Skip to main content

What Can Fuzzy Cluster Analysis Contribute to Clustering of High-Dimensional Data?

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8256))

Abstract

Cluster analysis of high-dimensional data has become of special interest in recent years. The term high-dimensional data can refer to a larger number of attributes – 20 or more – as they often occur in database tables. But high-dimensional data can also mean that we have to deal with thousands of attributes as in the context of genomics or proteomics data where thousands of genes or proteins are measured and are considered in some analysis tasks as attributes.

A main reason, why cluster analysis of high-dimensional data is different from clustering low-dimensional data, is the concentration of norm phenomenon, which states more or less that the relative differences between distances between randomly distributed points tend to be more and more similar in higher dimensions.

On the one hand, fuzzy cluster analysis has been shown to be less sensitive to initialisation than, for instance, the classical k-means algorithm. On the other, standard fuzzy clustering is stronger affected by the concentration of norm phenomenon and tends to fail easily in high dimensions. Here we present a review of why fuzzy clustering has special problems with high-dimensional data and how this can be amended by modifying the fuzzifier concept. We also describe a recently introduced approach based on correlation and an attribute selection fuzzy clustering technique that can be applied when clusters can only be found in lower dimensions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berthold, M., Borgelt, C., Höppner, F., Klawonn, F.: Guide to Intelligent Data Analysis: How to Intelligently Make Sense of Real Data. Springer, London (2010)

    Book  Google Scholar 

  2. Kerr, G., Ruskin, H., Crane, M.: Techniques for clustering gene expression data. Computers in Biology and Medicine 38(3), 383–393 (2008)

    Article  Google Scholar 

  3. Pommerenke, C., Müsken, M., Becker, T., Dötsch, A., Klawonn, F., Häussler, S.: Global genotype-phenotype correlations in pseudomonas aeruginosa. PLoS Pathogenes 6(8) (2010), doi:10.1371/journal.ppat.1001074

    Google Scholar 

  4. Klawonn, F., Höppner, F., Jayaram, B.: What are clusters in high dimensions and are they difficult to find? In: Proc. CHDD 2013, Springer, Berlin (to appear, 2013)

    Google Scholar 

  5. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Durrant, R.J., Kabán, A.: When is ’nearest neighbour’ meaningful: A converse theorem and implications. J. Complexity 25(4), 385–397 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. François, D., Wertz, V., Verleysen, M.: The concentration of fractional distances. IEEE Trans. Knowl. Data Eng. 19(7), 873–886 (2007)

    Article  Google Scholar 

  8. Jayaram, B., Klawonn, F.: Can unbounded distance measures mitigate the curse of dimensionality? Int. Journ. Data Mining, Modelling and Management 4, 361–383 (2012)

    Article  Google Scholar 

  9. Aggarwal, C.C.: Re-designing distance functions and distance-based applications for high dimensional data. SIGMOD Record 30(1), 13–18 (2001)

    Article  Google Scholar 

  10. Hsu, C.M., Chen, M.S.: On the design and applicability of distance functions in high-dimensional data space. IEEE Trans. Knowl. Data Eng. 21(4), 523–536 (2009)

    Article  MathSciNet  Google Scholar 

  11. Domeniconi, C., Papadopoulos, D., Gunopulos, D.: Subspace clustering of high dimensional data. In: Proceedings of SIAM Conference on Data Mining 2004, pp. 517–521 (2004)

    Google Scholar 

  12. Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: A review. ACM SIGKDD Explorations Newsletter 6(1), 90–105 (2004)

    Article  Google Scholar 

  13. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data 3(1), 1–58 (2009)

    Article  Google Scholar 

  14. Keller, A., Klawonn, F.: Fuzzy clustering with weighting of data variables. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8, 735–746 (2000)

    MATH  Google Scholar 

  15. Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: A survey. IEEE Trans. Comput. Biol. Bioinf. 1(1), 24–45 (2004)

    Article  Google Scholar 

  16. Tanay, A., Sharan, R., Shamir, R.: Biclustering algorithms: A survey. In: Aluru, S. (ed.) Handbook of Computational Molecular Biology. Chapman and Hall, Boca Raton (2006)

    Google Scholar 

  17. Van Mechelen, I., Bock, H.H., De Boeck, P.: Two-mode clustering methods: a structured overview. Statistical Methods in Medical Research 13, 363–394 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dunn, J.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. Cybernetics and Systems 3(3), 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  20. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  21. Jayaram, B., Klawonn, F.: Can fuzzy clustering avoid local minima and undesired partitions? In: Moewes, C., Nürnberger, A. (eds.) Computational Intelligence in Intelligent Data Analysis. SCI, vol. 445, pp. 31–44. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Klawonn, F., Höppner, F.: What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier. In: Berthold, M.R., Lenz, H.J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 254–264. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Gustafson, D., Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In: IEEE CDC, San Diego, pp. 761–766 (1979)

    Google Scholar 

  24. Keller, A., Klawonn, F.: Adaptation of cluster sizes in objective function based fuzzy clustering. In: Leondes, C. (ed.) Intelligent Systems: Technology and Applications. Database and Learning Systems, vol. IV, pp. 181–199. CRC Press, Boca Raton (2003)

    Google Scholar 

  25. Bezdek, J., Keller, J., Krishnapuram, R., Pal, N.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer, Boston (1999)

    MATH  Google Scholar 

  26. Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley, Chichester (1999)

    MATH  Google Scholar 

  27. Winkler, R., Klawonn, F., Kruse, R.: Fuzzy c-means in high dimensional spaces. Fuzzy System Applications 1, 1–17 (2011)

    Article  Google Scholar 

  28. Höppner, F., Klawonn, F.: A contribution to convergence theory of fuzzy c-means and its derivatives. IEEE Transactions on Fuzzy Systems 11, 682–694 (2003)

    Article  Google Scholar 

  29. Krone, M., Klawonn, F., Jayaram, B.: RaCoCl: Robust rank correlation based clustering – an exploratory study for high-dimensional data. In: FUZZ-IEEE 2013, Hyderabad (2013)

    Google Scholar 

  30. Bodenhofer, U., Klawonn, F.: Robust rank correlation coefficients on the basis of fuzzy orderings: Initial steps. Mathware and Soft Computing 15, 5–20 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Bodenhofer, U., Krone, M., Klawonn, F.: Testing noisy numerical data for monotonic association. Information Sciences 245, 21–37 (2013)

    Article  Google Scholar 

  32. Krishnapuram, R., Freg, C.: Fitting an unknown number of lines and planes to image data through compatible cluster merging. Pattern Recognition 25, 385–400 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Klawonn, F. (2013). What Can Fuzzy Cluster Analysis Contribute to Clustering of High-Dimensional Data?. In: Masulli, F., Pasi, G., Yager, R. (eds) Fuzzy Logic and Applications. WILF 2013. Lecture Notes in Computer Science(), vol 8256. Springer, Cham. https://doi.org/10.1007/978-3-319-03200-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03200-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03199-6

  • Online ISBN: 978-3-319-03200-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics