arxiv:1304.7687v2 [cs.DS] 9 Jun 2013

A Nonmonotone Analysis with the Primal-Dual Approach:
online routing of virtual circuits with unknown durations

Guy Everi Moti Medina*

Abstract

We address the question of whether the primal-dual appré@ctihe design and analysis of
online algorithms can be applied to nonmonotone problenespkbvide a positive answer by pre-
senting a primal-dual analysis to the online algorithm ofefauch et al. [AAPWO1] for routing
virtual circuits with unknown durations.

1 Introduction

The analysis of most online algorithms is based on a potefutietion (see, for example, [AAP93,

AKPT97,|AAFT97,[AAPWO01] in the context of online routing). BuchbinderdaNaor [BNO9] pre-

sented a primal-dual approach for analyzing online algoré. This approach replaces the need to find
the appropriate potential function by the task of finding pprapriate linear programming formulation.

The primal-dual approach presented by Buchbinder and Naatmonotone nature. Monotonicity
means that: (1) Variables and constraints arrive in an erfi@shion. Once a variable or constraint
appears, it is never deleted. (2) Values of variables, ifatgd] are only increased. We address the
guestion of whether the primal-dual approach can be extetalanalyze nonmonotone algoritlﬂns

An elegant example of nonmonotone behavior occurs in thblgmo of online routing of virtual
circuits with unknown durations. In the problem of routinigtwal circuits, we are given a graph with
edge capacities. Each requestconsists of a source-destination pei,¢;). A requestr; is served
by allocating to it a path frons; to »;. The goal is to serve the requests while respecting the edge
capacities as much as possible. In the online setting, stsj@rive one-by-one. Upon arrival of a
requestr;, the online algorithm must serve. In the special case of unknown durations, at each time
step, the adversary may introduce a new request or it mayrtatenan existing request. When a request
terminates, it frees the path that was allocated to it, tledsicing the congestion along the edges in
the path. The online algorithm has no knowledge of the futneemely, no information about future
requests and no information about when existing requestemd. Nonmonotonicity is expressed in
this online problem in two ways: (1) Requests terminate thelsting the demand to serve them. (2) The
congestion of edges varies in a nhonmonotone fashion; ati@udif a path increases congestion, and a
deletion of a path decreases congestion.

Awerbuch et al.[[AAPWOI1] presented an online algorithm folirwe routing of virtual circuits when
the requests have unknown durations. In fact, their algoritesorts to rerouting to obtain a logarithmic
competitive ratio for the load. Rerouting means that thé pdlbcated to a request is not fixed and the
algorithm may change this path from time to time. Hencewatig rerouting increases the nonmonotone
characteristics of the problem.

*School of Electrical Engineering, Tel-Aviv Univ., Tel-Av69978, Israel{guy, medinamo}@eng.tau.ac.il.
M.M was partially funded by the Israeli Ministry of SciencedaTechnology.

The only instance we are aware of in which the primal-dualreagh is applied to nonmonotone variables appears
in [BEGN11]. In this instance, the change in the dual profiteach round, is at least a constant times the change in the
primal profit. In general, this property does not hold in amonotone setting.

http://arxiv.org/abs/1304.7687v2
{guy,medinamo}@eng.tau.ac.il

We present an analysis of the online algorithm of Awerbuchl AAPWO1] for online routing of
virtual circuits with unknown durations. Our analysis usesprimal-dual approach, and hence we show
that the primal-dual approach can be applied in nonmonatettengs.

2 Problem Definition

2.1 Online Routing of Virtual Circuits with Unknown Duratio ns

LetG = (V, E) denote a directed or undirected graph. Each edge” has a capacity. > 1. Arouting
requestry is a4-tuplery = (s, dg, ar, br), Wwhere (i)si, d,, € V are the source and the destination of
the kth routing request, respectively, (ii). € N is both the arrival time and the start time of the request,
and (iii) b € N is the departure time or end time of the request. ILgdenote the set of paths &
from sj, to di.. A requestry, is served if itis allocated a path Iry,.

Let [NV] denote the sef0, ..., N'}. The input consists of a sequence of events {o;}ycn). We
assume that time is discrete, and ewenbccurs at time. There are two types of events: (i) Anrival
of a request. When a requegtarrives, we are given the sourggand the destinatiod;. Note that the
arrival timea;, simply equals the current tinte (i) A departureof a request. When a requesgtdeparts
there is no need to serve it anymore (namely, the departaebii simply equals the current tintg.

The set of active requests at tirhies denoted byAlive; and is defined by

AIivet = {Tk ‘ ay § t < bk} .

An allocation is a sequencel = {py}; of paths such that, is a path from the source, to the
destinationd;, of requestr;. Letpaths(e, A) denote the number of requests that are routed along edge
e by allocationA at timet, formally:

paths (e, A) £ |{px : e € pr andry, € Alive;}| .
Theload of an edge: at textt is defined by

load,(c, 4) 2 Pas(4)

Ce

Theload of an allocationA at timet is defined by

load;(A) = max load;(e, A) .

eck

Theload of an allocationA is defined by
load(A) = max load; (4) .

An algorithm computes an allocation of paths to the requests therefore we abuse notation and
identify the algorithm with the allocation that is computagdit. Namely,ALG (o) denotes the allocation
computed by algorithmLc for an input sequence.

In the online setting, the events arrive one-by-one, andnfarmation is known about an event
before its arrival. Moreover, (1) the lengf¥i of the sequence of events is unknown; the input simply
stops at some point, (2) the departure tibpes unknown(and may even be determined later by the
adversary), and (3) the online algorithm must allocate h fmathe request as soon as the request arrives.

The competitive ratioof an online algorithmaLG with respect toN € N, and a sequence =
{ot}ie(n) is defined by
» load(ALG(0))

pAS(0) 2 oo

)

whereoPT(o) is an allocation with minimum load. Theompetitive ratioof an online algorithmaLG is
defined by
p(ALG) £ sup max p(ALG(0)) .
NeN ¢

Note that since every request has a unit demand, we may askatng > 1 for every edge: € F.

2.2 Rerouting

In the classical setting, a requesgtis served by a fixed single path throughout the duration of the
request. The termerouting means that we allow the allocation to change the patthat serves:.
Thus, there are two extreme cases: (i) no rerouting at akimjited (classical setting), and (ii) total
flexibility in which, a new allocation can be computed in etioie step.

Following the paper by Awerbuch et al. [AAPWO01], we allow thiline algorithm to reroute each
request at mosO(log|V|) times. In the analysis of the competitive ratio, we compaee [bad of
the online algorithm with the load of an optimal (splittab&location with total rerouting flexibility.
Namely, the optimal solution recomputes a minimum loadcallion at each time step, and, in addition
may serve a request by a convex combination of paths.

3 The Online Algorithm ALG

In this section we present the online algoritanG that is listed in Algorithn{Il. Thus algorithm is
equivalent to the algorithm presented 01].

The algorithm maintains the following variables.
1. For every edge a variabler.. The value ofr, is exponential in the load of edge

2. For every request, a variablez,. The value ofz;, is the complement of the “weight” of the path
p;. allocated to, at the time the path was allocated.

3. For every routing requesy;, and for every pathp € T';, a variablef;(p). The value off.(p)
indicates whethep is allocated to,. That is, the value of(p) equalsl if pathp is allocated for
requestr;, and0 otherwise.

The algorithmALG consists of the followingy procedures: (1) MIN, (2) ROUTE, (3) DEPART,
(4) UNROUTE, and (5) MAKEFEASIBLE.

The MAIN procedure begins with initialization. For evetye E, z. is initialized toﬁ, where
m = |E|. For everyk € [N], z; is initialized to zero. For everk € [N], and for every path, fx(p) is
initialized to zero. Since the number gf and f;(p) variables is unbounded, their initialization is done
in a “lazy” fashion; that is, upon arrival of thgh request the corresponding variables are set to zero.

The main procedure MIN proceeds as follows. For every time step [N] , if the evento, is an
arrival of a request, then thed®R TE procedure is invoked. Otherwise, if the eventis a departure of a
request, then the EPART procedure is invoked.

The RouUTE procedure serves requegtby allocating a “lightest” pathp;. in the setl’;. (recall that
I';, denotes the set of paths from the sousgeo the destinationi;). The allocation is done by two
actions. First, the allocation @f; to requestr, is indicated by setting.(pr) < 1. Second, the loads
of the edges along;. are updated by increasing the variabledor e € p;. The variablez; equals the
“complement” weight of the allocated path. Note that this complement is with respect to half the
weight of the path before its update.

The DEPART procedure “frees” the path that is allocated#gr by calling the WWROUTE procedure.
The UNRoOUTE procedure freep;. by nullifying fix(px) andzi, and by decreasing the edge variables
z. for the edges along,. The freeing ofp;, decreases the load along the edgeg,in As a result of

this decrease, it may happen that a path allocated to anraliugeest might be very heavy compared to a
lightest path. In such a case, the request should be rerolitéslis why the MAKEFEASIBLE procedure
is invoked after the IROUTE procedure.

Rerouting is done by the NKEFEASIBLE procedure. This rerouting is done by freeing a path and
then routing the request again. Requests with improvedhaliee paths are rerouted.

The listing of the online algorithmaLG appears in Algorithri]1.

Algorithm 1 ALG: Online routing algorithm. The input consists of (1) a gra&ph- (V, E') where each
e € E has capacity., and (2) a sequence of events= {o; },c[n)-

M AIN (o+)

1: VkG[N]Zk%O

2: Ve € E : xc + 1, wherem = |E|.

3: Vr € [N]Vp: fr(p) « 0.

4: Upon arrival of events; do

5: if o, is an arrival of request, then Call ROUTE(ry).

6. else(o: is an departure of request) Call DEPART(71).

ROUTE(r)

1: Find the “lightest” pathp,, < argmin{}___ , <= | p €Ty}
2: Zk%l—%'zeepk i—:

3: Routery alongpx: fi(px) < 1.

4: for all e € pi. do

5. Ze < Te - A Wherel, £ (1 + i) {Update edge “load’

DEPART(7%)

1: Call UNROUTE(ry).
2: Call MAKEFEASIBLE(z, z).

UNROUTE(7%)

1: Free variableszy, fr(px).
2: forall e € px do

31 e+ Te/Ae Wherel, & (1 + ﬁ) {Update edge “load’

M AKE FEASIBLE (z, 2)

1: Vrj e Alive if 3peTy @ z;+ >
2: Call UNROUTE(rj).

3: Call ROUTE(r;).

cep o= < 1then

4 Primal-Dual Analysis of ALG

In this section we prove that the load on every edge is alv@aglsg |V'|), and that each request is
rerouted at mos(log |V'|) times. We refer to an input sequeneasfeasibleif there is an allocation
A, such that for all requests that are alive at timi holds thatload;(A) < 1. The following theorem
holds under the assumption that the input sequeriséeasible. Note that the removal of this assumption
increases the competitive ratio only by a constant factasthgdard doubling techniques [AAPWO1].

Theorem 1([JAAPWO1]). If the input sequence is feasible and assuming that > 1, thenALG is:
1. AnO(log |V])-competitive online algorithm.
2. Every request is rerouted at mastlog |V|) times.

We point out that the allocation computed byG is nonsplittablein the sense that at every given
time each request is served by a single path. The optimalaitm, on the other hand, is both totally
flexible andsplittable Namely, the optimal allocation may reroute all the regu@steach time step,
and, in addition, may serve a request by a convex combinafipaths.

4

P-LP(t) : min Z zk—i—er s.t.

Tk eAIivet ecFE

. x
Vr, € Alive, Vp € Ty, @ 2z + Z C—e > 1 (Covering Constraints.)
ecp €

x > 0
0)
D-LP(t) : max Z ka(p) s.t.

rrEAlive; pel'y
1
Vee F:— - < 1(ity Constraints.
c Z Z fulp) < (Capacity Constraints.)
rr€Aliver {p|pels,e€p}

Vr;. € Alive : Z fx(p) = 1 (Demand Constraints.)
pely

f 0

()
Figure 1: (I) The primal LPp-LP(¢). (I1) The dual LP,D-LP(t).

v

The rest of the proof is as follows. We begin by formulatingagking and covering programs for our
problem in Sectiofh 4]1. We then prove Lenimha 1 in Se¢fioh 42cuviclude the analysis with the proof
of Theorenti 1 in Section 4.3

4.1 Formulation as an Online Packing Problem

For the sake of analysis, we define for every prefix of evénﬁ;:l aprimal linear progranp-LpP(t)
and itsdual linear progranD-LP(t). The primal LP is aoveringLP, and the dual LP is packingLP.
The LP’s appear in Figuid 1.

The variables of the LPs correspond to the variables maietbyALG, as follows. The covering
programp-LP(¢) has a variable:. for every edge: € E, and a variabley, for everyr, € Alive,. The
packing progranD-LP(t) has a variablgy(p) for every request;, € Alive,, and for every path € T'y.
The variablef;(p) equals to the fraction of;’s “demand” that is routed along paghe T'y.

The dual LP has three types of constraints: capacity canstralemand constrains, and sign con-
straints. In the fractional setting the load of an edge imeefby

oad() 2~ Y Y A,

© ry€Alive; {p|pely.eep}

The capacity constraint in the dual LP requires that the wfashch edge is at most one. The demand
constraints require that each requesthat is alive at time is allocated a convex combination of paths.

If the dual LP is feasible, then the objective function of theal LP simply equals the number of
requests that are alive at time stepe., |Alive;|.

The primal LP has two types of constraints: covering coimgsand sign constraints. The covering
constraints requires that for every requesthat is alive and for every path € T';, the sum ofz;, and
the “weight” of p is at leastl. Note that the sign constraints apply only to the edge visah whereas
the request variables; are free.

Note that the assumption thatis feasible is equivalent to requiring that the dual progame(t)
is feasible for every.

4.2 Bounding the Primal Variables

In this section we prove that the primal variablesare bounded by a constant, as formalized in the
following Lemma.

Lemma 1. If o4 is an original event, then
Vec E :xé’f)g?,.

The proof of Lemmall is based on a few lemmas that we prove first.

Notation. Let :::Sf), z,it) denote the value of the primal variables z; before event; is processed by
ALG. Let P, denote the objective function’s value ®fiLP(t), formally:

P2 Z z,(:) + ng) .

Tk eAIivet eckE

LetA,P £ P, — P,

Note thatP; refers to the value of-LP(t) at the beginning of time stepp The definition ofAlive;
implies that the constraints and variablesafpr(t) are not influenced by the evemt (this happens only
for P-LP(¢t + 1)). Hence the variables in the definition Bf are indexed by time step

Dummy events. The procedure BUTE is invoked in two places: (i) in LinE]5 of MiN as a result

of an arrival of a request, or (ii) in Lifg 3 of MNKEFEASIBLE. To simplify the discussion, we create
“dummy” events each time the MKEFEASIBLE procedure reroutes a request. Dummy events come
in pairs: first a dummy departure event for requests introduced, and then a dummy arrival event
for a “continuation” request;, is introduced. The combination of original events and dunawents
describes the execution af G. The augmentation of the original input sequence of eventdunmy
events does not modify the optimal value of the dual LP at 8teps: that correspond to original events.
Hence, we analyze the competitive rati®LG (o)) by analyzing the competitive ratio with respect to
the augmented sequence at time stegst correspond to original events.

The following lemma follows immediately from the descrgstiof the algorithmaLG and the defi-
nition of dummy events.

Lemma 2 (Primal Feasibility). If o, is an original event, then the variabIG{Ssg)}eeE U {zét) Feeniive,
constitute a feasible solution fexLP(¢).

Proof. When an original eveni; occurs, the MKEFEASIBLE procedure generates dummy events at
the end of the time step to guarantee that the primal vagadnle a feasible solution of the primal LP.
Hence, ifoy is an original event, then the primal variables at the bagmof time step: are a feasible
solution forp-LP(t). O

Lemma 3. If oy is an arrival of request, ther\; P < 1.

Proof. Assume that, is an event in which requesy, arrives. In Stepl2 of the ®TE algorithm z;, is

(1) . . (t)
settol —1-3° . In Sted® of the RUTE algorithm, for everye € py, z. is increased by;:—.

ecp Ce
All the other edge ﬁ/ariablese remain unchanged. Hence,
() ()
1 Te Te
AP =1——-
K 2 Z Ce * 4c,
ecpy ecpy
(t)
1 Te
=1-=. 1
1 @
eEpy

as required. O

We refer to the number of requests that are routed along edygeallocationALG at timet by
paths(e).

Lemma 4. For everyt ande € F,

O 1 APaths(e)
¢ dm

Proof. The proof is by induction on. Attime ¢ = 0, we haver!”) = - andpaths(e) = 0. The proof
of the induction basis for+ 1 depends on whether at time stiegn arrival or a departure occurs. If the
event does not affect edgethen the induction step clearly holds. Assume that theteaféects edge.

If a requestry, arrives at time,, thenpaths, ; (¢) = paths(e) + 1 andz{""" = 2" . A.. If a request,
departs at time, thenpaths , , (¢) = paths(e) — 1 andz{"" = z{/x.. O

LetDead = {ry | b < t}. In general, itis not true thak,, P + A, P < 0, however on average it
is true, as stated in the following lemma.

Lemma 5. For everyt,

> (AgP+Ay,P)<0. @)

r;€Dead
Proof. First we prove the following proposition.

Proposition 1. Consider a set of = {I; = [a;, 8;]}_, such that no two intervals share a common
endpoint. Let cut) denote the number of intervals that containThen, there is a permutation :
[1,q] — [1,q] such that

Vj € [LQ] : CUt(aj) = CUt(ﬁﬂ(j)) : (3)

Proof. The proof is by induction on the number of intervals. The ttthn basis, forg = 1 holds
trivially becausecut(a;) = cut(8;) = 1. The proof of the induction step is based on the existence of
a paira; < f3; such that the open intervédy;, 5;) does not contain any endpoint of the intervald in
For such a pair, we immediately hawat(«;) = cut(5;) so we definer(i) = j and apply the induction
hypothesis.

We first show that such a pair; < 3; exists. We say that an interva}, is minimalif I,,, N I}, # ()
implies thatl,,, C . If there exists a minimal interval,,, then sety; = o, andf; = f,,,. In such
a case sincer(m) = m, we can erasd,, and proceed by applying the induction hypothesis to the
remaining intervals. Note that equality of cut sizes is eresd when the intervdl,, is deleted.

Consider the set of pairs of intersecting intervals withmritainment defined as follows

Aé{(i,j)|aj<ai<ﬁj<ﬁi}.

If there is no minimal interval, the set is not empty. Any paifi, j) € A that minimizes the difference
(Bj — i) has the property that the interv@l;, ;) lacks endpoints of intervals if

We can definer(i) = j. We proceed by applying the induction hypothesis(6n {I;,I;}) U Ij,
wherel;, = I; U I;. Note that equality of cut sizes is preserved whgandI; are merged into one
interval. O

The differenceA,; P consists of two parts:

_ _(aj+1) Te
A%'P =% ’ + Z

The differenced,, P consists of two parts as well:
xgbj+1)

4c,

Ay P =—2\") —

ecp;

It follows that

Z (Ag; P+ Ay, P) = Z 24_18 . (mgaj) _mgbjﬂ))

rjeDead; rjcDead, e

_ Z Z 1 <xéaj) B xgbwm“))
4e, ’

rjcDead, e

wherer is any permutation over the set of requests. In fact, we sisalfor each edge, a different
permutationr = 7(e) that is a permutation over the requestsuch thak € py.

Assume first that\live; = (). We later lift this assumption.

Fix an edgee. For each request; such that € p;, map the duratioria;, b;] of requestr; to the
interval [a; + 1, b;]. The resulting set of intervals satisfiest(t) = paths(e) for every time steg. Let
7 denote the permutation guaranteed by Ptbp. 1. Then, it esffacprove that

xgaj) _ xgbﬂ'(j)—’—l) — 0 (4)

@] ths, . paths, .
Indeed, by Lemmal44m - (mg i) _ méb”‘”ﬂ)> =)\Ea % _ X "9 10 addition, the property

of permutationr states thatut(a; + 1) = cut(bs(;)). It follows thatpaths, ,, = paths_ ;) But,
path%i = path%?_Jrl -1 andpathgm_)Jrl = pathsbﬂ(j) — 1, and Equationl4 follows.
To complete the proof, consider the requestaline;. Becauseu;, b, (;) < t, requests irAlive; do

not increase the difference®’ — xS’W“). Thusz'%) — mib"‘”ﬂ) < 0, and the lemma follows. O

We are now ready to prove Lemmh 1. Recall that Leriina 1 stag¢dhté primal variables, are
bounded by a constant. The proof of Lemha 1 is by contradictio fact, we reach a contradiction to
weak duality that is, we show that the value of the primal solution is#irismaller than the value of a
feasible dual solution.

Proof of Lemma&ll.The proof is by contradiction. Assumét) > 3 andoy is an original event. Define
ty 2 min{t | 2) > 3 andoy is an original everjt

Let ¢, be the time step for whiclngl) <1 andxé’ > 1for everyt’ € [t; + 1,t5].
Define:

AliVGEG(tl,tg) =S {7“]' ’ t < a; < to < bj,e S pj}.

Let). denote the difference between the number of arrivals anduheber of departures in the time
interval [t1,t2) among the requests that were routed alenGlearly . < |Alivec.(t1,t2)|.
Lemmd 4 implies that

1\%
2 :xgm.(u_) .
4c,

The assumption that'? > 3 andz{") < 1 imply

1\
14— >3.
(+4Ce> -

8

Sincel + z < €%, it follows thatd, > 4 - c.. Hence,
]Aliveee(tl, tg)‘ >4 -ce. (5)
By EquatiorL1, for each; € Alivec.(t1,t2), we have:

1
A P <1——. 6
P<l- (6)

Hence,

to—1
Pt2 = — - -m-+ Z AtP
t=0

| =

= —+ Y. (AyP+A,P)+ > AP

rj€Dead, rj€Aliver,

+ Z Ay, P

rj€Aliver,

IN
e~ =

‘A”VGEe(tl s tg) ’
4ce
< |Alive,,]| . @)

1 :
< 7 + |Alivey, | —

The justification for these lines is as follows. The first liolows from the initialization of the primal
variables. The second line follows since every event in et < [0,t, — 1] is either an arrival of a
request iDead, UAlive,, or a departure of a requestlread,. The third inequality is due to Lemr& 5.
The fourth equation is due to Equatign 6. The last inequéditpws from Equatioib.

By Lemma2, the primal variables at timgare a feasible solution @fLP(¢5). The optimal value
of D-LP(t2) equalg/Alive, |. Hence, Equatiofl 7 contradicts weak duality, and the lenotiais. O

4.3 Proof of Theorem1

We now turn to the proof of the main result. The proof is asie8.

Proof of Theoreril1We begin by proving the bound on the competitive ratio. Lerdhstates that

1 1 paths (e)
Vt Vee E :x. = -<1+—> .

4m 4c,

Hence, by Lemmal1, for each original event

1 1 paths (e)
Vee B: - . <1+_>
dm

<3.
4c, -

Since2” < 1+ x for all z € [0, 1], it follows that for each original evet;
Ve € E : pathg(e) < ¢, - 4log(12m) ,

and the first part of the theorem follows.

We now prove the bound on the number of reroutes. Reroutirmi\anrequest:; occurs if there exists a
pathp € I'; such thageep e <1-z.By Line[2 of the RUTE algorithm, this condition is equivalent
(aj)

to: Zeep = < % . ZBEp; x;; . Namely, each time a request is rerouted, the weight of thie ipaat

least halved. Note that the halving is with respect to theyhisof the path at the time it was allocated.

9

Let us consider request. Letp* = argmin,er {>_cc, CL

by Lemmd1, the weight of path; is upper bounded by

T T 1
E e S e S 3 - — .

C C C
eEp; € ecp* € ecp* €

. By the choice of a “lightest” path and

By Lemmd4 .. > 1/(4m), hence the weight of paty is lower bounded by

e, 1 gl L g1
ce — 4m ce 4 Ce
ecp ecp ecp*

It follows that the number of reroutes each request undergobounded byog, (12m), and the
second part of the theorem follows. O

Remark 1. Note that the first routing request will not be rerouted at #ile second routing request will
be rerouted at most twice, and so on. In general, a routingiestjthat arrives at timewill be rerouted
at most|Alive;| times.

5 Discussion

We present a primal-dual analysis of an online algorithm moamonotone setting. Specifically, we
analyze the online algorithm by Awerbuch et al. [AAPWO01] @mline routing of virtual circuits with
unknown durations. We think that the main advantage of thédysis is that it provides an alternative
explanation to the stability condition for rerouting thapaars in[AAPWOI]. According to the primal-
dual analysis, rerouting is used simply to preserve thabigifys of the solution of the covering LP.

Our analysis provides a small improvement compared to [ASEWh the following sense. The
optimal solution in our analysis is both totally flexiblee(i. may reroute every request in every time
step) and splittable (i.e., may serve a request using a gmorabination of paths). The optimal solution
in the analysis of Awerbuch et al. [AAPWO1] is only totally Xlble and must allocate a path to each
request.

The primal-dual approach of Buchbinder and Naor [BN09] isdabon bounding the change in the
value of the primal solution by the change in the dual sotufthis is often denoted bix P < A D). The
main technical challenge we encountered was that this bsiamgly does not hold in our case. Instead,
we use an averaging argument to prove an analogous resilt¢semd.b).

References

[AAFT97] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. l@a-routing of virtual circuits
with applications to load balancing and machine schedulilogirnal of the ACM (JACM)
44(3):486-504, 1997.

[AAP93] B. Awerbuch, Y. Azar, and S. Plotkin. Throughputrepetitive on-line routing. IFOCS
'93: Proceedings of the 1993 IEEE 34th Annual Foundation€amputer Scienggages
32-40, Washington, DC, USA, 1993. IEEE Computer Society.

[AAPWO1] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Quetitive routing of virtual circuits
with unknown durationJournal of Computer and System Sciené&3):385-397, 2001.

[AKPT97] Yossi Azar, Bala Kalyanasundaram, Serge Plotkin, KifRrighs, and Orli Waarts. On-line
load balancing of temporary task¥ournal of Algorithms22(1):93-110, 1997.

10

[BFGN11] NivBuchbinder, Moran Feldman, Arpita Ghosh, andeph Seffi Naor. Frequency capping
in online advertising. IrAlgorithms and Data Structurepages 147-158. Springer, 2011.

[BNO9] Niv Buchbinder and Joseph (Seffi) Naor. The designavhpetitive online algorithms via
a primal-dual approachFoundations and Trends in Theoretical Computer ScieB¢2-
3):99-263, 2009.

11

	1 Introduction
	2 Problem Definition
	2.1 Online Routing of Virtual Circuits with Unknown Durations
	2.2 Rerouting

	3 The Online Algorithm alg
	4 Primal-Dual Analysis of alg
	4.1 Formulation as an Online Packing Problem
	4.2 Bounding the Primal Variables
	4.3 Proof of Theorem ??

	5 Discussion

