Skip to main content

RANSAC Based Data Association for Underwater Visual SLAM

  • Chapter
ROBOT2013: First Iberian Robotics Conference

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 252))

Abstract

This paper presents an approach to perform data association in a monocular visual SLAM context. The proposed approach is designed to avoid the detection of false associations by means of RANSAC, and is well suited to help in localizing a robot in underwater environments. Experimental results embed the data association in a trajectory-based SLAM in order to evaluate its benefits when localizing an underwater robot. Qualitative and quantitative results are shown evaluating the effects of dead reckoning noise and the frequency of the SLAM updates.

This work is partially supported by the Spanish Ministry of Research and Innovation DPI2011-27977-C03-03 (TRITON Project), Govern Balear (Ref. 71/211) and FEDER funds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Shalom, Y., Rong Li, X., Kirubarajan, T.: Estimation with applications to tracking and navigation: theory algorithms and software. John Wiley and Sons, Inc. (2001)

    Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110, 346–359 (2008)

    Article  Google Scholar 

  3. Bonin, F., Burguera, A., Oliver, G.: Imaging systems for advanced underwater vehicles. Journal of Maritime Research 8(1), 65–86 (2011)

    Google Scholar 

  4. Burguera, A., González, Y., Oliver, G.: The UspIC: Performing scan matching localization using an imaging sonar. Sensors 12, 7855–7885 (2012)

    Article  Google Scholar 

  5. Burguera, A., Oliver, G., González, Y.: Scan-based slam with trajectory correction in underwater environment. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), Taipei, Taiwan (2010)

    Google Scholar 

  6. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6) (June 2007)

    Google Scholar 

  7. Elibol, A., Gracias, N., Garcia, R.: Augmented State Extended Kalman Filter combined framework for topology estimation in large-area underwater mapping. Journal of Field Robotics 27, 656–674 (2010)

    Article  Google Scholar 

  8. Estrada, C., Neira, J., Tardós, J.D.: Hierarchical SLAM: real-time accurate mapping of large environments. IEEE Transactions on Robotics 21(4), 588–596 (2005)

    Article  Google Scholar 

  9. Eustice, R.M., Pizarro, O., Singh, H.: Visually augmented navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering 33(2), 103–122 (2008)

    Article  Google Scholar 

  10. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: Dense 3d reconstruction in real-time. In: IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany (June 2011)

    Google Scholar 

  12. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual odometry and mapping for autonomous flight using an rgb-d camera. In: Proceedings of the International Symposium on Robotics Research (ISRR), Flagstaff, Arizona, USA (August 2011)

    Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Rauvi, Trident: UWSim: The underwater simulator. Web (accessed April 22, 2013)

    Google Scholar 

  15. Ribas, D., Ridao, P., Neira, J.: Underwater SLAM for Structured Environments Using an Imaging Sonar. Springer Tracts in Advanced Robotics, vol. 65. Springer (2010)

    Google Scholar 

  16. Smith, R., Cheeseman, P., Self, M.: A stochastic map for uncertain spatial relationships. In: Proceedings of International Symposium on Robotic Research, pp. 467–474. MIT Press (1987)

    Google Scholar 

  17. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008), http://www.vlfeat.org

  18. WillowGarage. Ros.org. Web (accessed April 22, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Burguera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burguera, A., González, Y., Oliver, G. (2014). RANSAC Based Data Association for Underwater Visual SLAM. In: Armada, M., Sanfeliu, A., Ferre, M. (eds) ROBOT2013: First Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-03413-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03413-3_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03412-6

  • Online ISBN: 978-3-319-03413-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics