log
must be of Byzantine origin. Therefore, the next time sendergets the evidence thatm
was acknowledged by the receiver, the receiver has truly done so. Note that between any
such two (truthful) acknowledgments (with different labels), say with label,1, 2, . . ., the
receiver must execute eventDeliver and clean its log, see Algorithm2, line 22. Since



the sender sends overf+1 correct paths, and the receiver’s logs are clear, eventually the
receiver will have evidence for the message with label0. As corrupted messages origi-
nate only from Byzantine nodes and there are at mostf such nodes, the receiver’s log
may not contain evidence for non-sender messages. To conclude, starting from the4-th
message, the receiver will confirm all of the sender’s messages, and will not confirm
non-sender messages.

5 Extensions and Conclusions

As an extension to this work, we suggest to combine the algorithms forr-neighborhood
network discovery and the end-to-end capabilities in orderto allow the use of end-
to-end message delivery within ther-neighborhoods. These two algorithms can be
used by the nodes, under reasonable node density assumptions, for discovering theirr-
neighborhoods, and, subsequently, extending the scope of their end-to-end capabilities
beyond theirr-neighborhood, as we describe in the following. We instructfurther re-
mote nodes to relay topology information, and in this way collect information on remote
neighborhoods. One can consider an algorithm for studying specific remote neighbor-
hoods that are defined, for example, by their geographic region, assuming the usage of
GPS inputs; a specific direction and distance from the topology exploring node defines
the exploration goal. The algorithm nominates2f + 1 nodes in the specific direction
to return further information towards the desired direction. The sender uses end-to-end
communication to the current2f + 1 nodes in thefront of the current exploration, asks
them for theirr-neighborhood, and chooses a new set of2f + 1 nodes for forming a
new front. It then instructs each of the current nodes in the current front to communicate
with each node in the chosen new front, to nominate the new front nodes to form the
exploration front.

To ensure stabilization, this interactive process of remote information collection
should never stop. Whenever the current collection processinvestigates beyond the
closestr-neighborhood, we concurrently start a new collection process in a pipeline
fashion. The output is the result of the last finalized collection process. Thus, having a
correct output after the first time a complete topology investigation is finalized.

In this work we presented two deterministic, self-stabilizing Byzantine-resilience al-
gorithms for topology discovery and end-to-end message delivery. We have also consid-
ered an algorithm for discoveringr-neighborhood in polynomial time, communication
and space. Lastly, we mentioned a possible extension for exploring and communicating
with remoter-neighborhoods using polynomial resources as well.

The obtained end-to-end capabilities can be used for communicating the public keys
of parties and establish private keys, in spite off corrupted nodes that may try to con-
duct man-in-the-middle attacks, an attack that the classical Public key infrastructure
(PKI) does not cope with. Once private keys are established encrypted messages can
be forwarded over any specificf + 1 node independent paths, one of which must be
Byzantine free. The Byzantine free path will forward the encrypted message to the
receiver while all corrupted messages will be discarded. Since our system should be
self-stabilizing, the common private secret should be re-established periodically.



A Correctness of Algorithm 1

Lemma 1 (Bounded memory) Let pi ∈ C be a correct node. At any time, there
are at mostn · 22n messages inInformedTopologyanyi, wheren = |P | and
O(|P | log(|P |)) is the message size.

Proof. The queueInformedTopologyanyi, is made up of messages in the form
〈node, neighborhood, visitedpath〉. All nodes that appear in the message, i.e., in the
first, second or third entry of the tuple are inN . The first entry, i.e. the node name
is one ofn possibilities. The second and third entries are subsets ofN . Thus each of
them has2n possibilities. In total there can be at most2n · 2n · n messages in every
InformedTopologyanyi.

Definition2 specifies the requirements of the network topology discovery task. Def-
inition 3 considers correct paths and Definition4 considers uncorrupted graph topology
messages.

Definition 2 (Legal output). Given correct nodepi ∈ C, we say thatpi’s output is
legal, if it encodes graphGoutput = (Vout, Eout): (1) C ⊆ Vout ⊆ C ∪ B ⊆ N , and
(2) (E ∩ (C × C)) ⊆ Eout ⊆ E ⊆ N ×N .

Definition 3 (Correct path). We saypath ⊆ N is a correctone if all its nodes are
correct, i.e.,path ⊆ C.

Definition 4 (Valid message). In Algorithm 1, we refer to a messagem =
〈k,Neighborhoodk, V isitedPathk〉 as a valid message when: (1)pk ∈ C and
V isitedPathk encodes a correct path in the communication graph,G, that starts in
pk, and (2)Neighborhoodk = indices(Nk).

Lemma2 shows that eventually correct paths do not relay non valid messages.
Namely, invalid messages can only exist as the result of: (1)Byzantine interventions
that corrupt messages, or (2) transient faults, which occuronly prior to the arbitrary
starting configuration considered.5

We note that we consider asymptotic behavior in the following lemma and thus,
capacity is omitted from the number of asynchronous round until stabilization.

Lemma 2 (Eventually valid messages).LetR be a fair execution of Algorithm1 that
starts in an arbitrary configuration. WithinO(|N |) asynchronous rounds, the system
reaches a configuration after which only valid messages are relayed on correct paths.

5 This is a common way to argue about self-stabilization, we consider executions that start in an
arbitrary configuration that follows the last transient fault, recalling that if additional transient
faults occur a new arbitrary configuration is reached from which automatic convergence starts.



Proof. Let c ∈ R be the starting configuration. Suppose thatc includes an invalid
message,m = 〈ℓ,Neighborhoodℓ, V isitedPathℓ〉, in transit between correct nodes.
The lemma is obviously correct for the case thatm is relayed by Byzantine nodes during
the firstO(|N |) asynchronous rounds ofR. Therefore, we consider only the correct
paths,path, over whichm is relayed during the firstO(|N |) asynchronous rounds of
R. We show that, withinO(|N |) asynchronous rounds, no correct node inpath relays
m.

Let pj, pi ∈ path be correct neighbors on the correct path. Suppose that inc, mes-
sagem is in transit frompj to pi. Upon the arrival of messagem to pi (line 7), pi sends
mi = 〈ℓ,Neighborhoodℓ, V isitedPathℓ ∪ {j}〉 to any neighborpk ∈ path on the
path for whichpk ∈ Ni ∧ k 6∈ V isitedPathℓ, see line9.

Nodepi addspj ’s identifier tom’s visited pathV isitedPathℓ, see line9. The same
argument holds for any correct neighbors,p′j , p

′
j ∈ path whenpj sends messagem′j to

the next node inpath, nodep′i. Therefore, within|path\V isitedPathℓ| asynchronous
rounds, it holds thatN ′i ∩ (path \ V isitedPathℓ) = {p′j, p

′
i}.

Note thatp′i makes sure thatV isitedPath′ℓ does not encode loops, i.e.,pk 6∈
V isitedPath′ℓ, see line9. Therefore, nodep′i does not relay messagem′ to pk.

Definition5 considers queues that their recent valid messages encode atleastf + 1
vertex-disjoint paths. Moreover, the invalid ones encode at mostf such paths.

Definition 5 (Valid queue). Let pi, pk ∈ C be two correct nodes. We say thatpi’s
queue,InformedTopologyi, is valid (with respect topk) whenever there is a pre-
fix, V alidInformationi,k, of messagesmk in the queueInformedTopologyi, such
that: (1) there is a subset,V alid = {mℓ = 〈k,Neighborhoodk, V isitedPathℓ〉 :
mℓ is valid} ⊆ V alidInformationi,k, for which the set{V isitedPathℓ} en-
codes at leastf + 1 vertex-disjoint paths, and (2) the set,Invalid = {mℓ =
〈k,Neighborhoodk, V isitedPathℓ〉 : mℓ is invalid} ⊆ V alidInformationi,k, for
which the set{V isitedPathℓ} encodes at mostf vertex-disjoint paths.

Claim A shows that, withinO(|C|) asynchronous rounds, correct paths propagate
valid messages.

Claim. Let path ⊆ C be a correct path frompi to pk. Suppose thatmi = 〈i, Ni, ∅〉
is a (valid) message thatpi sends, see line6. Within O(|path|) asynchronous rounds,
messagemi is relayed onpath, and arrives atpk asm′i = 〈i, Ni, path〉. Namely,path
ism′i’s visited path.

Proof. Let c ∈ R be the first configuration that follows the start ofmi’s propagation
in path. I.e.,c is the configuration that immediately follows the step in which nodepi
sendsmi by executing line6. Let pr, pj ∈ path be two correct neighbors on the path.
Without the loss of generality, suppose that nodepi sends messagemi directly to node
pr, i.e., inc, nodepr is just about to receivemi. The proof arguments hold also when
assuming thatpj sends messagemj = 〈i, Ni, {r}〉 to the next node inpath. Thus,
generality is not lost.

We show that, within one asynchronous round,pr sendsmr to pj . Upon the arrival
of messagemi to pr (line 7), nodepr sends the messagemr to any neighbor, such aspj ,



for whichpj ∈ Nr∧r 6∈ V isitedPathi = ∅, see line9. Since the same argument holds
whenpj sendsmj to the next node inpath, we have that within|path| asynchronous
rounds,m′i is delivered to nodepk.

�

Lemma3 shows that queues get to become valid.

Lemma 3 (Eventually valid queues).Let R be a fair execution of Algorithm1 that
starts in an arbitrary configuration andpi, pk ∈ C be any pair of correct nodes. The
system reaches a configuration in which the queue,InformedTopologyi, is valid (with
respect topk), withinO(|N |) asynchronous rounds.

Proof. Let c ∈ R be a configuration achieved in Lemma2 within O(|N |) asynchronous
rounds. We show that withinO(|N |) asynchronous rounds afterc, the system reaches a
configuration in whichInformedTopologyi, is valid (with respect topk), see Defini-
tion 5.

In configurationc, all messages in transit on correct paths are valid, see Lemma 2.
Thus, the only messages enteringInformedTopologyi are either valid or have passed
through Byzantine nodes. Denotembarrier to be the top message the queue (i.e., the
last message entered into the queue)InformedTopologyi in configurationc. More-
over,V alidInformationi,k includes all the messages inInformedTopologyi, that
are between the queue’s head andmbarrier.

We show that condition(1) of Definition 5 holds. There are2f + 1 vertex-disjoint
paths betweenpi andpk. At mostf nodes are Byzantine and thus, there are at least
f + 1 vertex-disjoint paths betweenpi and pk that are correct. By ClaimA within
O(|C|) asynchronous rounds, a valid message,mk, is received on allf + 1 (correct)
vertex-disjoint paths. Messagemk is inserted toInformedTopologyi after config-
uration c. Therefore,mk is in front of mbarrier. Hence, the setV alid = {mℓ =
〈ℓ,Neighborhoodℓ, V isitedPathℓ〉 : mℓ is valid} ⊆ V alidInformationi,k contains
at leastf +1 valid messages whose respective visited paths,V isitedPathℓ, are vertex-
disjoint.

We show that condition(2) of Definition 5 holds. Any invalid messages,mk, that
is sent after configurationc, must go through a Byzantine node, see Lemma2.

Claim. Suppose that messagem is relayed through a Byzantine node after configura-
tion c, then in any following configuration, whilem is still in transit, there is a Byzantine
node in the visitedPath.

Proof. Observe the first correct nodepk after the last Byzantine nodeb onm’s path.pk
is correct, thus it insertsb to the visited path.b is the last on the path and so the visited
path must contain it until end of transit or passing through adifferent Byzantine. �

Each such Byzantine node is recorded in the message path, seeClaim A. Since
there are at mostf Byzantine nodes, there could be at mostf such messages with
vertex-disjoint paths. This completes the proof condition(2) and the lemma.

Lemma6 shows that correct information gets confirmed, and requiresDefinition6.



Definition 6 (Message confirmation). We say that messagemi =
〈k,Neighborhoodk, V isitedPathki

〉 is confirmed (by node pi) when
Neighborhoodk ⊆ ConfirmedTopologyi.

Lemma 4 (Eventually confirmed messages).LetR be a fair execution of Algorithm1
that starts in an arbitrary configuration andpi, pk ∈ C be any pair of correct nodes.
WithinO(|N |) asynchronous rounds, the system reaches a configuration after which the
fact that messagemi = 〈k,Neighborhoodk, V isitedPathki

〉 is confirmed, implies
thatNeighborhoodk = indices(Nℓ).

Proof. Let c ∈ R be the first configuration in whichInformedTopologyi is a valid
queue and nodepi completes a full iteration of the do forever loop that startsin line 1.
By Lemma3, the system reachesc within O(|N |) asynchronous rounds.

We know that in configurationc, the arrayResulti satisfies thatResulti[k] =
indices(Nℓ). We go through the computation ofResult in lines2 to 4.

• ComputeResults(), line 2. Let Resi[k] = indices(N ′ℓ) be
ComputeResults()’s return value with respect to nodepk. We show thatResi[k] =
indices(Nℓ). Moreover, we show that the neighborhood that will be found will be
that which is represented inV alid = {mℓ = 〈k,Neighborhoodk, V isitedPathℓ〉 :
mℓ is valid} ⊆ V alidInformationi,k.

We recall that the set{V isitedPathℓ} encodes at leastf +1 disjoint paths. Also in
the prefixV alidInformationi,k one can not findf + 1 invalid messages with vertex-
disjoint messages; See Definition5.

The function must choose the message containing the neighborhood
Neighborhoodk. Otherwise, we have chosen a different neighborhood fork, say
Neighborhood′k 6= Neighborhoodk = indices(Nk). That is, at the time of checking
line 19 with neighborhoodNeighborhoodℓ = Neighborhood′k, there were at least
f + 1 vertex-disjoint paths inopinion[Neighborhoodℓ]. This is in contradiction to
condition(2) of Definition5. Moreover in line20, it holdsCount[k] > f + 1, since at
least all the correct paths were counted.

• RemoveContradictions(), line 3. Let Resi = ComputeResults()
and ResRemoveContradictionsi = RemoveContradictions(Resi) (line 3).
We show thatResRemoveContradictionsi[r] = indices(Nr). The function
RemoveContradictions() modifiesResi[r] only in line 26 by nullifying it when-
everCount[r] ≤ f . We demonstrate that, for any correct pathV isitedPathk, there
exists nopℓ for whichPathContradictsNeighborhood(pℓ, Resi[ℓ], V isitedPathk)
= true, which is the condition in line24.

We explain that there is no nodepℓ and a contradicting edge(pj , pℓ) with the
set Resi[ℓ]. By the assumption thatV isitedPathk is correct and that nodepℓ ∈
V isitedPathk, we have thatpℓ ∈ C is correct. ThusResi[ℓ] = indices(Nℓ), see previ-
ous item of this claim onComputeResults(). V isitedPathk is correct, and therefore
(pj , pℓ) must be inV isitedPathk.

• RemoveGarbage(), line 4. This procedure does not modifyResi =
RemoveContradictions(ComputeResults()). We have shown thatResulti[k] =
indices(Nk). Thus, only the correct neighborhood is confirmed for every correct node
pk.



Lemma5 shows that eventually there are no fake nodes.

Lemma 5 (Eventually no fake nodes).Let R be a fair execution of Algorithm1
that starts in an arbitrary configuration,pj ∈ N be any node, andpℓ ∈ P \ (N)
be a node that is not included in the communication graph,G. Within O(|N |)
asynchronous rounds, the system reaches a configuration after which (pj , pℓ) 6∈
ConfirmedTopologyi

Proof. Let c ∈ R be the configuration reached withinO(|N |) asynchronous rounds
according to Lemma4. For any correct node,pi ∈ C, we show that inc, the execution
of RemoveContradictions() results inCounti[ℓ] ≤ f and nullifiesResulti[ℓ].

We start by showing that for every pathp that relays a message which encodes
the setResulti[ℓ], and does not contain Byzantine nodes, a contradiction is found in
RemoveContradictions(). Namely, the if conditions of line24holds.

Note that,p may not be a correct path even though it contains no Byzantinenodes.
For examplep may contain nodespz that are not even in the communication graph, i.e.,
pz ∈ P \ (N).

Let pr ∈ N be the first correct node on pathp. Such a node exists, becausepi is
correct and on the pathp. Sincepr is correct, after the execution ofComputeResults(),
we have thatpr ’s neighborhood,Nr, is encoded inResulti[r], see Lemma4.

Denote the last edge in the path(pr, ps), whereps ∈ P \ (N). Note that nodeps
is not a node in the system and sinceResulti[r] encodesNr ’s neighborhood, we have
thatps 6∈ Resulti[r]. Thus, the edge(pr, ps) is contradicting with the setResulti[r].
Namely, by the condition in line24, we have that line25must decreaseCount[ℓ].

We note that immediately before the functionRemoveContradictions() returns,
the integerCount[ℓ] may count only incorrect paths, which contain at least one Byzan-
tine node. Since there are at mostf Byzantine nodes,Count[ℓ] ≤ f as needed.

Theorem1 demonstrates the self-stabilization properties.

Theorem 1 (Self-stabilization).LetR be a fair execution of Algorithm1 that starts in
an arbitrary configuration andpi ∈ C be a correct node. WithinO(|N |) asynchronous
rounds, the system reaches a safe configuration after whichpi’s output is always legal,
see Definition2.

Proof. The systems reaches configurationc ∈ R of Lemma4 within O(|N |) asyn-
chronous rounds. We show thatc is a safe configuration by showing that the out-
put is legal, we must show thatConfirmedTopologyi encodes a graphGoutput =
(Vout, Eout), such that:(1) C ⊆ Vout, (2) (E∩ (C×C)) ⊆ Eout, (3) Vout ⊆ C∪B ⊆
N , and(4) Eout ⊆ (E ∩ (C × C)) ∪ (B × (N)) ⊆ P ×N .

For every correct nodepk ∈ C, we have thatNk is confirmed inc, see Lemma4.
Thus,pk ∈ Vout and condition(1) holds.

Let (pj , pk) be an edge in the communication graph between two correct nodes, we
show(pj , pk) ∈ Eout. Sincepj is correct, it is inserted toConfirmedTopologyi, see
Lemma4. Thus,(pj , pk) ∈ edges(Nj) ∧ edges(Nj) ⊆ ConfirmedTopologyi in c,
thus condition(2) holds as well.

There is no pℓ ∈ P \ (N) and nodepj ∈ N , such that (pℓpj) ∈
ConfirmedTopologyi, see Lemma5. Thus,Vout ⊆ C ∪ B ⊆ N and Eout ⊆
(E ∩ (C × C)) ∪ (B × (N)) ⊆ P ×N . I.e., conditions(3) and(4) hold in c.



B Implementation proposals forgetDisjointPaths()

We consider the problem of relaying messages over the setCorrectPaths when
only ConfirmedTopology is known, and propose three implementations to the func-
tion getDisjointPaths(). The value ofConfirmedTopology is a set of directed
edges(pi, pj). An undirected edge is approved if both(pi, pj) and(pj , pi) appear in
ConfirmedTopology. Other edges inConfirmedTopology are said to be suspicious.
The arguments used here assume that the system is in a safe configuration with respect
to Algorithm 1. For each of the proposed implementations, we show that|Paths| is
polynomial andCorrectPaths ⊆ Paths. Thus, the sender and the receiver can ex-
change messages using a polynomial number of paths and message send operations,
because each path inPaths is of linear length.

The case of constantr and ∆. The sender and the receiver exchange messages
by using all possible paths between them. This is feasible only when consideringr-
neighborhoods, rather than the entire connected component, where the neighborhood
radius,r, and the node degree∆ are constants.

The case of constantf . This procedure entails sending a message on a path set,
Paths, where|Paths| is polynomial andCorrectPaths ⊆ Paths.

For each possible choice off system nodes,p1, p2, . . . pf , the sender and
the receiver compute a new graphG(p1, p2, . . . pf ) that is the result of removing
p1, p2, . . . pf , from Gout, which is the graph defined by the discovered topology,
ConfirmedTopology. Let P(p1, p2, . . . pf ) be a set off + 1 vertex-disjoint paths
in G(p1, p2, . . . pf ) (or the empty set whenP(p1, p2, . . . pf ) does not exists) and
Paths =

⋃
p1,p2,...pf

P(p1, p2, . . . pf ). We show polynomial message cost by showing
that |Paths| is polynomial. We also show that for at least one choice ofp1, p2, . . . pf ,
has a corresponding setP(p1, p2, . . . pf ) that containsCorrectPaths.

First we show that this procedure only sends messages through a polynomial num-
ber of paths. There areO(nf ) possible chooses off system nodes. Thus,O(nf ) path
sets are computed, and sincef is a constant, this number is polynomial. Moreover, each
such set contains at mostf +1 simple paths of linear length, becausepi only computes
sets,P(p1, p2, . . . pf ), of sizef + 1. Thus, the sender and the receiver can exchange
messages using a polynomial number of paths and message sendoperations.

We show thatCorrectPaths ⊆ Paths. Consider the permutation choice,
p1, p2, . . . pf , in which the set actually contains the set of Byzantine nodes in the system.
ThusG(p1, p2, . . . pf) contains only correct nodes. Furthermore, at leastf+1 paths that
were present inGout are still present inG(p1, p2, . . . pf ), sinceG(p1, p2, . . . pf) was
obtained fromGout by the removal off (Byzantine) nodes,p1, p2, . . . pf . Hence, there
are at leastf + 1 correct vertex-disjoint paths inG(p1, p2, . . . pf), in P(p1, p2, . . . pf )
and inPaths.

The case of no Byzantine neighbors The procedure assumes that any Byzan-
tine node has no directly connected Byzantine neighbor in the communication graph.
Specifically, this polynomial cost solution considers the (extended) graph,Gext, that in-
cludes all the edges inconfirmedTopology andsuspicious edges. Given three nodes,
pi, pj , pk ∈ P , we say that nodepi considers the undirected edge(pk, pj) suspicious,
if the edge appears as a directed edge inConfirmedTopologyi for only one direction,
e.g.,(pj , pk).



The extended graph,Gext, may contain fake edges that do not exists in the com-
munication graph, but Byzantine nodes reports on their existence. Nevertheless,Gext

includes all the correct paths of the communication graph,G. Therefore, the2f + 1
vertex-disjoint paths that exists inG also exists inGext and they can facilitate a poly-
nomial cost solution for the message exchange task, as we next show.

Let G′ = (N,EG′) be the graph computed fromConfirmedTopology and its
suspicious edges. We demonstrate thatG′’s edges,EG′ , contains the edges,EG, of the
communication graph,G. Let us considere = (pj , pk) ∈ EG and show thate ∈ EG′ .
When bothpj andpk are correct, the correctness of Algorithm1 implies e ∈ EG′ .
Suppose thatpj is correct andpk is Byzantine, and consider the different cases in which
pk decides to report (or not to report) aboute as part of its local neighborhood. Namely,
eithere ∈ ConfirmedTopology, or e is a suspicious edge, becausepi reports about
e, andpk decides to report, and respectively, not to report. SinceG ⊆ G′, G′ must
contain2f + 1 vertex-disjoint paths between any senderps and receiverpr, because
G does. Moreover, the same arguments implies that there may beat mostf incorrect
paths, which contain each at least one Byzantine node. Hence, there are at leastf + 1
correct vertex-disjoint paths inPaths.

C Correctness of Algorithm 2

Definitions7, 8 and9 are needed for ClaimC, ClaimC and Lemma6.

Definition 7 (Confirmation). Given configurationc, we say that messagem is con-
firmed (by the receiver)whenm ∈ OutputMessageQueue.

Definition 8 (Approve). Given fair execution,R, of Algorithm2, we say that message
m = 〈Source, Destination, V isitedPath, IntentedPath, ARQLabel, DATA,
Payload〉 is being approved (by the senderpSource) during the first atomic step,
asender , in which the sender executes line18, whereSource = sender ARQLabel =
m.ARQLabel andPayload = m.Payload, see line17. Denote bycapproved the con-
figuration that immediately followsasender. Given configurationc that appears after
capproved in R, we say that messagem is approved (by the sender)in configurationc.

Definition 9 (Clear-sender-receiver).Given configurationc, we say that the sender
is clear (with respect to the receiver), if the queueConfirmations[receiver] = ∅
in c. Moreover, the receiver isclear (with respect to the sender), if the queue
ReceivedMessages[sender] = ∅ in c.

Claim C shows that a message that is relayed on a correct path is received at the
destination withinO(|N |) asynchronous rounds. Moreover, the destination receives the
message with correct visiting set.

Claim. Let R be a fair execution of Algorithm2 that starts in a safe configuration,c,
with respect to Algorithm1. Let psource, pdest ∈ C be pair of correct nodes. Letcsend
be the configuration immediately following a step in whichpsource sends messageMsg
on a correct pathPath = psource, p1, p2, . . . pdest from source,psource, to destination,
pdest. Within O(|N |) asynchronous rounds,pdest receivesMsg with a visiting set con-
taining all nodes onPath exceptpdest.



Proof. Upon the arrival of messagem to pk (line 5), nodepi asserts that he is not
the destination,pdest, (line 6). Immediately after,pi sends the messagem to the next
neighbor,pi+1, see line8. Since the same argument holds whenpj sendsm to the next
node inpath, we have that within|Path| asynchronous rounds,m is delivered to node
pdest.

ClaimC says that when the sender repeatedly sends messageMsg, for a duration of
at leastO(|N |) asynchronous rounds, the receiver eventually confirms messageMsg.

Claim. Let R be a fair execution of Algorithm2 that starts in a safe configura-
tion, c, with respect to Algorithm1. Let ps, pr ∈ C be a pair of correct send-
ing and receiving nodes. Suppose that, for a duration of at least O(capacity ·
|N |) asynchronous rounds,ps’s steps include only the execution of the function
ByzantineFaultT olerantSend(Msg) in the loop of line4. Within that period, the
system reaches configurationcreceive in whichpr confirmsMsg.

Proof. Denotecsend as the configuration immediately following the first step in which
ps sends messageMsg in R, see line26. Within O(capacity · |N |) asynchronous
rounds, the first frame containingMsg arrives atpr, see ClaimC. Moreover, after
anotherO(capacity · |N |) asynchronous rounds, every correct path relays message
Msg at leastO(capacity · |N |) times. This is correct since every asynchronous round,
ps sends a new frame containingMsg on each of the2f + 1 vertex-disjoint paths.
Moreover, by ClaimC, the last frame sent on all2f + 1 paths arrives after another
O(capacity · |N |).

Assume, in the way of proof by contradiction, thatMsg is not confirmed bypr. This
implies that the queues,ReceivedMessages[ps][∗], in pr containing messages sent
from ps were not cleared at least sincecsend, see line22. Thus,pr containscapacity ·
n+1 indications ofMsg onf+1 vertex-disjoint paths. Denoteclast as the configuration
immediately after the arrival of the(capacity · n+ 1)-th frame of thef + 1’th path to
relay capacity · n + 1 frames containingMsg. Immediately afterclast, ps must go
through line12, because the conditions in line12hold. Thus, a contradiction andMsg
is confirmed withinO(capacity · |N |) asynchronous rounds.

Claim C says that when the receiver is sending acknowledgments about a message,
that message eventually becomes approved. We note that Claim C considers acknowl-
edgments sent from the receiver to the sender, rather than messages sent from the sender
to the receiver, as in ClaimC.

Claim. Let R be a fair execution of Algorithm2 that starts in a safe configura-
tion, c, with respect to Algorithm1. Let ps, pr ∈ C be a pair of correct send-
ing and receiving nodes. Suppose that, for a duration of at least O(capacity ·
|N |) asynchronous rounds,pr’s steps include only the execution of the function
ByzantineFaultT olerantSend(Ack) in the loop of line23. That is,pr is sending
acknowledgments on messageMsg. Within that period, the system reaches configura-
tion creceive in whichps approvesMsg, see Definition8.

Proof. Denotecsend as the configuration immediately following the first step in which
pr sends acknowledgmentAck in R, see line23. Within O(capacity · |N |) asyn-
chronous rounds, the first frame containingAck arrives atps, see ClaimC. Moreover,



after anotherO(capacity ·|N |) asynchronous rounds, every correct path relays message
Ack at leastO(capacity · |N |) times. This is correct since every asynchronous round,
pr sends a new frame containingAck on each of the2f + 1 vertex-disjoint paths.
Moreover, by ClaimC, the last frame sent on all2f + 1 paths arrives after another
O(capacity · |N |).

The queues,Confirmations[pr][∗] are cleared only when a message sent topr is
approved, see line2. Since,pr is acknowledging the current message,Msg, by sending
Ack, the only message that can be approved isMsg. This is true since each path,Path,
may contain at mostcapacity · |N | acknowledgments for other messages in the path
queues.

Assume, in the way of proof by contradiction, thatMsg is not approved byps.
By the arguments above,ps’s queues,Confirmationss[pr][∗], which containspr ’s
acknowledgments thatps received, were not cleared at least sincecsend, see line2.
Thus,ps containscapacity · n + 1 indications ofAck on f + 1 vertex-disjoint paths.
Denoteclast as the configuration immediately after the arrival of the(capacity·n+1)-th
frame of thef+1’th path to relaycapacity ·n+1 frames containingAck. Immediately
afterclast, ps must go through line18, because the conditions in line18 hold. Thus, a
contradiction andMsg is approved withinO(capacity · |N |) asynchronous rounds.

Lemma6 shows that the senders repeatedly fetch messages.

Lemma 6. LetR be a fair execution of Algorithm2 that starts in a safe configuration,
c, with respect to Algorithm1. Letps, pr ∈ C be pair of correct sending and receiving
nodes. Moreover,cℓ is the configuration that immediately follows theℓ-th time inR in
which ps fetches a message from the input queue. For everyℓ, the system reachescℓ
withinO(ℓ · |N |) asynchronous rounds.

Proof. By the code of Algorithm2, on every iteration of the do forever loop (lines2
to 4), a message is fetched in line3. This do forever loop includes another loop in
line 4. We prove the lemma by showing that the loop of line4 is completed within
O(|N |) asynchronous rounds.

The proof considers the case in which the sender,ps, does not wait in line4 for a
long time before considering the case in whichps does wait. We show that for the latter
case, the receiver,pr, confirmsps’s current message. After confirming the message, the
receiver,pr, begins sending acknowledgments to the sender,ps. The proof shows that
after the acknowledgments are sent,ps approves the message and fetches a new one.
We show this by considering the case in whichpr repeatedly sends acknowledgments
for a sufficient amount of time, and a case in which it does not.

Suppose thatps does not wait in line4 more thanO(capacity · |N |) asynchronous
rounds. In this case,ps starts the infinite loop again withinO(capacity · |N |) asyn-
chronous rounds, and fetch a new message, see line3. Thus, for the case in whichps
does not wait in line4 more thanO(capacity · |N |) asynchronous rounds, the lemma
is correct.

Suppose thatps is executing line4 and waits for acknowledgments on messageMsg
for more thanO(capacity · |N |) asynchronous rounds. Thus,ps floods2f + 1 vertex-
disjoint paths with the messageMsg, see Figure2. Eventually, the receiver,pr, receives
messageMsg for O(capacity · |N |) times onf + 1 vertex-disjoint paths and confirms



Msg, see ClaimC. After confirming it, the receiver sends acknowledgments on2f +1
vertex-disjoint paths until confirming a new messageMsgnew. This is true because the
condition in line23holds only when a new message is confirmed, see line13.

Let us consider the case in which, duringO(capacity · |N |) asynchronous rounds,
messageMsgnew does not arrive to the receiver. By ClaimC, eventually the sender
receives the acknowledgments forcapacity ·n+1 times onf +1 vertex-disjoint paths.
Claim C also says that the sender considers the message accepted by the receiver. In
line 18, the sender assignsApproved = true. Thus, the condition in line4 holds and
the sender fetches the next message, see line3. Hence, the system reaches configuration
cfetch that immediately follows a step in which the sender,ps, fetches the next message.
Thus, for the case in which, duringO(capacity · |N |) asynchronous rounds, message
Msgnew does not arrive to the receiver, the lemma is correct.

We continue by considering the case in which, duringO(capacity · |N |) asyn-
chronous rounds, messageMsgnew does arrive to the receiver. Letcconf be the config-
uration that immediately follows the step in whichpr confirmsMsg. Since the receiver
confirmsMsg, we have thatpr is clear (with respect to the sender) in configuration
cconf , see Definition9 and line22.

If Msgnew was sent by the sender, it must have been fetched afterc, andcfetch is
reached when messageMsgnew is fetched. It may be the case however, thatMsgnew
was not sent by the sender. MessageMsgnew was confirmed by2f + 1 vertex-disjoint
paths. Since there are at mostf Byzantine nodes, at least one of these paths,Path, must
be correct. Moreover, incconf , the receiver is clear, thus thecapacity · n + 1 thatpr
counts inReceivedMessages[ps][∗] have all been received after configurationcconf .
Note that the sender sends at least one of these messages, because at mostcapacity · n
messages could be in the edges ofPath at any given configuration. Thus the sender
sendsMsgnew, which ps fetches immediately beforecfetch. I.e., the system reaches
cfetch.

Theorem1 says that, starting from the fourth (or even the third) message that the
sender fetches, the receiver confirms the sender’s messages. The proof of Theorem1 is
based on Lemma7, which says that, in every sequence of four messages that thesender
is fetching, the receiver confirms the fourth (or even the third) message.

Lemma 7. LetR be a fair execution of Algorithm2 that starts in a safe configuration,
cstart, with respect to Algorithm1. Let ch be a configuration that immediately follows
the h-th step in which the sender fetches theh-th input queue message,mh. Within
O(|N |) asynchronous rounds, the receiver confirms messagem4.

Proof. Claim. In c2, the sender is clear (with respect to the receiver), see Definition 9.
Proof. By definition,c2 immediately follows atomic stepa2, in which, after clearing
the confirmation queue in line2, the sender fetches messagem2 and sends it. �

Claim. Between the configurationsc3 andc4, there is a configurationcreceiver−clear in
which the receiver is clear (with respect to the sender).

Proof. Suppose, without the loss of generality, that immediately after csender−clear,
the sender is waiting for a message with label1. By lemma 6, the sender even-
tually fetches the next message. The sender can only fetch a new message once



Approved is true, see line4. Moreover,Approved is only set totrue once the queue
Confirmations[receiver][∗] contains2f + 1 flooded paths, see line18. Thus, the
sender counts2f + 1 vertex-disjoint paths that relayed acknowledgments with label
1. Moreover, the sender is clear incsender−clear . Hence, configurationcsender−clear
contains no message inConfirmations[receiver][∗]. Starting fromcsender−clear , the
sender receivescapacity · n+ 1 acknowledgments on2f + 1 vertex-disjoint paths for
the current message with label1. Note that at least one of these2f + 1 paths,Path, is
correct, because there aref Byzantine. Since|Path| ≤ n and each edge onPath may
contain at mostcapacity messages, we have that at least one of the acknowledgments
that includesPath as its visiting path, is sent by the receiver betweencsender−clear and
configurationcreceiver−send ∈ R. We show thatcreceiver−send = creceiver−clear .

This means that aftercsender−clear , the sender clears the confirmations queue,
Confirmations[receiver][∗], and fetches the next message, assigning it the label2,
see lines2 through line4. By similar arguments, we know that the receiver sends at
least one acknowledgment with label2.

To conclude, there is a configurationc ∈ R in which the receiver is sending ac-
knowledgments with label1, and then a configurationc′ in which the receiver sends
acknowledgments with label2. Moreover, between two consecutive executions of
line 23, the receiver has to go through line22. Thus, the receiver cleared it’s message
queues,Confirmations[sender][∗], immediately before configurationcreceiver−clear
andcreceiver−send = creceiver−clear . �

Let us consider configurationcreceiver−clear from the end of proof of ClaimC.
The next message to be sent aftercreceiver−clear , is m4, the message fetched in

c4, with label0. Betweencreceiver−clear andc4, all messages sent by the sender have
the label2. By arguments stated above, the message,m, that is the next message to
be confirmed aftercreceiver−clear , must have been sent by the sender at least once
since creceiver−clear . The sender, sends only messages with label0 and 2. More-
over, the last message to be confirmed had a label2. Thus,CurrentLabel = 2, see
line 21. Any sent message with label2 is not inserted to the confirmations queue,
Confirmations[sender][∗] betweencreceiver−clear and the configuration that imme-
diately follows the next sender’s fetch, see line20. Thus, by line3, the next message to
be confirmed is a message with label0, which must bem4.

Theorem 1 (Self-stabilization)LetR be a fair execution of Algorithm2 that starts in
an arbitrary configuration. WithinO(|N |) asynchronous rounds, the system reaches a
safe configurationc after which: (1) for every stepams where the sender sendsm there
is a corresponding stepamr ∈ R where the receiver confirms messagem, and (2) for
every stepamr , there is a corresponding step,ams ∈ R, that occurs beforeamr and in
which the sender sendsm.

Proof. Let c be the configuration that ClaimC denote asc4, which the system reaches
within O(|N |) asynchronous rounds, see Lemma6. Letmi be thei-th message fetched.

Suppose thati ≥ 4. Lemma7 considers the four consecutive messagesmi−3, . . .mi

and says that the receiver confirms messagemi. Thus, condition (1) holds.
Condition (2) follows from arguments similar to the ones used in the

proof of Claim C. Namely, for the case ofi ≥ 5, messagemi−1 is con-



firmed, see lemma7. Immediately after the receiver confirmsmi−1, it clears
the queueReceivedMessages[sender][∗], see lines20 to 22. Thus, there ex-
ists a configurationcreceiver−clear in which the receiver is clear (with respect
to the sender) beforeci, see Definition9. Moreover, a message is confirmed
only if the queueReceivedMessages[sender][∗] contains2f + 1 flooded paths,
see line 12. These flooded paths implies that in configurationci, the queue
ReceivedMessages[sender][∗] contains capacity · n + 1 indications of mi on
2f + 1 node disjoint paths. Thus,mi is confirmed only after a period that follows
creceiver−clear and includes its reception at leastcapacity · n+ 1 times on each of the
2f + 1 vertex-disjoint paths.

Recall that we assume that there are at mostf Byzantine nodes in the system. At
least one path,Path, of the above2f + 1 paths is correct. Moreover,|Path| ≤ n and
each edge onPath may contain at mostcapacity messages. Thus, at least one of the
capacity · n + 1 message that were relayed on the correct pathPath was sent by the
sender. This completes the correctness proof.


