Skip to main content

Abstraction in Markov Networks

  • Conference paper
AI*IA 2013: Advances in Artificial Intelligence (AI*IA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8249))

Included in the following conference series:

  • 1269 Accesses

Abstract

In this paper a new approach is presented for taming the complexity of performing inferences on Markov networks. The approach consists in transforming the network into an abstract one, with a lower number of vertices. The abstract network is obtained through a parti- tioning of its set of cliques. The paper shows under what conditions exact inference may be obtained with reduced cost, and ways of partitioning the graph are discussed. An example, illustrating the method, is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arenas, A., Fernandez, A., Gomez, S.: Analysis of the structure of complex networks at different resolution levels. New Journal of Physics 10, 053039 (2008)

    Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  3. Bulitko, V., Sturtevant, N., Lu, J., Yau, T.: Graph abstraction in real-time heuristic search. Journal of Artificial Intelligence Research 30, 51–100 (2007)

    MATH  Google Scholar 

  4. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008)

    Article  Google Scholar 

  5. Epstein, S.L., Li, X.: Cluster graphs as abstractions for constraint satisfaction problems. In: Proc. Symposium on Abstraction, Reformulation and Approximation, Lake Arrowhead, CA, pp. 58–65 (2009)

    Google Scholar 

  6. Holte, R.C., Mkadmi, T., Zimmer, R.M., MacDonald, A.J.: Speeding up problem solving by abstraction: A graph oriented approach. Artificial Intelligence 85, 321–361 (1996)

    Article  Google Scholar 

  7. Lecoutre, C., Merchez, S., Boussemart, F., Grégoire, É.: A CSP Abstraction Framework. In: Choueiry, B.Y., Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 326–327. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic dependencies. In: Proc. of the National Conference on Artificial Intelligence, Boston, MA, pp. 458–463 (2006)

    Google Scholar 

  9. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–136 (2006)

    Article  Google Scholar 

  10. Saitta, L., Henegar, C., Zucker, J.D.: Abstracting complex interaction networks. In: Proc. Symposium on Abstraction, Reformulation and Approximation, Lake Arrowhead, CA, pp. 190–193 (2009)

    Google Scholar 

  11. Shavlik, J., Natarajan, S.: Speeding up inference in Markov logic networks by preprocessing to reduce the size of the resulting grounded network. In: Proc. Intern. Joint Conf. on Artificial Intelligence, Pasadena, CA, pp. 1951–1956 (2009)

    Google Scholar 

  12. Wiegerinck, W.: Variational approximations between mean field theory and the junction tree algorithm. In: Proc. of the 16th Conf. on Uncertainty in Artifical Intelligence, Stanford, CA, USA, pp. 626–633 (2000)

    Google Scholar 

  13. Saitta, L., Vrain, C.: Abstracting Markov networks. Presentation to the Symposium on Abstraction, Reformulation and Approximation, Cardona, Spain (2010)

    Google Scholar 

  14. Erdös, P., Rényi, P.: On Random Graphs. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  15. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  16. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 159, 509–512 (1999)

    Google Scholar 

  17. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping Community Detection in Networks: the State of the Art and Comparative Study. ACM Computing Surveys 45, Article 43 (2013)

    Google Scholar 

  18. Krzakala, F., Mézard, M., Sausset, L., Sun, Y., Zdeborova, L.: Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices. J. Stat. Mech., P08009 (2012)

    Google Scholar 

  19. Barbier, J., Mézard, Zdeborova, L.: Compressed Sensing of Approximately-Sparse Signals: Phase Transitions and Optimal Reconstruction. In: Proc. of the 50th Annual Conf. on Communication, Control, and Computing, Allerton, USA, pp. 800–807 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Saitta, L. (2013). Abstraction in Markov Networks. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds) AI*IA 2013: Advances in Artificial Intelligence. AI*IA 2013. Lecture Notes in Computer Science(), vol 8249. Springer, Cham. https://doi.org/10.1007/978-3-319-03524-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03524-6_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03523-9

  • Online ISBN: 978-3-319-03524-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics