Skip to main content

High Level Humanoid Postural Control Architecture with Human Inspiration

  • Chapter
  • 2953 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 252))

Abstract

This paper presents the novel humanoid postural control (PC) architecture for the humanoid robot TEO. It is outlined the high level and human inspired system for improving task performance. The study of the human PC system has inspired all processes involved in the control system. The information coming from sensors is interpreted applying neurophysics concepts and, then, the resulting perceptual parameters are applied for task performance improvement. The new PC system is an anticipative module complementing an existing reactive subsystem. This design tries to replicate the operation of the human case. In this way, the reactions can be more complex and higher perturbations levels can be overcome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kato, I.: The WABOT-1. Bulletin of Science and Engineering Research Laboratory Waseda University special issue on WABOT, 62 (1973), http://www.humanoid.waseda.ac.jp/booklet/kato_2.html (accessed February 2, 2011)

  2. Hirose, M., Haikawa, Y., Takenaka, T., Hirai, K.: Development of humanoid robot ASIMO. In: International Conference on Intelligent Robots and Systems, IROS, vol. 13, pp. 1–6. IEEE, Maui (2001)

    Google Scholar 

  3. Oh, J.-H., Hanson, D., Kim, W.-S., Han, I.Y., Kim, J.-Y., Park, I.-W.: Design of Android type Humanoid Robot Albert HUBO. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1428–1433. IEEE (2006), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4058572

  4. Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., Akachi, K.: Humanoid robot HRP-3. In: IEEERSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 2471–2478. IEEE, Nice (2008)

    Chapter  Google Scholar 

  5. Vincent, J.V., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., Pahl, A.-K.: Biomimetics: its practice and theory. Journal of the Royal Society Interface the Royal Society 3(9), 471–482 (2006), http://rsif.royalsocietypublishing.org/content/3/9/471

    Article  Google Scholar 

  6. Eaton, M.: Evolving humanoids: Using artificial evolution as an aid in the design of humanoid robots. In: Iba, H. (ed.) Frontiers in Evolutionary Robotics, pp. 127–138. InTech (2008)

    Google Scholar 

  7. Horak, F.B., Macpherson, J.M.: Postural orientation and equilibrium, pp. 255–292. Wiley-Blackwell (2011)

    Google Scholar 

  8. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. In: Kandel, E.R., Schwartz, J.H., Jessell, T.M. (eds.) Fifth, p. 1414. McGraw-Hill (2000), http://www.amazon.com/Principles-Neural-Science-Eric-Kandel/dp/0838577016

  9. Kamm, K., Thelen, E., Jensen, J.: A dynamical systems approach to motor development. Physical Therapy 70(12), 763–775 (1990)

    Google Scholar 

  10. Kejonen, P.: Body Movements During Postural Stabilization. Medicine 500, 693 (2002), http://herkules.oulu.fi/isbn9514267931/html/

    Google Scholar 

  11. Agid, Y.: From posture to initiation of movement. Revue Neurologique 146(10), 536–542 (1990), http://www.ncbi.nlm.nih.gov/pubmed/2263815

    Google Scholar 

  12. Martin, J.P.: The basal ganglia and posture, 1st edn., p. 152. Lippincot, Philadelphia (1967)

    Google Scholar 

  13. Shumway-Cook, A., Woollacott, M.: Motor control: Theory and practical applications, 2nd edn., p. 614. Lippincott Wiliams & Wilkins (2000)

    Google Scholar 

  14. Dey, A.: Understanding and using context. Personal and Ubiquitous Computing 5(1), 4–7 (2001)

    Article  Google Scholar 

  15. Ortony, A., Partridge, D.: Surprisingness and expectation failure: what’s the difference? In: McDermott, J.P. (ed.) Proceedings of the 10th International Joint Conference on Artificial Intelligence, vol. 1, pp. 106–108. Morgan Kaufmann Publishers, Milan (1987)

    Google Scholar 

  16. Lorini, E., Falcone, R.: Modeling expectations in cognitive agents. In: Castelfranchi, C., Balkenius, C., Butz, M., Ortony, A. (eds.) AAAI 2005 Fall Symposium From Reactive to Anticipatory Cognitive Embodied Systems, pp. 114–121. AAAI Press, Washington (2005)

    Google Scholar 

  17. Meyer, W.U., Reisenzein, R., Schützwohl, A.: Toward a process analysis of emotions: The case of surprise. Motivation and Emotion 21(3), 251–274 (1997), http://www.springerlink.com/content/h56w0456812680q5

    Article  Google Scholar 

  18. Macedo, L., Reisenzein, R., Cardoso, A.: Modeling forms of surprise in artificial agents: empirical and theoretical study of surprise functions. In: Forbus, K., Gentner, D., Regier, T. (eds.) Proceedings of the 26th Annual Conference of the Cognitive Science Society, Chicago, pp. 873–878 (2004), http://csjarchive.cogsci.rpi.edu/Proceedings/2004/CogSci04.pdf

  19. Baldi, P., Itti, L.: Of bits and wows: A Bayesian theory of surprise with applications to attention. Neural Networks 23(5), 649–666 (2010), http://www.ncbi.nlm.nih.gov/pubmed/20080025

    Article  Google Scholar 

  20. Spitz, D.: A computational model of surprise 47 (2011)

    Google Scholar 

  21. Bernstein, N.: The co-ordination and regulation of movements. Neuropsychologia 6(1), 96 (1968)

    Google Scholar 

  22. Sherrington, C.: The integrative action of the nervous system. Nature 76, 122–122 (1962), http://www.nature.com/doifinder/10.1038/076122a0

    Google Scholar 

  23. Kelso, J.A.S., Saltzman, E.L.: Motor control: which themes do we orchestrate? Behavioral and Brain Sciences 5, 554–557 (1982)

    Article  Google Scholar 

  24. Ting, L.H.: Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture. In: Cisek, P., Drew, T., Kalaska, J.F. (eds.) Progress in Brain Research, vol. 165, pp. 299–321 (2007)

    Google Scholar 

  25. Arbib, M.A.: Brains, Machines and Mathematics, 2nd edn., p. 202. Springer, New York (1987)

    Book  MATH  Google Scholar 

  26. Latash, M.L., Krishnamoorthy, V., Scholz, J.P., Zatsiorsky, V.: Postural Synergies and Their Development. Neural Plasticity 12(2-3), 119–130 (2005), http://www.ncbi.nlm.nih.gov/pubmed/16097480

    Article  Google Scholar 

  27. Meyer, J.R.: Elements of Behavior (2006), http://www.cals.ncsu.edu/course/ent425/tutorial/Behavior/index.html

  28. Gorce, P., Vanel, O., Ribreau, C.: Equilibrium study of “human” robot. In: 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, pp. 1309–1314. IEEE, Vancouver (1995), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=537953

    Chapter  Google Scholar 

  29. Vukobratovic, M., Frank, A.A., Juricic, D.: On the stability of biped locomotion. IEEE Transactions on Biomedical Engineering 17(1), 25–36 (1970), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4502681

    Article  Google Scholar 

  30. Hodgins, J.K.: Biped Gait Transitions. In: Proceedings 1991 IEEE International Conference on Robotics and Automation, pp. 2092–2097. IEEE (1991), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=131936

  31. Hodgins, J.K.: Simulation of Human Running. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1320–1325. IEEE, San Diego (1994), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=351304

    Google Scholar 

  32. Bouisset, S., Zattara, M.: A sequence of postural movements precedes voluntary movement. Neuroscience Letters 22(3), 263–270 (1981)

    Article  Google Scholar 

  33. Nashner, L.M., McCollum, G.: The organization of human postural movements: A formal basis and experimental synthesis. Behavioral and Brain Sciences 8(01), 135–172 (1985), http://www.journals.cambridge.org/abstract_S0140525X00020008

    Article  Google Scholar 

  34. McCollum, G., Leen, T.: Form and exploration of mechanical stability limits in erect stance. Journal of Motor Behavior 21(3), 225–244 (1989), http://cat.inist.fr/?aModele=afficheN&cpsidt=6611470

    Article  Google Scholar 

  35. Brenière, Y., Dietrich, G.: Heel-off perturbation during gait initiation: biomechanical analysis using triaxial accelerometry and a force plate. Journal of Biomechanics 25(2), 121–127 (1992), http://www.ncbi.nlm.nih.gov/pubmed/1733988

    Article  Google Scholar 

  36. Van Der Helm, F.C.T., Rozendaal, L.: Musculoskeletal systems with intrinsic and proprioceptive feedback. In: Winters, J.M., Crago, P. (eds.) Biomechanics and Neural Control of Posture and Movement, 1st edn., pp. 164–174. Springer, New York (2000), http://e.guigon.free.fr/rsc/incoll/vanderHelmRozendaal00.pdf

    Chapter  Google Scholar 

  37. Levine, W.S., Zajac, F.E., Belzer, M.R., Zomlefer, M.: Ankle controls that produce a maximal vertical jump when other joints are locked. IEEE Transactions on Automatic Control 28(11), 1008–1016 (1983)

    Article  MATH  Google Scholar 

  38. Arbulu, M., Kaynov, D., Cabas, L.M., Balaguer, C.: The Rh-1 full-size humanoid robot: design, walking pattern generation and control. Journal of Applied Bionics and Biomechanics 6(3), 301–344 (2009)

    Article  Google Scholar 

  39. Pierro, P., Monje, C.A., Balaguer, C.: The virtual COM joints approach for whole-body RH-1 motion. In: Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 285–290. IEEE, Toyama (2009), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5326259

    Google Scholar 

  40. Pierro, P., Monje, C.A., Balaguer, C.: Modelling and control of the humanoid robot RH-1 for collaborative tasks. In: Proceedings of the 8th IEEE/RAS International Conference on Humanoid Robots, pp. 125–131. IEEE, Daejon (2008), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4755942

    Google Scholar 

  41. Monje, C.A., Martinez, S., Jardon, A., Pierro, P., Balaguer, C., Muñoz, D.: Full-Size humanoid robot TEO: Design attending mechanical robustness and energy consumption. In: Proceedings of the 2011 IEEE/RAS International Conference on Humanoid Robots, pp. 325–330. IEEE, Bled (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martinez, S., Jardón, A., Balaguer, C. (2014). High Level Humanoid Postural Control Architecture with Human Inspiration. In: Armada, M., Sanfeliu, A., Ferre, M. (eds) ROBOT2013: First Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-03413-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03413-3_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03412-6

  • Online ISBN: 978-3-319-03413-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics