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Abstract. Automatic techniques for the design of artificial computa-
tional systems, such as control programs for robots, are currently achiev-
ing increasing attention within the AI community. A prominent case is
the design of artificial neural network systems by means of search tech-
niques, such as genetic algorithms. Frequently, the search calibrates not
only the system parameters, but also its structure. This procedure has
the advantage of reducing the bias introduced by the designer and makes
it possible to explore new, innovative solutions. The drawback, though, is
that the analysis of the resulting system might be extremely difficult and
limited to few coarse-grained characteristics. In this paper, we consider
the case of robots controlled by Boolean networks that are automati-
cally designed by means of a training process based on local search. We
propose to analyse these systems by a method that detects mesolevel
dynamical structures. These structures are emerging patterns composed
of elements that behave in a coherent way and loosely interact with the
rest of the system. In general, this method can be used to detect func-
tional clusters and emerging structures in nonlinear discrete dynamical
systems. It is based on an extension of the notion of cluster index, which
has been previously proposed by Edelman and Tononi to analyse biologi-
cal neural systems. Our results show that our approach makes it possible
to identify the computational core of a Boolean network which controls
a robot.

1 Introduction

The design of artificial systems by means of automatic techniques, such as evolu-
tionary computation techniques, is a well-known approach in the AI community
since decades. A plethora of studies has been published in the literature with
the aim of showing properties, conditions and characteristics of the emergence
of intelligent behaviours. A case in point is the study of the emergence of non-
trivial cognitive capabilities in robots, such as sensory-motor coordination [9,10].
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Besides these objectives of foundational and investigation flavour, the automatic
design of artificial system is currently achieving increasing attention also because
it opens the possibility of designing innovative systems or finding solutions for
complex problems that are quite hard to solve with classical approaches [3,6].
One of the main advantages of automatic design is that the designer can specify
just the minimal set of constraints and objectives on the final system; for ex-
ample, when designing neural network systems, one can let the design process
decide the topology of the network together with the connection weights. This
makes it possible to explore larger design spaces than those explored by classical
design techniques, but it has the drawback that the resulting system might be
very difficult to analyse. In this work, we propose to analyse these systems by
a method that detects mesolevel dynamical structures, i.e., emerging patterns
composed of elements that behave in a coherent way and loosely interact with
the rest of the system. The method is based on an extension of the notion of
cluster index, which has been previously proposed by Edelman and Tononi for
analysing biological neural systems [15] and can be used to detect functional
clusters and emerging structures in nonlinear discrete dynamical systems. We
apply this method to analyse the Boolean network trained to control a robot
that must be able to walk along a corridor without collisions. Results show that
this makes it possible to identify structures inside the network which perform
main information processing jobs. The results we present are preliminary, but,
even if at this early stage, we believe they anyway show the potential of this
method so that to motivate their diffusion to the AI community. Indeed, the
approach is very general as it only requires a collection of states traversed by
the system and it does not need information on the topology nor the functions of
the elements composing the system. Nevertheless, this method is able to identify
structures related to relevant information processing in the actual functioning
of the system.

We provide an introduction to the method in Section 2. In Section 3 we
illustrate the case study we analyse, namely an application of Boolean networks
to robotics. We present the results in Section 4 and we conclude with Section 5.

2 The Cluster Index

In the following, we consider a system U , composed of N elements that can
assume values in finite and discrete domains and update their state in discrete
time. The value of element i at time t+1, xi(t+1), is a function of the values of
a fixed set elements in U at time t. The cluster index is defined with the aim of
identifying subsets of U composed of elements that interact much more strongly
among themselves than with the rest of the system, i.e., subsets whose elements
are characterised by being both integrated among themselves and segregated w.r.t.
the rest of the system. The quantity upon which the cluster index is computed
is the entropy of single as well as sets of elements of U . The entropy of element
xi is defined as:

H(xi) = −
∑

v∈Vi

p(v) log p(v) (1)
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where Vi is the set of the possible values of xi and p(v) the probability of occur-
rence of symbol v. The entropy of a pair of elements xi and xj is defined upon
joint probabilities:

H(xi, xj) = −
∑

v∈Vi

∑

w∈Vj

p(v, w) log p(v, w). (2)

This definition can be extended to sets of k elements by considering the proba-
bility of occurrence of vectors of k values. We can estimate the entropy of each
element from a long series of states by taking the frequencies of its observed
values as proxies for probabilities. Therefore, the sole piece of information we
need is a collection of system states, which can be taken by observing the sys-
tem in different working conditions. For example, the collection can be obtained
by composing several trajectories in the state space; however, there are no re-
quirements on the sequence of these states, because the collection is only used
to compute frequencies. Once the data have been collected, relevant sets of el-
ements (clusters, from now on) are evaluated by means of the cluster index. A
relevant cluster should be composed of elements (i) that possess high integration
among themselves and (ii) that are loosely coupled to other parts of the system.
The measure we define provides a value that can be used to rank various can-
didate clusters (i.e., emergent intermediate-level sets of coordinated elements).
Depending on the size of the system, candidate clusters can be exhaustively enu-
merated, or sampled, or searched by means of suitable heuristics. The cluster
index C(S) of a set S of k elements is defined as the ratio of their integration
I(S) to the mutual information between S and the rest of the system U − S.
The integration is defined as follows:

I(S) =
∑

x∈S

H(x)−H(S) (3)

I(S) measures the deviation from statistical independence of the k elements in
S, by subtracting the entropy of the whole subset to the sum of the single-node
entropies. The mutual information between S and the rest of the system U − S
is:

M(S;U − S) ≡ H(S) +H(S|U − S) = H(S) +H(U − S)−H(S,U − S) (4)

where, as usual, H(A|B) is the conditional entropy and H(A,B) the joint en-
tropy. Finally, the cluster index C(S) is defined by:

C(S) =
I(S)

M(S;U − S)
(5)

Special cases are: I = 0∧M �= 0 ⇒ C(S) = 0 and M = 0 ⇒ C(S) not defined.
These cases can be diagnosed in advance. The 0/0 case does not provide any
information, whereas I(S)/0, with I(S) �= 0, denotes statistical independence of
S from the rest of the system and requires a separate analysis.
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C(S) scales with the size of S, so a loosely connected subsystem may have a
larger index than a more coherent, smaller one. Therefore, to compare the indices
of the various candidate clusters, it is necessary to normalise their cluster indices.
To this aim, we need a reference system with no clusters, i.e., an homogeneous
system, which we define as follows: given a series of states from the system we
want to study, we compute the frequency of each symbol and generate a new
random series in which each symbol appears with probability equal to that of
the original series. The homogeneous system provides us with reference values
for the cluster index and makes it possible to compute a set of normalisation
constants: for each subsystem size, we compute average integration 〈Ih〉 and
mutual information 〈Mh〉. We can then normalise the cluster index value of any
subsystem S using the appropriate normalisation constants dependent on the
size of S:

C′(S) =
I(S)

〈Ih〉 /
M(S;U − S)

〈Mh〉 (6)

In order to compute a statistical significance index (hereinafter referred to as Tc),
we apply this normalisation to both the cluster indices in the analysed system
and in the homogeneous system:

Tc(S) =
C′(S)− 〈C′

h〉
σ(C′

h)
(7)

where 〈C′
h〉 and σ(C′

h) are respectively the average and the standard deviation
of the population of normalised cluster indices with the same size of S from the
homogeneous system [2]. Finally, we use Tc to rank the clusters considered.

We have recently applied our method to both artificial test cases and repre-
sentative natural and artificial systems, such as genetic regulatory networks and
catalytic reactions systems [16,17]. In the following, we show that the method
can be used also to analyse the network controlling a robot. This case is par-
ticularly meaningful because of two main reasons. The first is that it explicitly
concerns a system equipped with inputs and outputs, which operates in an en-
vironment. Therefore, the relevant structures inside the network are necessarily
linked to the interplay between robot behaviour and environment. The second
reason is that the networks resulting at the end of the training process are not
easily analysable because they have a random topology and the nodes are up-
dated according to Boolean functions: we will show that the method is able
to capture relevant structures inside the network without requiring knowledge
about network topology and functions.

3 BN-Robot Case Study

We apply our method to analyse the networks trained to control a robot that
performs obstacle avoidance. The robot is an e-puck [7] and it is controlled by
a Boolean network. Boolean networks (BNs) are a model of genetic regulatory
networks [5]. BNs have received considerable attention in the community of com-
plex system science. Works in complex systems biology show that BNs provide a
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powerful model for cellular dynamics [1,13,14]. A BN is a discrete-time discrete-
state dynamical system whose state is a N -tuple in {0, 1}N and it is updated
according to the composition of N Boolean functions, each of which rules the
update of one variable of the system. Usually, BNs are subject to a synchronous
and parallel node update, but other update schemes are possible. BNs are ex-
tremely interesting from an engineering perspective because of their ability to
display complex and rich dynamics, despite the compactness of their descrip-
tion. In a previous work, it has been shown that BNs can be used to control
robots [12].

In the case study, the robot must navigate along a corridor avoiding any
collision with the walls and possible obstacles and finally reach the exit. At the
beginning of each experimental run, the robot is placed within the corridor,
far from the exit. During the experiment the robot must advance along the
corridor avoiding collisions, and finally, within the given total execution time
T = 120 s, reach the exit. During the execution, if a collision between the robot
and the walls of the corridor occurs, the experiment is immediately stopped.
Experiments are performed in simulation, by means of the open source simulator
ARGoS [11]. The performance measure is the final distance of the robot to the
exit (normalised w.r.t. corridor length). The shorter is this distance, the better
is the performance of the robot. The robot is equipped with four proximity
sensors, placed at positions NE, SE, SW and NW with respect to the heading
direction, and with two wheels. At each time step, the readings of the 4 sensors
are encoded into the values of the BN input nodes. We use 4 input nodes to
encode the readings of the proximity sensors. Values are binarised by introducing
a threshold: if the sensor value exceeds the chosen threshold, the corresponding
input node value is set to 1. Once the readings of the sensors are encoded in the
input nodes, we perform the network state update, and eventually we read and
decode the values of the output nodes to set the actuators. Two output nodes
are used to set the wheel speeds either to zero or to a predefined, constant value.
The robot update frequency is 100ms. For this case study, we set the network
size to 20 nodes. The initial topology of the networks, i.e., the connections among
the nodes, is randomly generated with K = 3 (i.e., each node has 3 incoming
arcs) and no self-connections, and it is kept constant during the training. The
initial Boolean functions are generated by setting the 0/1 values in the node
Boolean function truth tables uniformly at random. BNs are trained by a local
search algorithm which works only on the Boolean functions. At each iteration,
the search algorithm flips one bit of a Boolean function. The flip is accepted
if the corresponding BN-robot has a performance not worse than the current
one.1 The evaluation of each network is performed on a set of initial conditions,
that form the training set. The training set is composed of six different initial
orientations of the robot. The six angles are chosen so as to have six equally
spaced orientations in the range between π

3 and −π
3 (with 0 being the straight

direction of the robot towards the exit). In this way, the robot must be able to
cope with a wide range of different situations and avoid the walls it detects in any

1 This simple local search algorithm is often called stochastic descent or adaptive walk.
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direction. The final evaluation assigned to the robot is computed as the average
of the performance across the 6 trials. We executed 100 independent experiments,
each corresponding to a different initial network. For each experiment the local
search was run for 1000 iterations. The assessment of the performance of the
BN-robots is performed on a test set composed of randomly generated initial
positions and orientation. All the final BNs achieved a good performance. For
further details, we point the interested reader to a comprehensive report on the
experiment [4].

4 Identifying Structures in the Boolean Network
Controlling a Robot

We analysed the best performing BNs by means of the method based on the
cluster index, with the aim of identifying their core structure, if any. It is impor-
tant to stress that this method detects dynamical relations among nodes of the
system, without requiring information on the topology nor on the function com-
puted by the single nodes. The objective is to identify parts of the system which
are dynamically coordinated, rather than to discover topological patterns, such
as communities and motifs. Furthermore, this technique captures correlations
among sets of nodes and not just between pairs.

In the following, we describe the results of two BN-robots we obtained, which
are typical examples. In both cases, the BN-robot learned to walk along the
corridor without colliding against the walls and obstacles in the path. The data
required by this analysis are simply a collection of states of the system. To this
aim, we recorded the states traversed by the BN controlling the robot starting
from 200 random initial positions. The length of the trajectories is 1000 steps.
We then analysed these states, and searched for clusters of size up to 19 (i.e.,
N − 1) by taking 104 random samples for each cluster size.

4.1 Network 1

We analysed the collection of BN states related to the test runs of the BN-robot
by looking for the cluster with highest significance Tc. The most significant
cluster has size 8, with Tc ≈ 48× 103. The following clusters have a much lower
significance (about 36 × 103), they are of size 9, and they all contain the first
cluster of 8 nodes. Therefore, they are not particularly meaningful. The identified
cluster is composed of input, output and internal nodes, namely nodes 1, 3, 5,
7, 8, 10, 12 and 18 of the network depicted in Figure 1. Besides input nodes 1
(NW proximity sensor), and 3 (SE proximity sensor) and node 5 which controls
the left wheel, the cluster contains nodes involved in internal dynamics.

The nodes of the cluster should convey relevant information on the overall
BN dynamics. A way to reckon the impact of a cluster on the system dynamics
is to evaluate its set-influence. The notion of influence of a set of nodes is a gen-
eralisation of the node influence, which is defined as the amount of perturbation
induced on a set of nodes by a state change in one node. Informally, the influence



330 A. Roli et al.

Fig. 1. Structure of BN-1 controlling the robot. Nodes drawn with rectangles are in
the most significant cluster.

of a node on the other nodes is the size of the avalanche produced by the node
perturbation [14]. To estimate the influence of a set S of nodes on the other
nodes of the system, S′ = U −S, we randomly perturb the nodes in S2 at time t
and we compare the state at time t+ l in the case with and without perturbation
(with time lag l ∈ {1, 2, . . . , 10}). The normalised Hamming distance between
the two states is the avalanche produced by perturbing S. We estimated the
set-influence of cluster {1,3,5,7,8,10,12,18} and of random clusters of the same
size by taking the average avalanche over 100 random initial states. Results are
shown in Figure 2. As we can observe, cluster {1,3,5,8,10,12,18} has a higher set-

2 More precisely, the perturbation is performed by flipping each node state with prob-
ability 0.5 .
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Fig. 2. Set-influence of cluster {1,3,5,7,8,10,12,18} compared with the set-influence of
random clusters of the same size (averaged over 100 random clusters)

influence than random sets,3 hence the functionality of the BN strongly depends
on the identified cluster. One might speculate that the most relevant cluster is
characterised by a higher set-influence w.r.t. the others, and therefore the search
for a significant dynamical structure in the system can be simply performed
by inspecting the sets with the highest set-influence. Nevertheless, it should be
observed that we are looking for structures relevant for information processing
inside the system. These structures are relevant for the actual functioning of the
system and might not be simply reduced to sets of nodes with high average in-
fluence: a node can indeed have high influence by influencing other nodes which
are not relevant for the actual dynamics of the system. The next case we present
is a prominent example of this phenomenon.

4.2 Network 2

The second BN we analyse has a different topology w.r.t. the first one, because
it has been generated with a different random number generator seed. As also
the initial BN functions are randomly generated and the search algorithm is
stochastic, the training process led to a different solution which anyway achieves
the goal.

In this case, the most significant cluster has size 3 and it has a significance
value Tc ≈ 1.3×106. The following clusters have a much lower significance (about

3 Except for the case of l = 1, which means that the cluster needs some time to spread
the information across the network.
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Fig. 3. Structure of BN-2 controlling the robot. Nodes drawn with rectangles are in
the most significant cluster.

9.8 × 105) and they are of size 4, all including the first cluster of size 3. The
identified cluster is composed of nodes {8,10,18} and it does not contain input
nor output nodes (see Figure 3). This result might seem quite surprising, but by
looking at the network topology we can observe that (directly or indirectly):

- node 8 collects (and processes) the information coming from sensors SW,
NW and NE; moreover, it acts on the right wheel;
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- node 10 collects the information coming from node 8 and sensor SE (which
produces values obviously correlated with the information coming from the
other sensors SW, NW and NE);

- node 18 collects the information coming from sensors SE and NW.

Therefore, these observations help identify sensors SE and NW, and node 8 as
the central part of the robot information processing unit, with nodes 10 and 18
playing the role of faithful followers. The set-influence of the cluster is compared
against the set-influence of random clusters of the same size in Figure 4. The set-
influence of the cluster is lower than the average one; therefore, this sole piece of
information would not be sufficient to detect this structure. The reason for low
set-influence but high cluster index is very likely that nodes 10 and 18 have low
influence on the network, hence low mutual information between the cluster and
the remainder of the system. A single node influence analysis is anyway helpful
to understand the reason why node 10 is chosen by our method instead of an
output node. Node influence is evaluated by computing the influence matrix
(defined for lag l), in which entry (i, j) is the influence of node i on node j at
time l. The influence at lag l is computed as the fraction of times in which the
value of node j is affected by a flip in node i occurred l time steps before. If we
rank the nodes by influence, among the most five influential nodes on node 10
we find node 6 (left wheel) with the highest influence at lag equal to 1 and nodes
1,2,3 and 4 (i.e., the sensors) for higher time lag values.
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Fig. 4. Set-influence of cluster {8,10,18} compared with the set-influence of random
clusters of the same size (averaged over 100 random clusters)
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We can conclude that the method based on the cluster index is able to detect
subsystems which play a main role in the information processing inside the
system: they can be both the causal core of the functioning of the system and a
proxy for observing its main dynamical properties.

5 Conclusion

The results we have presented show that the method based on the cluster index
can help us detect relevant structures which emerge as the result of the dynam-
ics of the system. This work is at a preliminary stage and further analyses are
required to assess the informative power of the cluster index and its possible ap-
plications. For example, our method can provide heuristics to reduce the network
by pruning irrelevant nodes and links, or it can be used to extract a minimal
subset of nodes to observe the system. In addition, whilst in this work we only
focused on checking whether our results are meaningful w.r.t. the dynamics of
the system, our method can be used as a first step in the identification of func-
tional modules of the system [8]. In the future, our method may be applied to
detect structures emerging either during the learning process of a single system,
or in the evolution of populations of systems, or both.
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