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Abstract. Event-based visual servoing is a recently presented approach that 

performs the positioning of a robot using visual information only when it is re-

quired. From the basis of the classical image-based visual servoing control law, 

the scheme proposed in this paper can reduce the processing time at each loop 

iteration in some specific conditions. The proposed control method enters in ac-

tion when an event deactivates the classical image-based controller (i.e. when 

there is no image available to perform the tracking of the visual features). A vir-

tual camera is then moved through a straight line path towards the desired posi-

tion. The virtual path used to guide the robot improves the behavior of the previ-

ous event-based visual servoing proposal. 

Keywords: Visual Servoing, Event-based Control, Event-trigger, Visual 

Robot Control, Path planning. 

1 Introduction 

Currently, image-based control is a well-known approach to guide a robot using vis-

ual information [3]. These conventional approaches employ frame-based image acqui-

sition and processing technologies in order to continuously obtain the image, extract 

features and apply the visual servoing controller. In general, the use of this kind of 

technologies is not computationally efficient because they do not take advantage of the 

dynamic characteristics of visual scenes. The constant image information processing 

does not stop even when nothing relevant occurs. In opposite with the previous ap-

proach, the event-based visual systems allows to increase the system performance [4]. 

In this paper, an event-based visual servoing approach is proposed which permits to 

reduce the image data stream using the event-based control theory [1]. In this case, an 

event is considered as something that occurs which requires some response. Therefore, 

it is only necessary to obtain and process image information when an event is generated.  

Event-based control has been applied to many fields, as in [12] where this strategy is 

used to control the level of a water tank. A method approached to the evaluation of 

optical flow using an asynchronous event-based acquisition is developed in [2]. From 

a pair of event-based cameras, in [11] is described an event-based stereo matching al-

gorithm exploiting the asynchronous visual events. Recently, these cameras have been 

used in microrobotic applications [9]. In these works Ni et al. introduce an event-based 



 

iterative closest point algorithm to track a microgripper’s position at a high rate fre-

quency. These dynamic vision sensors (eDVS) have also been used to track angular 2D 

coordinates frame to guide and operate in real-time autonomous mobile robots [8]. 

As it is previously indicated, the visual controller only is applied when an event is 

detected. Therefore, a behavior must be indicated when an event is not detected in order 

to continuously guide the robot. To do this, an approach based on virtual visual servoing 

[10] is proposed. Using virtual visual servoing systems the camera parameters can be 

estimated iteratively. This is done so that the extracted visual features correspond to the 

same features computed by the projection of the 3D model according to the current 

camera parameters. This approach is employed to determine the 3D position of the 

camera when an event is generated. Therefore, when an event is not obtained the last 

3D camera position is known. This information is used to propose a new path planning 

algorithm which allows the robot guidance in the image virtual space when no real 

image information is obtained.   

The main contribution of the paper is the use of an event-based approach to guide a 

robot using image information. Furthermore, a path planning algorithm is integrated in 

order to determine the desired behaviour in the virtual image space when no real image 

information is obtained. This virtual information is employed in order to guide the robot 

when events are not generated. 

The paper is structured as follows: first, the basics of image-based visual servoing 

are detailed; the event-based controller using visual servoing is described in Section 3; 

Section 4 presents an improvement of this event-based visual servoing consisting on 

features’ prediction, Section 5 presents different experiments to validate the proposal; 

and finally, in Section 6 the main conclusions are discussed. 

2 Image-based visual servoing 

Image-based visual servoing is based in minimizing the error between current and de-

sired features on the image plane. The image acquired by the camera is the only infor-

mation needed to obtain that error. The image function describing the task can be rep-

resented by et = s – s*, where s is an M x 1 vector containing M visual features corre-

sponding to the current state, while s* denotes the visual features values in the desired 

state. 

In order to relate the variations in the image to the variations in the camera, the 

interaction matrix, Ls, is employed, 𝐬̇ = 𝐋s𝐫̇ [6], where  indicates the camera velocity. 

The control law of classical image-based visual servoing is obtained by imposing 

an exponential decrease of et ( ): 

  *

c s
ˆ= λ +

v L s s  (1) 

where 𝐋s
+̂ is the pseudoinverse of an approximation of the interaction matrix and λ is 

the proportional control gain. 

Image-based visual servoing can be schematized as in Fig. 1. This scheme shows 

how the image acquired by the camera located at the robot end-effector closes the con-

trol loop. This image provides the new position of the visual features, which are then 
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compared to the reference, consisting in the visual features position at the desired con-

figuration. The error computed in this way is then used in the control law shown in (1). 

The output of the controller is a robot end-effector velocity in the Cartesian 3D space. 

This velocity is performed by the robot’s internal controller, which computes the joint 

configuration to assure the desired end-effector velocity. 

 

Fig. 1. Classical image-based visual servoing scheme. 

3 Event-Based Visual servoing 

There are several reasons to modify this scheme in order to improve the image-

based visual servoing performance using the event-based control theory. As stated be-

fore, an event-based strategy can be employed in order to reduce the transfer of data 

between camera and controller. Thus, there will be an image transmission only when 

something relevant occurs (e.g. visual features are near the desired position or in a re-

gion where it can be loosen going out the image plane). In addition, large images from 

modern high-res and high-speed cameras increase considerably the image processing 

time necessary to segment the objects and obtain the position of the visual features. 

Finally, events can prevent a visual feature from going out of the field of vision, which 

may spoil the positioning task. 

The event-based visual servoing proposed in [5] is shown in Fig. 2. The main mod-

ifications over the scheme of a classical image-based visual servoing are related to the 

event generator and the event detector blocks. 

Event generator is a module that produces an event when any of the visual features 

enter into a specific region of the image. An event-based camera has been emulated in 

the researches described in this paper. Thus, image is acquired from a standard camera, 

but after processing the image in a computer (the cpu is not embedded into the sensor), 

the Event generator module produces an event every time a visual feature touches any 

of the predefined image regions. This emulation is required in order to validate the 

proposed scheme. The image regions are defined so that the visual features cannot leave 

the field of view. Fig. 3 shows the different regions in the image space and the lines 

that set the event trigger. 

Once the event has been triggered, the Event detector module that can be seen in 

Fig. 2 must determine the way in which the system will compute the robot’s velocity. 

Fig. 3 depicts the decision scheme of Event detector. If any of the pixel coordinates of 

the visual features is in the green region marked as ON in Figure 3, the event-based 



 

controller activates the classical image-based visual sevoing to compute the robot end-

effector velocity. This velocity is then stored in order to be used if the Event detector 

determines that all the visual features in the red region are marked as OFF in Figure 3. 

Image-based visual servoing must be activated during the first iteration of the position-

ing task wherever the visual features are in the image (i.e., even though an event is 

triggered in this first iteration). 

 

Fig. 2. Event-based visual servoing scheme without features’ prediction. 

 

Fig. 3. Event generator regions and Event detector conditions into image space. 

4 Features’ Prediction with Virtual Visual Servoing 

The scheme shown in Fig. 2 uses a very simple method to continue guiding the robot 

when the features enter into the OFF zone depicted in Fig. 3. This scheme proposes to 

deactivate the image-based visual servoing controller (as in this zone there is no image 

available) and maintain the last velocity computed in the previous loop iteration. In 
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order to improve the behavior of the controller at this point, in this Section a new path 

planning algorithm is proposed. This approach is based on virtual visual servoing. 

4.1 Virtual Visual Servoing 

Virtual visual servoing is based on the classical image-based visual servoing scheme 

described in Section 2. In virtual visual servoing, a virtual camera is positioned in the 

scene. Virtual visual servoing moves iteratively this virtual camera in order to obtain 

the location of the virtual camera from which the object is observed at the same position 

as in a reference image acquired by the real camera. In order to define the virtual visual 

servoing systems, the observed features in the reference image are denoted by pd, and 

p are the current positions of the image features projected using the camera intrinsic 

parameters, ξ, and the current extrinsic parameters, cMo (pose of the object frame with 

respect to the camera frame). 

In order to determine the camera extrinsic parameters, it is necessary to minimize 

iteratively the error, e, between the observed data, pd, and the position of the same fea-

tures p computed using the following equation: 

  c o

ξ o=prp M P  (2) 

where oP are the 3D coordinates (in the object coordinate frame) of the points ex-

tracted by the camera and prξ denotes the perspective projection model according to the 

intrinsic parameters. From the previous defined error, e, it is possible to obtain (the 

camera intrinsic parameters do not vary. They can be obtained using an off-line cali-

bration [14]): 

 
d

d

d


 



p r
e p - p

r t
 (3) 

where r is the camera pose. Equation (3) can be rewritten as:  

 pe L v  (4) 

where v is the instantaneous virtual camera velocity and Lp the interaction matrix re-

lated to p [7]. 

In order to make e decrease exponentially to 0 ( 1λ e e ) the following control law 

is obtained: 

 1 pλ v - L e  (5) 

When e = 0, the extrinsic camera parameters are obtained. 

4.2 Features’ prediction 

After performing a virtual visual servoing task, the pose of the camera in the Carte-

sian 3D space is obtained. Through this camera pose and the desired one, a straight line 



 

path for the camera can be planned. The tracking of this path assures that the robot 

arrives at the final desired position. In order to track the path, a simple time-dependent 

method is proposed: 

   *

c s
ˆ= λ t +

v L s s  (6) 

The path of the camera is computed in the Cartesian 3D space because computing it 

in the image space is not possible (a path planned for a particular feature may not be 

coherent with the path obtained for another). The problem addressed in this section is 

to determine the 3D location cMok, which represents the extrinsic camera parameters at 

iteration k of the straight path planned. Fig. 4 summarizes the algorithm proposed to 

obtain this 3D location. 

 

Fig. 4. Scheme of the algorithm to predict the camera pose in the blind zone 

The camera extrinsic parameters cMos and cMoe are obtained from the set of features 
ps and s* respectively by using virtual visual servoing (see section 4.1). ps is the set of 

visual features at the last image obtained from the camera. This last image is obtained 

before the camera launches the event where the features enter the OFF zone depicted 

in Fig. 3.  

The translations ctos and ctoe can be easily extracted from cMos and cMoe. A linear 

interpolation between both translations can be obtained using the following equation: 

  c c c c

o oe os oe=  t t t t  (7) 

with 0    1. Furthermore, the rotations cRos and cRoe can also be extracted from cMos 

and cMoe. In order to develop the linear interpolation for the orientation, it is necessary 

to represent the previous rotations by the quaternions cQos and cQoe. Spherical linear 

interpolation [13] is used to interpolate the orientation, cQoα, between each pair of qua-

ternions: 

 
    c c

oe osc

oα

.sin 1-α .sin α
=

sin

 



Q Q
Q  (8) 

where θ is the angle between the orientation of the camera in the end position and the 

orientation in the start pose of the camera obtained by virtual visual servoing through 



 

ps. After the computation of cQoα, the rotation matrix cRo is obtained by transforming 

the quaternion. 

When the linear interpolation cMo() = [cRo
 cto] is generated, the location cMok is 

obtained by iterating over this linear interpolation. In order to achieve a natural behavior 

of the visual controller this location is achieved as a function of time using an exponen-

tial distribution: 

 =1
t

e 


  (9) 

where β is a constant that can be used to increase the slope of the exponential distribu-

tion. Exponential distribution represents better the natural performance of a classic im-

age-based visual servoing system than a linear distribution. After computing cMok from 

the current value of t, the visual features predicted can be computed from: 

      c o

ξ o=s = (α)t prs M P  (10) 

where oP is the set of object points considered and pr denotes the perspective projec-

tion model according to the intrinsic parameters, . 

The algorithm proposed in this Section is schematized in Fig. 5. The Event detector 

described in Section 3 activates the prediction module when there is no image available. 

The virtual information is then used to improve the controller performance. 

 

Fig. 5. Event-based visual servoing scheme with features’ prediction. 

5 Results 

Two different experiments have been developed using both the event-based visual 

servoing described in Fig.2 and the new proposal depicted in Fig 3. The testing platform 

consists in a webcam placed at the end-effector of a Mitsubishi PA-10. The PA-10 is a 

robot manipulator of 7 degrees of freedom. The webcam employed can acquire images 

at an image resolution of 640x480 px. 



 

Image processing issues are not the goal of this work, so, in order to guide the robot 

in these experiments, four visual features, 𝐬, (centroid points from very easily segment-

able circular marks) have been used. The webcam does not allow performing a quick 

image acquisition. However, image acquisition is not a crucial parameter in the pro-

posed controller validation.  

Regions depicted in Fig. 3, can be adjusted to any experiment. For both the two 

experiments shown in this Section, the external ON region has been defined of 60 px 

width. In addition, the four internal ON regions are obtained from the image position 

of the points at the desired robot’s pose. The square internal region is centered at the 

desired visual features location and are 60 px width.  

5.1 Experiment without features’ prediction 

The first experiment starts with one of the four points in the external ON region. 

The set of desired visual features is sd=[249, 156, 382, 156, 388, 305, 247, 304]. With 

a gain of λ=0.1, Fig. 6 shows the evolution of the robot’s end-effector during the posi-

tioning task. The blue cross sets the desired position. The event-based visual servoing 

proposed in [5] is a valid scheme to position the robot. However, this experiment 

demonstrates that deactivating visual controller when visual features enter the OFF 

zone cannot assure direct convergence of the positioning. In this experiment the Event 

generator triggers six events. The evolution of the end-effector presents three different 

changes of direction. These changes match the main event triggered during the posi-

tioning task. 

 

Fig. 6. Experiment without features’ prediction. 3D trajectory of the robot end-effector. 

Robot evolution in the Cartesian 3D space is not the best measure factor for the 

proposed controller. Image-based visual servoing systems’ input is the image. There-

fore, the best measure factor for these kinds of controllers is the evolution of the features 

in the image. Fig. 7 shows this evolution for this first experiment. The change in the 

evolution of the visual features corresponds to an event. The test begins with a visual 

feature in the external ON area. An event is launched when this feature leaves this ex-

ternal region and enters the OFF region (E1). The Event detector deactivates the visual 

0.4
0.5

0.6
0.7 -0.2

0

0.2

1.09

1.095

1.1

1.105

1.11

 

Y(m)X(m)

 

Z
(m

)

f irst

last



 

servoing controller and the last velocity is maintained until the next event occurs. Event 

2 (E2) is triggered when the bottom right visual features enters the 60 px security bot-

tom area. The Event detector activates the visual servoing controller and a new velocity 

is sent to the robot. This velocity minimizes the image error, pushing the visual feature 

away from the bottom edge towards its desired position. The event 3 (E3) is triggered 

once this point enters again into the OFF region. Although the last velocity computed 

by the visual servoing controller pushed the visual features towards the desired position, 

the lack of new images prevents the correction of the velocity to achieve the desired 

position. Thus, event 4 (E4) is triggered when the top right visual feature enters into the 

top ON region. A new velocity is computed and the event 5 (E5) deactivates the visual 

controller. This last velocity guides the features towards the internal square ON areas. 

The last event (E6) is triggered when one of the visual features enters into its square 

internal ON area, and after this, the Event detector activates the visual servoing to guide 

the robot towards the desired position. 

 

Fig. 7. Experiment without features’ prediction. Evolution of the features in the image. 

The six events triggered during the experiment deactivate the visual servoing con-

troller three times. During the deactivation (the visual features are all inside the OFF 

region), the velocity is constant. Figure 8 illustrates the lineal and angular velocity of 

the end-effector during the task. Figure 9 shows a zoom over time regarding the lineal 

velocity depicted in Figure 8.a. Over Figure 9, different instants have been shaded in 

green or red. 
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Fig. 8. Experiment without features’ prediction. Velocity of the end-effector: a) lineal velocity, 

b) rotational velocity. 

 

Fig. 9. Experiment without features’ prediction. Zoom in lineal velocity of the end-effector. 

Event detector decisions. 

Furthermore, the six events marked in Figure 7 over the evolution of the features in 

the image have been also marked in Figure 9. A green shaded area represents the lineal 

velocity sent to the robot when the Event detector activates the visual servoing control-

ler. The velocity in this case presents an exponential decrease towards zero. This is the 

typical performance of the output of classic image-based visual servoing. Red shaded 

zones denote the velocity sent to the robot when the Event detector deactivates the vis-

ual servoing. When this occurs, the event-based visual servoing sends to the robot the 

last velocity calculated by the visual servoing. This is the reason why in the red shaded 

zones there is constant velocity. 

5.2 Experiment with features’ prediction 

This test uses the proposed algorithm presented in Section 4 to adjust the velocity 

of the robot when the visual features enter the OFF zone and, thus, there is no image to 

compute the current features. The previous experiment has demonstrated the necessity 

of computing the velocity in this blind zone. The set of desired visual features is 

sd=[249, 162, 381, 156, 389, 303, 247, 310]. With a gain of λ=0.1, Fig. 10 shows the 

evolution of the robot’s end-effector during the positioning task. The camera tracks a 

straight trajectory when there is no real image to compute real visual features. The ex-

periment shows that the positioning is more robust than the obtained in the previous 

experiment as the robot converges towards the 60 px width zone of the desired features.  
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Fig. 10. Experiment with features’ prediction. 3D trajectory of the robot end-effector. 

Fig. 11 shows the evolution of the features in the image for this experiment. There 

is not a clear change in the evolution of the visual features. Only two events are trig-

gered in this experiment. The initial position of the robot presents one of the visual 

features in the external ON area. Thus, the Event detector described in Section 3 acti-

vates the visual servoing controller in order to obtain a velocity that approaches the 

robot to the desired position. In addition, this velocity pushes this visual feature away 

from the image edges, avoiding thus losing it. The first event (E1) is triggered when the 

last visual feature leaves the external ON region. The Event detector activates the visual 

features’ prediction, obtaining a straight path from the position of the last image ac-

quired in the previous iteration and the desired camera position. Using this path, future 

iterations in the blind zone compute different camera poses obtained following the 

scheme proposed in Section 4. Once the camera pose is obtained the set of visual fea-

tures is computed by using the intrinsic camera parameters. Finally, with this set of 

visual features the velocity sent to the robot is computed using the same image-based 

visual servoing used in the ON zone. This velocity is supplied to the robot. The second 

event (E2) is launched when one of the features enters its internal square ON area. This 

square region is centered at the desired feature position. The Event detector activates 

then the visual servoing controller and a new velocity obtained newly from a real image 

is sent to the robot. The new velocity sent to the robot attracts it towards the desired 

position. 
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Fig. 11. Experiment with features’ prediction. Evolution of the features in the image. 

The behavior of the method proposed in this paper to obtain virtual features to guide 

the robot in the blind zone is very similar to a classical image-based visual servoing 

scheme. The main advantage of using the proposed scheme is that there is no image to 

process when visual features enter the blind zone. The time saved during this phase can 

be spent in any other task. 

6 Conclusions 

Event-based visual servoing is a control scheme to guide a robot from any initial 

pose to the desired one using images only when it is necessary. It not only reduces the 

transfer load between the camera and the processing unit but also reduces the processing 

time during the visual servoing task. Moreover, this controller prevents visual features 

from leaving the field of view, which would cause the failure of the task. 

The system proposed in this paper improves the robustness of the event-based visual 

servoing. The Event detector of the previous proposal can only switch between visual 

servoing and the last visual servoing calculated velocity. In order to avoid situations 

like that of the first experiment, where visual features bounce more than one time over 

the external security area, an image position estimator based on virtual visual servoing 

has been used. Thus, the time saved during the deactivation of the visual servoing can 

be spent on estimating the set of visual features s. This estimation pushes the visual 

features towards the desired position as if the controller had a real image. 

The works presented in this paper opened a new researching topic. After validating 

the proposed controller using a standard webcam, the next step is the use of an event-

based camera in order to quantify the improvement in terms of data transfer load be-

tween camera and computer. 

The controller proposed allows avoiding outliers using a simple strategy. Events 

can be used in the future to perform any change in the parameters of the visual servoing 

controller. An event can order the system to increase the image resolution to perform a 
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more precise feature tracking, or to decrease the image resolution to save the data trans-

fer bandwidth. An event can also trigger a visual feature change, using points, lines or 

ellipses depending on the different events. 
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