Skip to main content

Multi-robot Operation System with Conflict Resolution

  • Chapter

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 252))

Abstract

Applications with large teams of robots are becoming more and more useful. If the scenario is very crowded or very dynamic, conflict resolution when using a shared workspace is a challenging problem. In this paper, an scalable, decentralized and reactive approach for collision avoidance is presented. The robots can navigate in a 2D environment avoiding each other and without high computational requirements. In addition to the conflict resolution algorithm, a multi-robot simulator is presented. The system is flexible and can be used to simulate different algorithms with realistic robots. Finally, an extension of the simulator is proposed in order to operate real robots in a multi-robot testbed. Results of the collision avoidance approach are shown with both real and simulated robots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abichandani, P., Ford, G., Benson, H.Y., Kam, M.: Mathematical programming for multi-vehicle motion planning problems. In: IEEE International Conference on Robotics and Automation, pp. 3315–3322 (2012)

    Google Scholar 

  2. Alejo, D., Díaz-Báñez, J., Cobano, J., Pérez-Lantero, P., Ollero, A.: The velocity assignment problem for conflict resolution with multiple aerial vehicles sharing airspace. Journal of Intelligent & Robotic Systems 69(1-4), 331–346 (2013)

    Article  Google Scholar 

  3. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., Siegwart, R.: Optimal reciprocal collision avoidance for multiple non-holonomic robots. In: Martinoli, A., Mondada, F., Correll, N., Mermoud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., Sty, K. (eds.) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol. 83, pp. 203–216 (2013)

    Google Scholar 

  4. van den Berg, J., Snoeyink, J., Lin, M., Manocha, D.: Centralized path planning for multiple robots: Optimal decoupling into sequential plans 2 (2009)

    Google Scholar 

  5. Claes, D., Hennes, D., Tuyls, K., Meeussen, W.: Collision avoidance under bounded localization uncertainty. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1192–1198 (2012)

    Google Scholar 

  6. Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., Zavlanos, M.M.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 42(2), 229–243 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th International Conference on Advanced Robotics, pp. 317–323 (2003)

    Google Scholar 

  8. Hoy, M., Matveev, A.S., Savkin, A.V.: Collision free cooperative navigation of multiple wheeled robots in unknown cluttered environments. Robotics and Autonomous Systems 60(10), 1253–1266 (2012)

    Article  Google Scholar 

  9. Jimenez-Gonzalez, A., Martinez-de Dios, J.R., Ollero, A.: An integrated testbed for cooperative perception with heterogeneous mobile and static sensors. Sensors 11(12), 11516–11543 (2011), http://www.mdpi.com/1424-8220/11/12/11516

    Article  Google Scholar 

  10. Pallottino, L., Scordio, V., Bicchi, A., Frazzoli, E.: Decentralized cooperative policy for conflict resolution in multivehicle systems. IEEE Transactions on Robotics 23(6), 1170–1183 (2007)

    Article  Google Scholar 

  11. Peng, J., Akella, S.: Coordinating multiple robots with kinodynamic constraints along specified paths. The International Journal of Robotics Research 24(4), 295–310 (2005)

    Article  Google Scholar 

  12. Roussos, G., Kyriakopoulos, K.J.: Decentralized and prioritized navigation and collision avoidance for multiple mobile robots. In: Martinoli, A., Mondada, F., Correll, N., Mermoud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., Sty, K. (eds.) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol. 83, pp. 189–202 (2013)

    Google Scholar 

  13. Tanner, H.G., Kumar, A.: Formation stabilization of multiple agents using decentralized navigation functions. In: Robotics: Science and Systems, pp. 49–56 (2005)

    Google Scholar 

  14. Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Robotics Research, pp. 3–19. Springer (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferrera, E., Castaño, A.R., Capitán, J., Marrón, P.J., Ollero, A. (2014). Multi-robot Operation System with Conflict Resolution. In: Armada, M., Sanfeliu, A., Ferre, M. (eds) ROBOT2013: First Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-03413-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03413-3_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03412-6

  • Online ISBN: 978-3-319-03413-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics