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Abstract. We propose a common framework for analysis of a wide class
of preferential attachment models, which includes LCD, Buckley–Osthus,
Holme–Kim and many others. The class is defined in terms of constraints
that are sufficient for the study of the degree distribution and the cluster-
ing coefficient. We also consider a particular parameterized model from
the class and illustrate the power of our approach as follows. Apply-
ing our general results to this model, we show that both the parameter
of the power-law degree distribution and the clustering coefficient can
be controlled via variation of the model parameters. In particular, the
model turns out to be able to reflect realistically these two quantitative
characteristics of a real network, thus performing better than previous
preferential attachment models. All our theoretical results are illustrated
empirically.
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1 Introduction

Numerous random graph models have been proposed to reflect and predict im-
portant quantitative and topological aspects of growing real-world networks,
from Internet and society [1,5,8] to biological networks [2]. Such models are
of use in experimental physics, bioinformatics, information retrieval, and data
mining. An extensive review can be found elsewhere (e.g., see [1,5,6]). Though
largely successful in capturing key qualitative properties of real-world networks,
such models may lack some of their important characteristics.

The simplest characteristic of a vertex in a network is the degree, the number
of adjacent edges. Probably the most extensively studied property of networks is
their vertex degree distribution. For the majority of studied real-world networks,
the portion of vertices with degree d was observed to decrease as d−γ , usually
with 2 < γ < 3, see [3,5,9,16]. Such networks are often called scale-free.

4 The authors are given in alphabetical order
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Another important characteristic of networks is their clustering coefficient,
a measure capturing the tendency of a network to form clusters, densely inter-
connected sets of vertices. Various definitions of the clustering coefficient can be
found in the literature, see [6] for a discussion on their relationship. We consider
the most popular two: the global clustering coefficient and the average local
clustering coefficient (see Section 3.3 for definitions). For the majority of studied
real-world networks, the average local clustering coefficient varies in the range
from 0.01 to 0.8 and does not change much as the network grows [5]. Modeling
real-world networks with accurately capturing not only their power-law degree
distribution, but also clustering coefficient, has been a challenge.

In order to combine tunable degree distribution and clustering in one model,
some authors [2,20,21] proposed to start with a concrete prior distribution of
vertex degrees and clustering and then generate a random graph under such
constraints. However, adjusting a model to a particular graph seems to be not
generic enough and can be suspected in “overfitting”. A more natural approach
is to consider a graph as the result of a random process defined by certain reason-
able realistic rules guaranteeing the desired properties observed in real networks.
Perhaps the most widely studied realization of this approach is preferential at-
tachment. In Section 2, we give a background on previous studies in this field.

In this paper, we propose a new class of preferential attachment random
graph models thus generalizing some previous approaches. We study this class
theoretically: we prove the power law for the degree distribution and approximate
the clustering coefficient. We demonstrate that in preferential attachment graphs
two definitions of the clustering coefficient give quite different values. We also
propose a concrete parameterized model from our class where both the power-
law exponent and the clustering coefficient can be tuned. All our theoretical
results are illustrated experimentally.

The remainder of the paper is organized as follows. In Section 2, we give a
background on previous studies of preferential attachment models. In Section 3,
we propose a definition of a new class of models, and obtain some general results
for all models in this class. Then, in Section 4, we describe one particular model
from the proposed class. We demonstrate results obtained for graphs generated
in this model in Section 5. Section 6 concludes the paper.

2 Preferential Attachment Random Graph Models

In 1999, Barabási and Albert observed [3] that the degree distribution of the
World Wide Web follows the power law with the parameter ∼ 2.1. As a possible
explanation for this phenomenon, they proposed a graph construction stochastic
process, which is a Markov chain of graphs, governed by the preferential attach-
ment. At each time step in the process, a new vertex is added to the graph
and is joined to m different vertices already existing in the graph chosen with
probabilities proportional to their degrees.

Denote by dnv the degree of a vertex v in the growing graph at time n. At
each step m edges are added, so we have

∑
v d

n
v = 2mn. This observation and
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the preferential attachment rule imply that

P(dn+1
v = d+ 1 | dnv = d) =

d

2n
, (1)

where P denotes the probability of an event. Note that the condition (1) on
the attachment probability does not specify the distribution of m vertices to be
joined to, in particular their dependence. Therefore, it would be more accurate
to say that Barabási and Albert proposed not a single model, but a class of
models. As it was shown later, there is a whole range of models that fit the
Barabási–Albert description, but possess very different behavior.

Theorem 1 (Bollobás, Riordan [6]). Let f(n), n ≥ 2, be any integer valued
function with f(2) = 0 and f(n) ≤ f(n+1) ≤ f(n)+1 for every n ≥ 2, such that
f(n)→∞ as n→∞. Then there is a random graph process T (n) satisfying (1)
such that, with probability 1, T (n) has exactly f(n) triangles for all sufficiently
large n.

In [7], Bollobás and Riordan proposed a concrete precisely defined model
of the Barabási–Albert type, known as the LCD-model, and proved that for
d < n

1
15 , the portion of vertices with degree d asymptotically almost surely

obeys the power law with the parameter 3. Recently Grechnikov substantially
improved this result [17] and removed the restriction on d. It was shown also that
the expectation of the global clustering coefficient in the model is asymptotically

proportional to (logn)2

n and therefore tends to zero as the graph grows [6].
One obtains a natural generalization of the LCD-model, requiring the prob-

ability of attachment of a new vertex n + 1 to a vertex v to be proportional to
dnv +mβ, where β is a constant representing the initial attractiveness of a vertex.
Buckley and Osthus [10] proposed a precisely defined model with a nonnegative
integer β. Móri [19] generalized this model to real β > −1. For both models, the
degree distribution was shown to follow the power law with the parameter 3 +β
in the range of small degrees. The recent result of Eggemann and Noble [15] im-
plies that the expectation of the global clustering coefficient in the Móri model
with β > 0 is asymptotically proportional to logn

n . For β = 0, the Móri model is
almost identical to the LCD-model. Therefore the authors of [15] emphasize the

confusing difference between clustering coefficients ( (logn)2

n versus logn
n ).

The main drawback of the described preferential attachment models is un-
realistic behavior of the clustering coefficient. In fact, for all discussed models
the clustering coefficient tends to zero as a graph grows, while in the real-world
networks the clustering coefficient is approximately a constant [5].

A model with asymptotically constant (average local) clustering coefficient
was proposed by Holme and Kim [18]. The idea is to mix preferential attach-
ment steps with the steps of triangle formation. This model allows to tune the
clustering coefficient by varying the probability of the triangle formation step.
However, experiments and empirical analysis show that the degree distribution
in this model obeys the power law with the fixed parameter close to 3, which
does not suit most real networks. RAN (random Apollonian network) proposed
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in [22] is another interesting example of a Barabási-Albert type model with
asymptotically constant (average local) clustering.

There is a variety of other models, not mentioned here, that are also based
on the idea of preferential attachment. Analyses of properties of all these mod-
els are often very similar. In the next section, we consider theorems aimed at
simplifying these analyses and providing a general framework for them. In order
to do this, we define a new class of preferential attachment models that gener-
alizes models mentioned above, as well as many others. We also propose a new
parameterized model which belongs to this class that allows to tune both the
power-law exponent and the clustering coefficient by adjusting the parameters.

3 Theoretical Results

In this section, we define a general class of preferential attachment models. For
all models in this class we are able to prove the power-law degree distribution.
If an additional property is fulfilled, we are able to analyze the behavior of the
clustering coefficient as the network grows.

3.1 Definition of the PA-class

Let Gnm (n ≥ n0) be a graph with n vertices {1, . . . , n} and mn edges obtained
as a result of the following random graph process. We start at the time n0 from
an arbitrary graph Gn0

m with n0 vertices and mn0 edges. On the (n+ 1)-th step
(n ≥ n0), we make the graph Gn+1

m from Gnm by adding a new vertex n+ 1 and
m edges connecting this vertex to some m vertices from the set {1, . . . , n, n+1}.
Denote by dnv the degree of a vertex v in Gnm. If for some constants A and B the
following conditions are satisfied

P
(
dn+1
v = dnv | Gnm

)
= 1−Ad

n
v

n
−B 1

n
+O

(
(dnv )

2

n2

)
, 1 ≤ v ≤ n , (2)

P
(
dn+1
v = dnv + 1 | Gnm

)
= A

dnv
n

+B
1

n
+O

(
(dnv )

2

n2

)
, 1 ≤ v ≤ n , (3)

P
(
dn+1
v = dnv + j | Gnm

)
= O

(
(dnv )

2

n2

)
, 2 ≤ j ≤ m, 1 ≤ v ≤ n , (4)

P(dn+1
n+1 = m+ j) = O

(
1

n

)
, 1 ≤ j ≤ m , (5)

then we say that the random graph process Gnm is a model from the PA-class.
Condition (5) means that the probability to have a self-loop in the added vertex
is small. As we will show later, certain minor details of the models from this
class, such as whether loops and multiple edges are allowed, are irrelevant.

Since we add m edges at each step, summing up the equalities (3)-(5) (with
corresponding coefficients) over all vertices and neglecting error terms we get
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2mA+B = m. It is possible to prove that the sum of error terms in this case is
0, but for simplicity we just set 2mA+B = m. Furthermore, we have 0 ≤ A ≤ 1
(for (3) we need mA+B ≥ 0 and we set 2mA+B = m, therefore A ≤ 1).

Here we want to emphasize that we indeed defined not a single model but
a class of models. Even fixing values of parameters A and m does not specify
a concrete procedure for constructing a network. What this definition lacks is
the precise description of the distribution of vertices a new incoming vertex is
being connected to, and therefore there is a range of models possessing very
different properties and satisfying the conditions (2–5). For example, the LCD,
the Holme–Kim and the RAN models belong to the PA-class with A = 1/2 and
B = 0. The Buckley–Osthus (Móri) model also belongs to the PA-class with
A = 1

2+β and B = mβ
2+β . Another example is considered in detail in Sections 4

and 5. This situation is somewhat similar to that with the definition of the
Barabási–Albert models, though our class is wider in a sense that the exponent
of the power-law degree distribution is tunable.

In mathematical analysis of network models, there is a tendency to consider
only fully and precisely defined models. In contrast, we provide results about
general properties for the whole PA-class in the next two subsections.

3.2 Power Law Degree Distribution

Even though the precise description of the distribution of vertices a new incoming
vertex is going to be connected to is not specified, we are still able to describe
the degree distribution of the network.

First, we estimate Nn(d), the number of vertices with given degree d in Gnm.
We prove the following result on the expectation ENn(d) of Nn(d).

Theorem 2. For every d ≥ m we have ENn(d) = c(m, d)
(
n+O

(
d2+

1
A

))
,

where

c(m, d) =
Γ
(
d+ B

A

)
Γ
(
m+ B+1

A

)
AΓ
(
d+ B+A+1

A

)
Γ
(
m+ B

A

) d→∞∼ Γ
(
m+ B+1

A

)
d−1−

1
A

AΓ
(
m+ B

A

) ,

and Γ(x) is the gamma function.

Second, we show that the number of vertices with given degree d is highly
concentrated around its expectation.

Theorem 3. For every model from the PA-class and for every d = d(n) we have

P
(
|Nn(d)− ENn(d)| ≥ d

√
n log n

)
= O

(
n− logn

)
.

Therefore, for any δ > 0 there exists a function ϕ(n) ∈ o(1) such that

lim
n→∞

P
(
∃ d ≤ n

A−δ
4A+2 : |Nn(d)− ENn(d)| ≥ ϕ(n) ENn(d)

)
= 0 .
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These two theorems mean that the degree distribution follows (asymptotically)
the power law with the parameter 1 + 1

A .
Theorem 2 is proved by induction on d and n. It is easy to see that given

a graph Gnm, we can express the conditional expectation of the number of ver-
tices with degree d in Gn+1

m (i.e., E(Nn+1(d) | Gnm)) in terms of Nn(d), Nn(d −
1), . . . , Nn(d −m). Here we use the fact that the probability of having an edge
between the vertex n + 1 and a vertex v depends on the degree of v (see (2)).
Using the law of total expectation we obtain the recurrent relation for ENn+1(d)
and prove the statement of Theorem 2 by induction.

We use the Azuma–Hoeffding inequality to prove the concentration result of
Theorem 3. In order to do this, we consider the martingale Xi(d) = E(Nn(d) |
Gim), i = 0, . . . , n. The complete proofs of these theorems are technical and are
placed in Appendix due to space constraints.

3.3 Clustering Coefficient

Here we consider the clustering coefficient in models of the PA-class. There
are two popular definitions of the clustering coefficient. The global clustering
coefficient C1(n) is the ratio of three times the number of triangles to the number
of pairs of adjacent edges in G. The average local clustering coefficient is defined
as follows: C2(n) = 1

n

∑n
i=1 C(i), where C(i) is the local clustering coefficient for

a vertex i: C(i) = T i

P i2
, where T i is the number of edges between neighbors of the

vertex i and P i2 is the number of pairs of neighbors. Results for some classical
preferential attachment models (LCD and Móri) are mentioned in Section 2.

Here we generalize these results. First, we study the random variable P2(n)
equal to the number of P2’s in a random graph Gnm from an arbitrary model that
belongs to the PA-class. In the theorems below, we use the following notation.
By whp (“with high probability”) we mean that for some sequence An of events,
P (An)→ 1 as n→∞. We say an ∼ bn if an = (1 + o(1))bn, and we say an ∝ bn
if C0bn ≤ an ≤ C1bn for some constants C0, C1 > 0.

Theorem 4. For every model from the PA-class, we have

(1) if 2A < 1, then whp P2(n) ∼
(

2m(A+B) + m(m−1)
2

)
n

1−2A ,

(2) if 2A = 1, then whp P2(n) ∼
(

2m(A+B) + m(m−1)
2

)
n log(n) ,

(3) if 2A > 1, then for any ε > 0 whp n2A−ε ≤ P2(n) ≤ n2A+ε.

The ideas of the proof of Theorem 4 are given in Appendix. Here it is
worth noting that the value P2(n) in scale-free graphs is usually determined

by the power-law exponent γ. Indeed, we have P2(n) =
∑dmax

d=1 Nn(d)d(d−1)2 ∝∑dmax

d=1 nd
2−γ , where dmax is the maximum possible degree of a vertex in Gnm.

Therefore if γ > 3, then P2(n) is linear in n. However, if γ ≤ 3, then P2(n) is
superlinear.

Next, we study the random variable T (n) equal to the number of triangles
in Gnm. Note that in any model from the PA-class we have T (n) = O(n) since
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at each step we add at most m(m−1)
2 triangles. If we combine this fact with the

previous observation, we see that if γ ≤ 3, then in any preferential attachment
model (in which the out-degree of each vertex equals m) the global clustering
coefficient tends to zero as n grows.

Our aim is to find models with constant clustering coefficient. Let us consider
a subclass of the PA-class with the following property:

P
(
dn+1
i = dni + 1, dn+1

j = dnj + 1 | Gnm
)

= eij
D

mn
+O

(
dni d

n
j

n2

)
. (6)

Here eij is the number of edges between vertices i and j in Gnm and D is a
positive constant. Note that this property still does not define the correlation
between edges completely.

Theorem 5. Let Gnm satisfy the condition (6). Then whp T (n) ∼ Dn .

The proof of this theorem is straightforward. The expectation of the number of

triangles we add at each step is D+o(1). The fact that the sum of O
(
dni d

n
j

n2

)
over

all adjacent vertices is o(1) can be shown by induction using the conditions (2–5).
It is also possible to first prove that the maximum degree grows as nA and then
use this fact to estimate the sum of error terms. Therefore ET (n) = Dn+ o(n).
The Azuma–Hoeffding inequality can be used to prove concentration.

As a consequence of Theorems 4 and 5, we get the following result on the
global clustering coefficient C1(n) of the graph Gnm.

Theorem 6. Let Gnm belong to the PA-class and satisfy the condition (6). Then

(1) If 2A < 1 then whp C1(n) ∼ 3(1−2A)D

(2m(A+B)+
m(m−1)

2 )
,

(2) If 2A = 1 then whp C1(n) ∼ 3D

(2m(A+B)+
m(m−1)

2 ) logn
,

(3) If 2A > 1 then for any ε > 0 whp n1−2A−ε ≤ C1(n) ≤ n1−2A+ε .

Theorem 6 shows that in some cases (2A ≥ 1) the global clustering coefficient
C1(n) tends to zero as the number of vertices grows. We empirically show in
Section 5 that the average local clustering coefficient C2(n) behaves differently.

The theoretical analysis in this case is much harder, but we can easily show
why C2(n) does not tend to zero if the condition (6) holds. From Theorems 2
and 3 it follows that whp the number of vertices with degree m in Gnm is greater
than cn for some positive constant c. The expectation of the number of triangles
we add at each step is D + o(1). Therefore whp C2(n) ≥ 1

n

∑
i:deg(i)=m C(i) ≥

2cD
m(m+1) .

In the next section we introduce a concrete nontrivial model from the PA-
class.

4 Polynomial Model

In this section, we consider polynomial random graph models that belong to the
general PA-class defined above. Applying our theoretical results to polynomial
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models, we find the model to be very flexible: one can tune the parameter of the
degree distribution and the clustering coefficient.

Definition of Polynomial Model Let us define the polynomial model. As
in the random graph process from Subsection 3.1, we construct a graph Gnm step
by step. On the (n+ 1)-th step the graph Gn+1

m is made from the graph Gnm by
adding a new vertex n+1 and sequentially drawing m edges (multiple edges and
self-loops are allowed).

We say that an edge ij is directed from i to j if i ≥ j, so the out-degree
of each vertex equals m. We also say that i and j are respectively source and
target ends of ij. We consider different approaches to add new edges from the
vertex n+ 1. We first choose an edge from the existing graph Gnm uniformly and
independently at random and then have three options:

– Preferential attachment (PA): draw one edge from n + 1 to the target end
of the chosen edge

– Uniform (U): draw one edge from n+ 1 to the source end of the chosen edge
– Triangle formation (TF): draw two edges from n + 1 to target and source

ends of the chosen edge

Let us now specify how to draw m edges from the vertex n + 1. Consider
a collection of positive parameters {αk,l} for 0 ≤ k ≤ m/2 and 0 ≤ l ≤ m− 2k
such that

∑
k,l αk,l = 1, these parameters fully define our model. At the begin-

ning of the n+1 step with probabilities {αk,l} we choose some k = k0 and l = l0,
then we draw l0 edges using PA, 2k0 edges using TF and (m− l0 − 2k0) edges
using U. This random graph process defines the polynomial model and from the
definition it follows that graphs in this model can be generated in linear time.
This model belongs to the PA-class. Indeed, one can formally show by simple
calculations that the conditions (2–5) hold for this model.

At this point the model is defined but let us explain why we call it polyno-

mial. Denote by d̂ni = dni −m the in-degree of a vertex i in Gnm. Let us recall
that by eij we denote the number of edges between vertices i and j. For ev-
ery k, l such that 0 ≤ k ≤ m/2 and 0 ≤ l ≤ m − 2k, let Mn,m

k,l (i1, . . . , im) =

1
nm−l−2k

∏k
x=1

ei2xi2x−1

2mn

∏2k+l
y=2k+1

d̂niy
mn . This is a monomial depending on d̂niy and

ei2xi2x−1
. We define the polynomial

∑
k,l αk,lM

n,m
k,l (i1, . . . , im). It is easy to check

that

P (edges e1, . . . , em go to vertices i1, . . . , im, respectively) =

=

m/2∑
k=0

m−2k∑
l=0

αk,lM
n,m
k,l (i1, . . . , im) . (7)

Many models are special cases of the polynomial model. If we consider the

polynomial
∏m
y=1

d̂niy+m

2mn , then we obtain a model that is practically identical to
the LCD-model. The Buckley–Osthus model can be also interpreted in terms of
the polynomial model.
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Properties It is easy to check that the parameters αk,l from (7) and A from
(2) are related in the following way:

A =
∑

αk,l
l + k

m
. (8)

This means that we can use an arbitrary value of A ∈ [0, 1] and any power-law
exponent γ ∈ (2,∞) in the graph generation. Also note that D =

∑
k,l kαk,l .

In the next section we analyze experimentally some properties of graphs
in the polynomial model. We generate polynomial graphs and compare their
properties with theoretical results we obtained.

5 Experiments

In this section, we choose a three-parameter model from the family of polynomial
graph models defined in Section 4 and analyze the properties of the generated
graphs depending on the parameters.

5.1 Description of Empirically Studied Polynomial Model

We study empirically graphs in the polynomial model with m = 2p and the
probability to draw edges to vertices i1, . . . , i2m equals

p∏
k=1

(
α
d̂ni2k d̂

n
i2k−1

(mn)2
+ β

ei2ki2k−1

2mn
+

δ

(n)2

)
.

Here we need α, β, δ ≥ 0 and α+β+δ = 1, therefore, we have three independent
model parameters: m, α, and β. Note that here we write the polynomial in a
symmetric form as we ignore the order of edges.

Based on our theoretical results, we have certain expectations about the
properties of generated graphs. From (8) we obtain that in this model A =
α+ β

2 , B = m(δ−α), D = pβ = mβ
2 , therefore, due to Theorem 2 and Theorem

6, we get that

C1(n) ∼ 3(1− 2α− β)β

5m− 1− 2(2m− 1)(2α+ β)
, γ = 1 +

2

2α+ β
. (9)

5.2 Empirical Results

Degree Distribution and Clustering Coefficient First, we study two poly-
nomial graphs with n = 107, m = 2, and A = 0.4, assigning α = 0.4, β = 0 for
the first graph and α = 0, β = 0.8 for the second one. The observed degree
distributions are almost identical and follow the power law with the expected
parameter γ = 3.5, see Fig. 1a.

For both cases, we also study the behavior of the global and the aver-
age local clustering coefficients of generated graphs, 40 samples for each n =

9
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Fig. 1. a) The degree distribution of polynomial graphs with n = 107 and m = 2.
b) The global clustering coefficient of polynomial graphs with m = 2 depending on n.
c) The average local clustering coefficient of polynomial graphs with m = 2 depending
on n.

[
101+0.06i

]
, i = 0, . . . , 100, see Fig. 1bc. In the first case we observe C1(n)→ 0,

C2(n)→ 0 (as β = 0) and in the second case C1(n)→ 2
15 (as was expected due

to (9)) and C2(n)→ const > 0.

We also generate graphs with n = 106, m = 2, and varying A (we took
β = 0.5 and α ∈ (0, 0.5)). In other words, we fix the probability of a triangle
formation and vary the parameter of the power-law degree distribution. The
obtained results are shown in Fig. 2a. The behavior of the clustering coefficients
is quite different. If A grows, then P2(n) grows (therefore C1(n) → 0), the
number of vertices with small degrees and hence high local clustering also grows
(therefore C2(n) increases).

To demonstrate the difference between the global clustering and the average
local clustering we generated graphs with m = 2, α = 0.5, β = 0.2 and varying
n (Fig. 2b). In this case we have A = α+ β

2 > 0.5 and C1(n)→ 0, as expected.
However, for the local clustering we obtain C2(n)→ const > 0.

Comparison with Other Models The following table summarizes our
results for the polynomial model in comparison with other mentioned preferential
attachment models:

A D γ Global clustering Average local clustering

LCD 1/2 0 3 tends to zero tends to zero

BO/Móri 1/(2 + β) 0 (2,∞) tends to zero tends to zero

HK 1/2 mt 3 tends to zero constant

RAN 1/2 3 3 tends to zero constant

Polynomial
∑
αk,l

l+k
m

∑
kαk,l (2,∞) constant for A < 1

2
constant

The polynomial model seems to be the only model where one can control
the exponent in the power law of the degree distribution, and at the same time
guarantee a positive clustering coefficient.
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Fig. 2. a) Average local and global clustering in polynomial graphs with n = 106,
m = 2, β = 0.5 depending on A. b) The global and the average local clustering
coefficients of polynomial graphs with m = 2, α = 0.5, β = 0.2 depending on n.

6 Conclusions

In this paper, we introduced the PA-class of random graph models that gener-
alizes previous preferential attachment approaches. We proved that any model
from the PA-class possesses the power-law degree distribution with tunable pa-
rameter. We also estimated its clustering coefficient. Next, we described one
particular model from the proposed class (with tunable both the degree distri-
bution parameter and the clustering coefficient). Experiments with generated
graphs illustrated our theoretical results. We also demonstrated different behav-
ior of two versions of the clustering coefficient in preferential attachment models.

As the degree distribution of a preferential attachment model allows adjust-
ment to reality, the clustering coefficient still gives rise to a problem in some
cases. For most real-world networks the parameter γ of their degree distribution
belongs to [2, 3]. As we showed in Section 3, once γ ≤ 3 in a preferential at-
tachment model, the global clustering coefficients decreases as the graph grows,
which does not correspond to the majority of real-world networks. The reason
is that the number of edges added with a new vertex at each step is a constant
and consequently the number of triangles grows too slowly.

Fortunately, there are many ways to overcome this obstacle. Cooper proposed
a model in which the number of added edges is a random variable [11]. In col-
laboration with Pra lat he also considered a modification of the Barabási–Albert
model, where a new vertex added at time t generates tc edges [13]. Preferential
attachment models with random initial degrees were considered in [14]. Also
there are models with adding edges between already existing nodes (e.g. [12]).
Using one of these ideas for the PA-class is a topic for future research.

Acknowledgements Special thanks to Evgeniy Grechnikov, Gleb Gusev,
Andrei Raigorodskii and anonymous reviewers for the careful reading and useful
comments.
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Appendix: Proofs

Proof of Theorem 2

In this proof we use the notation θ(·) for error terms. By θ(X) we denote a
function such that |θ(X)| < X. We also need the following notation:

P
(
dn+1
v = d | dnv = d

)
= 1−Ad

n
−B 1

n
+O

(
d2

n2

)
, (10)

p1n(d) := P
(
dn+1
v = d+ 1 | dnv = d

)
= A

d

n
+B

1

n
+O

(
d2

n2

)
, (11)

pjn(d) := P
(
dn+1
v = d+ j | dnv = d

)
= O

(
d2

n2

)
, 2 ≤ j ≤ m . (12)

pn :=

m∑
k=1

P(dn+1
n+1 = m+ k) = O

(
1

n

)
. (13)

Note that the remainder term of pjn(d) can depend on v. We omit v in notation
pjn(d) for simplicity of proofs.

Put pv(d) =
∑m
j=1 p

j
v(d). Note that Ad+B+1

Ad−A+B p
1
v(d− 1)− pv(d) = 1

v +O
(
d2

v2

)
.

We use this equality several times in this proof.

We want to prove that ENn(d) = c(m, d)
(
n+ θ

(
Cd2+

1
A

))
with some con-

stant C and some function θ. The proof is by induction on d and then on i. First,
we prove the theorem for d = m and all i. Then, if we proved the theorem for
some d = d0 and all i, we are able to prove it for d = d0 + 1 and for all i.

We use the following equalities

E(Ni+1(m) | Ni(m)) = Ni(m) (1− pi(m)) + 1− pi , (14)

E(Ni+1(d) | Ni(d), Ni(d− 1), . . . , Ni(d−m)) = Ni(d) (1− pi(d)) +

+Ni(d− 1)p1i (d− 1) +

m∑
j=2

Ni(d− j)pji (d− j) +O(pi) . (15)

Consider the case d = m. For constant number of small i we obviously have
ENi(m) = i

Am+B+1 + θ(C1) with some C1. Assume that ENi(m) = i
Am+B+1 +

θ(C1). From (14) we obtain

ENi+1(m) = ENi(m) (1− pi(m)) + 1− pi =

=

(
i

Am+B + 1
+ θ(C1)

)
(1− pi(m)) + 1 + θ(C2/i) =

=
i+ 1

Am+B + 1
+ θ(C1) (1− pi(m)) + θ

(
C3

i

)
1

Am+B + 1
+ θ(C2/i) .
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It remains to show that

C1pi(m) ≥ C3

i(Am+B + 1)
+ θ(C2/i) .

We have pi(m) ≥ mA+B
i − C0

i2 . It gives us

C1(Am+B) ≥ C1C0

i
+

C3

Am+B + 1
+ C2 .

This equality holds for large i and C1. This completes the proof for d = m.
Remind that the proof is by induction on d and i. Consider d > m and assume

that we can prove the theorem for all smaller degrees. Now we use induction on
i.

We have Ni(d) ≤ 2mi
d , therefore Ni(d) = O

(
ic(m, d)d1/A

)
. In particular, for

i < 2C7 d
2, where the constant C7 depends only on the parameters of the model

and will be defined later, we have ENi(d) = c(m, d)
(
i+ θ

(
Cd2+1/A

))
with some

C. Assume that
ENi(d) = c(m, d)

(
i+ θ

(
Cd2+1/A

))
.

From (15) we obtain

ENi+1(d) = ENi(d) (1− pi(d)) + ENi(d− 1)p1i (d− 1)+

+

m∑
j=2

ENi(d− j)pji (d− j) +O(pi) =

= c(m, d)
(
i+ θ

(
Cd2+1/A

))
(1− pi(d)) +

+ c(m, d− 1)
(
i+ θ

(
C(d− 1)2+1/A

))
p1i (d− 1) + θ

(
C4c(m, d)d2id1/A

i2

)
=

= c(m, d)(i+ 1) + c(m, d− 1)ip1i (d− 1)−

− c(m, d)ipi(d)− c(m, d) + c(m, d)θ
(
Cd2+1/A

)
(1− pi(d)) +

+
c(m, d)(Ad+B + 1)

Ad−A+B
θ
(
C(d− 1)2+1/A

)
p1i (d− 1) + θ

(
C4c(m, d)d2d1/A

i

)
=

= c(m, d)(i+ 1) + c(m, d)θ
(
Cd2+1/A

)
(1− pi(d)) +

+
c(m, d)(Ad+B + 1)

Ad−A+B
θ
(
C(d− 1)2+1/A

)
p1i (d− 1) + θ

(
C5c(m, d)d2d1/A

i

)
.

We need to prove that there exists a constant C that

Cd2+1/Api(d) ≥ C(Ad+B + 1)

Ad−A+B
(d− 1)2+1/Ap1i (d− 1) +

C5d
2+1/A

i
,

Cd2+1/Api(d) ≥ C(Ad+B + 1)

Ad−A+B

(
d2+1/A − (2 + 1/A)d1+1/A + C6d

1/A
)
·

· p1i (d− 1) +
C5d

2+1/A

i
,
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Cd2+1/A

i

(
2A+

(B −A)(2A+ 1)

Ad
+O

(
d

i2

))
≥ Cd2+1/AO

(
d2

i2

)
+

+
C(Ad+B + 1)

Ad−A+B
C6d

1/A

(
A
d− 1

i
+B

1

i
+O

(
d2

i2

))
+
C5d

2+1/A

i
,

Cd2+1/A

i
≥ C7Cd

4+1/A

i2
+
C8Cd

1+1/A

i
+
C9d

2+1/A

i
.

This inequality holds for large C ≥ C10 and d ≥ d1. For constant number of
small d < d1 there exists a function f(d) > 0 such that

f(d)d2+1/Api(d) ≥ f(d− 1)
Ad+B + 1

Ad−A+B
(d− 1)2+1/Ap1i (d− 1) +

C5d
2+1/A

i
.

Thus the final C is max {C10,maxd<d1{f(d)}}. This concludes the proof.

Proof of Theorem 3

To prove Theorem 3 we need the Azuma–Hoeffding inequality:

Theorem 7 (Azuma, Hoeffding). Let (Xi)
n
i=0 be a martingale such that |Xi−

Xi−1| ≤ ci for any 1 ≤ i ≤ n. Then

P (|Xn −X0| ≥ x) ≤ 2e
− x2

2
∑n
i=1

c2
i

for any x > 0.

Suppose we are given some δ > 0. Fix n and d: 1 ≤ d ≤ n
A−δ
4A+2 . Consider the

random variables Xi(d) = E(Nn(d) | Gim), i = 0, . . . , n.
Let us explain the meaning of the random variable E(Nn(d) | Gim). For any

t ≤ n let E(Nn(d) | Gtm) be the expectation of the number of vertices with
degree d we may have at the step n of the process Gtm if we fix first t steps of the
evolution and allow the rest n−t steps to be arbitrary. Note thatX0(d) = ENn(d)
and Xn(d) = Nn(d). It is easy to see that Xn(d) is a martingale.

We will prove below that for any i = 0, . . . , n− 1

|Xi+1(d)−Xi(d)| ≤Md,

where M > 0 is some constant. Theorem follows from this statement immedi-
ately. Put ci = Md for all i. Then from Azuma–Hoeffding inequality it follows
that

P
(
|Nn(d)− ENn(d)| ≥ d

√
n log n

)
≤ 2 exp

{
−nd

2 log2 n

2nM2d2

}
= O

(
n− logn

)
.

If d ≤ n
A−δ
4A+2 , then the value of n

d1+1/A is considerably greater than d log n
√
n.

This is exactly what we need.
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It remains to estimate the quantity |Xi+1(d)−Xi(d)|. The proof is by a direct
calculation.

Fix 0 ≤ i ≤ n− 1 and some graph Gim. Note that∣∣E (Nn(d) | Gi+1
m

)
− E

(
Nn(d) | Gim

)∣∣ ≤
≤ max
G̃i+1
m ⊃Gim

{
E
(
Nn(d) | G̃i+1

m

)}
− min
G̃i+1
m ⊃Gim

{
E
(
Nn(d) | G̃i+1

m

)}
.

Put Ĝi+1
m = arg max E(Nn(d) | G̃i+1

m ), Ḡi+1
m = arg min E(Nn(d) | G̃i+1

m ). We
need to estimate the difference E(Nn(d) | Ĝi+1

m )− E(Nn(d) | Ḡi+1
m ).

For i+ 1 ≤ t ≤ n put

δit(d) = E(Nt(d) | Ĝi+1
m )− E(Nt(d) | Ḡi+1

m ).

First let us note that for t ≤ C11d
2, then we have δit(d) ≤ 2mt

d ≤ Md for
some constant M .

Now we want to prove that δin(d) ≤Md by induction. Suppose that n = i+1.
Fix Gim. Graphs Ĝi+1

m and Ḡi+1
m are obtained from the graph Gim by adding the

vertex i+ 1 and m edges. Therefore δii+1(d) ≤ 2m.
Now consider t: i ≤ t ≤ n− 1, t > C11d

2. Note that

E
(
Nt+1(m) | Gim

)
= E

(
Nt(m) | Gim

)
(1− pt(m)) + 1 +O(1/t) ,

E
(
Nt+1(d) | Gim

)
= E

(
Nt(d) | Gim

)
(1− pt(d)) +

+E
(
Nt(d− 1) | Gim

)
p1t (d−1)+

m∑
j=2

E
(
Nt(d− j) | Gim

)
pjt (d−j)+O(1/t), d ≥ m+1 .

We obtained the same equalities in the proof of Theorem 2, see (14)-(15). Replace
Gim by Ĝim or Ḡim in these equalities. Substracting the equalities with Ḡim from
the equalities with Ĝim we get (for d > m)

δit+1(d) = δit(d) (1− pt(d)) + δit(d− 1)p1t (d− 1) +O

(
ENt(d)d2

t2

)
+O

(
1

t

)
=

= δit(d) (1− pt(d)) + δit(d− 1)p1t (d− 1) + θ

(
C12d

t

)
. (16)

Here we used that ENt(d) = O
(
td−1−1/A + d

)
= O(t/d). From this recurrent

relation it is easy to obtain by induction that δin(d) ≤Md for some M .

δit+1(d) ≤Md (1− pt(d)) +M(d− 1)p1t (d− 1) +
C12d

t
≤

≤Md− MA(2d− 1)

t
− MB

d
+
C13Md3

t2
+
C12d

t
≤Md

for sufficiently large M . This concludes the proof of Theorem 3.
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Proof of Theorem 4

Let us give the sketch of the proof of Theorem 4. We can prove this theorem by
induction. Note that

P2(n) =

∞∑
d=m

Nn(d)
d(d− 1)

2
.

Therefore

EP2(i+1) =

∞∑
d=m

ENi+1(d)
d(d− 1)

2
= EP2(i)+

m(m− 1)

2
+

∞∑
d=m

ENi(d)pi(d)d ∼

∼ EP2(i)+
m(m− 1)

2
+

∞∑
d=m

(Ad+B)dENi(d)

i
= EP2(i)

(
1 +

2A

i

)
+
m(m− 1)

2
+

+

∞∑
d=m

(A+B)dENi(d)

i
= EP2(i)

(
1 +

2A

i

)
+ 2m(A+B) +

m(m− 1)

2
.

So we obtain

EP2(n) ∼
(

2m(A+B) +
m(m− 1)

2

) n∑
t=1

n∏
i=t+1

(
1 +

2A

i

)
∼

∼
(

2m(A+B) +
m(m− 1)

2

) n∑
t=1

n2A

t2A
.

If 2A < 1 then

EP2(n) ∼
(

2m(A+B) +
m(m− 1)

2

)
n

1− 2A
.

If 2A = 1 then

EP2(n) ∼
(

2m(A+B) +
m(m− 1)

2

)
n log(n) .

If 2A > 1 then
EP2(n) = O

(
n2A

)
.

Note that if 2A ≤ 1, then the structure of an arbitrary graph Gn0
m does not

affect the asymptotic of EP2(n). If 2A > 1, then Gn0
m affects only the constant

in O
(
n2A

)
.

We computed the expectation of P2. One can prove concentration using stan-
dard martingale methods, although the proof is not trivial in this case. Here we
need the fact that the maximum degree ∆n grows as nA, which can be shown
using an induction. Let us consider the case 1 − 2A > 0. The intuition behind
this proof is the following. If we draw an edge to some vertex then this edge
increase the expected final degree of this vertex by (n/i)A. Finally, the expected
number of P2 increases by at most nA(n/i)A = n2A/iA (we multiply the number
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of extra edges by the maximum possible degree of a vertex). Now, the sum of
the squares of these values (see

∑n
i=1 c

2
i in Theorem 7) is of order n1+2A. So,

in Azuma’s inequality we can take x growing faster than n1/2+A. Note that in
this case x can be taken smaller than EP2(n) which gives concentration. In the
case 1 − 2A < 0 we are not able to get concentration, but it is possible to get
asymptotic from Theorem 4.
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