Skip to main content

Haptic Feedback in Surgical Robotics: Still a Challenge

  • Chapter
Book cover ROBOT2013: First Iberian Robotics Conference

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 252))

Abstract

Endowing current surgical robotic systems with haptic feedback to perform minimally invasive surgery (MIS), such as laparoscopy, is still a challenge. Haptic is a feature lost in surgical teleoperated systems limiting surgeons capabilities and ability. The availability of haptics would provide important advantages to the surgeon: Improved tissue manipulation, reducing the breaking of sutures and increase the feeling of telepresence, among others. To design and develop a haptic system, the measurement of forces can be implemented based on two approaches: Direct and indirect force sensing. MIS performed with surgical robots, imposes many technical constraints to measure forces, such as: Miniaturization, need of sterilization or materials compatibility, making it necessary to rely on indirect force sensing. Based on mathematical models of the components involved in an intervention and indirect force sensing techniques, a global perspective on how to address the problem of measurement of tool-tissue interaction forces is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Okamura, A.M.: Haptic feedback in robot-assisted minimally invasive surgery. Current Opinion in Urology 19(1), 102 (2009)

    Article  Google Scholar 

  2. van den Dobbelsteen, J.J., Lee, R.A., van Noorden, M.: Indirect measurement of pinch and pull forces at the shaft of laparoscopic graspers. Medical & Biological Engineering & Computing 50(3), 215–221 (2012)

    Article  Google Scholar 

  3. Sciavicco, L.: Robotics: modelling, planning and control. Springer (2009)

    Google Scholar 

  4. Picod, G., Jambon, A.C., Vinatier, D., Dubois, P.: What can the operator actually feel when performing a laparoscopy? Surgical Endoscopy and Other Interventional Techniques 19(1), 95–100 (2005)

    Article  Google Scholar 

  5. Van den Dobbelsteen, J.J., Schooleman, A., Dankelman, J.: Friction dynamics of trocars. Surgical Endoscopy 21(8), 1338–1343 (2007)

    Article  Google Scholar 

  6. Yang, T., Xiong, L., Zhang, J., Yang, L., Huang, W., Zhou, J., Liu, J., et al.: Modeling cutting force of laparoscopic scissors. In: 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI), pp. 1764–1768. IEEE (2010)

    Google Scholar 

  7. Meier, U., Lpez, O., Monserrat, C., Juan, M.C., Alcaniz, M.: Real-time deformable models for surgery simulation: a survey. Computer Methods and Programs in Biomedicine 77(3), 183–197 (2005)

    Article  Google Scholar 

  8. Rosen, J., Brown, J.D., Chang, L., Sinanan, M.N., Hannaford, B.: Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model. IEEE Transactions on Biomedical Engineering 53(3), 399–413 (2006)

    Article  Google Scholar 

  9. Kim, J., Janabi-Sharifi, F., Kim, J.: A haptic interaction method using visual information and physically based modeling. IEEE/ASME Transactions on Mechatronics 15(4), 636–645 (2010)

    Article  Google Scholar 

  10. Greminger, M.A., Nelson, B.J.: Modeling elastic objects with neural networks for vision-based force measurement. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2003, vol. 2, pp. 1278–1283. IEEE (2003)

    Google Scholar 

  11. Frank, B., Schmedding, R., Stachniss, C., Teschner, M., Burgard, W.: Learning Deformable Object Models for Mobile Robot Navigation using Depth Cameras and a Manipulation Robot. In: Proc. of the IEEE Intl. Conf. on Robotics & Automation, ICRA (2010)

    Google Scholar 

  12. Bickel, B., Bcher, M., Otaduy, M.A., Matusik, W., Pfister, H., Gross, M.: Capture and modeling of non-linear heterogeneous soft tissue. ACM Transactions on Graphics (TOG) 28(3), 89 (2009)

    Article  Google Scholar 

  13. Fumagalli, M., Gijsberts, A., Ivaldi, S., Jamone, L., Metta, G., Natale, L., Nori, F., Sandini, G.: Learning to exploit proximal force sensing: a comparison approach. In: Sigaud, O., Peters, J. (eds.) From Motor Learning to Interaction Learning in Robots. SCI, vol. 264, pp. 149–167. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Jamali, N., Sammut, C.: Slip prediction using Hidden Markov models: Multidimensional sensor data to symbolic temporal pattern learning. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 215–222. IEEE (2012)

    Google Scholar 

  15. Sinapov, J., Sukhoy, V., Sahai, R., Stoytchev, A.: Vibrotactile recognition and categorization of surfaces by a humanoid robot. IEEE Transactions on Robotics 27(3), 488–497 (2011)

    Article  Google Scholar 

  16. Kuchenbecker, K.J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P.J., Lee, D.I.: VerroTouch: high-frequency acceleration feedback for telerobotic surgery. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010, Part I. LNCS, vol. 6191, pp. 189–196. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J.A., Lilavois, M., Wedmid, A., Lee, D.I., Kuchenbecker, K.J.: Tool contact acceleration feedback for telerobotic surgery. IEEE Transactions on Haptics 4(3), 210–220 (2011)

    Article  Google Scholar 

  18. Reiley, C.E., Akinbiyi, T., Burschka, D., Chang, D.C., Okamura, A.M., Yuh, D.D.: Effects of visual force feedback on robot-assisted surgical task performance. The Journal of Thoracic and Cardiovascular Surgery 135(1), 196–202 (2008)

    Article  Google Scholar 

  19. Talasaz, A., Trejos, A.L., Patel, R.V.: Effect of force feedback on performance of robotics-assisted suturing. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 823–828. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Marbán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marbán, A., Casals, A., Fernández, J., Amat, J. (2014). Haptic Feedback in Surgical Robotics: Still a Challenge. In: Armada, M., Sanfeliu, A., Ferre, M. (eds) ROBOT2013: First Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-03413-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03413-3_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03412-6

  • Online ISBN: 978-3-319-03413-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics