
ar
X

iv
:1

30
4.

76
87

v2
 [

cs
.D

S
]

9
Ju

n
20

13

A Nonmonotone Analysis with the Primal-Dual Approach:
online routing of virtual circuits with unknown durations

Guy Even∗ Moti Medina∗

Abstract

We address the question of whether the primal-dual approachfor the design and analysis of
online algorithms can be applied to nonmonotone problems. We provide a positive answer by pre-
senting a primal-dual analysis to the online algorithm of Awerbuch et al. [AAPW01] for routing
virtual circuits with unknown durations.

1 Introduction

The analysis of most online algorithms is based on a potential function (see, for example, [AAP93,
AKP+97, AAF+97, AAPW01] in the context of online routing). Buchbinder and Naor [BN09] pre-
sented a primal-dual approach for analyzing online algorithms. This approach replaces the need to find
the appropriate potential function by the task of finding an appropriate linear programming formulation.

The primal-dual approach presented by Buchbinder and Naor has a monotone nature. Monotonicity
means that: (1) Variables and constraints arrive in an online fashion. Once a variable or constraint
appears, it is never deleted. (2) Values of variables, if updated, are only increased. We address the
question of whether the primal-dual approach can be extended to analyze nonmonotone algorithms1.

An elegant example of nonmonotone behavior occurs in the problem of online routing of virtual
circuits with unknown durations. In the problem of routing virtual circuits, we are given a graph with
edge capacities. Each requestri consists of a source-destination pair(si, ti). A requestri is served
by allocating to it a path fromsi to ri. The goal is to serve the requests while respecting the edge
capacities as much as possible. In the online setting, requests arrive one-by-one. Upon arrival of a
requestri, the online algorithm must serveri. In the special case of unknown durations, at each time
step, the adversary may introduce a new request or it may terminate an existing request. When a request
terminates, it frees the path that was allocated to it, thus reducing the congestion along the edges in
the path. The online algorithm has no knowledge of the future; namely, no information about future
requests and no information about when existing requests will end. Nonmonotonicity is expressed in
this online problem in two ways: (1) Requests terminate thusdeleting the demand to serve them. (2) The
congestion of edges varies in a nonmonotone fashion; an addition of a path increases congestion, and a
deletion of a path decreases congestion.

Awerbuch et al. [AAPW01] presented an online algorithm for online routing of virtual circuits when
the requests have unknown durations. In fact, their algorithm resorts to rerouting to obtain a logarithmic
competitive ratio for the load. Rerouting means that the path allocated to a request is not fixed and the
algorithm may change this path from time to time. Hence, allowing rerouting increases the nonmonotone
characteristics of the problem.

∗School of Electrical Engineering, Tel-Aviv Univ., Tel-Aviv 69978, Israel.{guy,medinamo}@eng.tau.ac.il.
M.M was partially funded by the Israeli Ministry of Science and Technology.

1The only instance we are aware of in which the primal-dual approach is applied to nonmonotone variables appears
in [BFGN11]. In this instance, the change in the dual profit, in each round, is at least a constant times the change in the
primal profit. In general, this property does not hold in a nonmonotone setting.

1

http://arxiv.org/abs/1304.7687v2
{guy,medinamo}@eng.tau.ac.il

We present an analysis of the online algorithm of Awerbuch etal. [AAPW01] for online routing of
virtual circuits with unknown durations. Our analysis usesthe primal-dual approach, and hence we show
that the primal-dual approach can be applied in nonmonotonesettings.

2 Problem Definition

2.1 Online Routing of Virtual Circuits with Unknown Duratio ns

LetG = (V,E) denote a directed or undirected graph. Each edgee in E has a capacityce ≥ 1. A routing
requestrk is a4-tuple rk = (sk, dk, ak, bk), where (i)sk, dk ∈ V are the source and the destination of
thekth routing request, respectively, (ii)ak ∈ N is both the arrival time and the start time of the request,
and (iii) bk ∈ N is the departure time or end time of the request. LetΓk denote the set of paths inG
from sk to dk. A requestrk is served if it is allocated a path inΓk.

Let [N] denote the set{0, . . . , N}. The input consists of a sequence of eventsσ = {σt}t∈[N]. We
assume that time is discrete, and eventσt occurs at timet. There are two types of events: (i) Anarrival
of a request. When a requestrk arrives, we are given the sourcesk and the destinationdk. Note that the
arrival timeak simply equals the current timet. (ii) A departureof a request. When a requestrk departs
there is no need to serve it anymore (namely, the departure timebk simply equals the current timet).

The set of active requests at timet is denoted byAlivet and is defined by

Alivet , {rk | ak � t ≤ bk} .

An allocation is a sequenceA = {pk}k of paths such thatpk is a path from the sourcesk to the
destinationdk of requestrk. Let pathst(e,A) denote the number of requests that are routed along edge
e by allocationA at timet, formally:

pathst(e,A) , |{pk : e ∈ pk andrk ∈ Alivet}| .

The load of an edgee at textt is defined by

loadt(e,A) ,
pathst(e,A)

ce
.

The load of an allocationA at timet is defined by

loadt(A) , max
e∈E

loadt(e,A) .

The load of an allocationA is defined by

load(A) , max
t

loadt(A) .

An algorithm computes an allocation of paths to the requests, and therefore we abuse notation and
identify the algorithm with the allocation that is computedby it. Namely,ALG(σ) denotes the allocation
computed by algorithmALG for an input sequenceσ.

In the online setting, the events arrive one-by-one, and no information is known about an event
before its arrival. Moreover, (1) the lengthN of the sequence of events is unknown; the input simply
stops at some point, (2) the departure timebk is unknown(and may even be determined later by the
adversary), and (3) the online algorithm must allocate a path to the request as soon as the request arrives.

The competitive ratioof an online algorithmALG with respect toN ∈ N, and a sequenceσ =
{σt}t∈[N] is defined by

ρ(ALG(σ)) ,
load(ALG(σ))

load(OPT(σ))
,

2

whereOPT(σ) is an allocation with minimum load. Thecompetitive ratioof an online algorithmALG is
defined by

ρ(ALG) , sup
N∈N

max
σ

ρ(ALG(σ)) .

Note that since every request has a unit demand, we may assumethatce ≥ 1 for every edgee ∈ E.

2.2 Rerouting

In the classical setting, a requestrk is served by a fixed single pathpk throughout the duration of the
request. The termrerouting means that we allow the allocation to change the pathpk that servesrk.
Thus, there are two extreme cases: (i) no rerouting at all is permitted (classical setting), and (ii) total
flexibility in which, a new allocation can be computed in eachtime step.

Following the paper by Awerbuch et al. [AAPW01], we allow theonline algorithm to reroute each
request at mostO(log |V |) times. In the analysis of the competitive ratio, we compare the load of
the online algorithm with the load of an optimal (splittable) allocation with total rerouting flexibility.
Namely, the optimal solution recomputes a minimum load allocation at each time step, and, in addition
may serve a request by a convex combination of paths.

3 The Online Algorithm ALG

In this section we present the online algorithmALG that is listed in Algorithm 1. Thus algorithm is
equivalent to the algorithm presented in [AAPW01].

The algorithm maintains the following variables.

1. For every edgee a variablexe. The value ofxe is exponential in the load of edgee.

2. For every requestrk a variablezk. The value ofzk is the complement of the “weight” of the path
pk allocated tork at the time the path was allocated.

3. For every routing requestrk, and for every pathp ∈ Γk a variablefk(p). The value offk(p)
indicates whetherp is allocated tork. That is, the value offk(p) equals1 if pathp is allocated for
requestrk, and0 otherwise.

The algorithmALG consists of the following5 procedures: (1) MAIN , (2) ROUTE, (3) DEPART,
(4) UNROUTE, and (5) MAKEFEASIBLE.

The MAIN procedure begins with initialization. For everye ∈ E, xe is initialized to 1
4m , where

m = |E|. For everyk ∈ [N], zk is initialized to zero. For everyk ∈ [N], and for every pathp, fk(p) is
initialized to zero. Since the number ofzk andfk(p) variables is unbounded, their initialization is done
in a “lazy” fashion; that is, upon arrival of thekth request the corresponding variables are set to zero.

The main procedure MAIN proceeds as follows. For every time stept ∈ [N] , if the eventσt is an
arrival of a request, then the ROUTE procedure is invoked. Otherwise, if the eventσt is a departure of a
request, then the DEPART procedure is invoked.

The ROUTE procedure serves requestrk by allocating a “lightest” pathpk in the setΓk (recall that
Γk denotes the set of paths from the sourcesk to the destinationdk). The allocation is done by two
actions. First, the allocation ofpk to requestrk is indicated by settingfk(pk) ← 1. Second, the loads
of the edges alongpk are updated by increasing the variablesxe for e ∈ pk. The variablezk equals the
“complement” weight of the allocated pathpk. Note that this complement is with respect to half the
weight of the path before its update.

The DEPART procedure “frees” the path that is allocated forpk, by calling the UNROUTE procedure.
The UNROUTE procedure freespk by nullifying fk(pk) andzk, and by decreasing the edge variables
xe for the edges alongpk. The freeing ofpk decreases the load along the edges inpk. As a result of

3

this decrease, it may happen that a path allocated to an aliverequest might be very heavy compared to a
lightest path. In such a case, the request should be rerouted. This is why the MAKEFEASIBLE procedure
is invoked after the UNROUTE procedure.

Rerouting is done by the MAKEFEASIBLE procedure. This rerouting is done by freeing a path and
then routing the request again. Requests with improved alternative paths are rerouted.

The listing of the online algorithmALG appears in Algorithm 1.

Algorithm 1 ALG: Online routing algorithm. The input consists of (1) a graphG = (V,E) where each
e ∈ E has capacityce, and (2) a sequence of eventsσ = {σt}t∈[N].
M AIN (σt)

1: ∀k ∈ [N] : zk ← 0.
2: ∀e ∈ E : xe ←

1
4m

, wherem = |E|.
3: ∀rk ∈ [N] ∀p : fk(p)← 0.
4: Upon arrival of eventσt do
5: if σt is an arrival of requestrk then Call ROUTE(rk).
6: else(σt is an departure of requestrk) Call DEPART(rk).

ROUTE(rk)
1: Find the “lightest” path:pk ← argmin{

∑

e∈p′
xe

ce
| p′ ∈ Γk}.

2: zk ← 1− 1
2
·
∑

e∈pk

xe

ce
.

3: Routerk alongpk: fk(pk)← 1.
4: for all e ∈ pk do

5: xe ← xe · λe whereλe ,

(

1 + 1
4ce

)

. {Update edge “load”}

DEPART(rk)
1: Call UNROUTE(rk).
2: Call MAKEFEASIBLE(x, z).

UNROUTE(rk)
1: Free variables:zk, fk(pk).
2: for all e ∈ pk do

3: xe ← xe/λe whereλe ,

(

1 + 1
4ce

)

. {Update edge “load”}

M AKE FEASIBLE(x, z)
1: ∀rj ∈ Alivet if ∃p ∈ Γj : zj +

∑

e∈p
xe

ce
< 1 then

2: Call UNROUTE(rj).
3: Call ROUTE(rj).

4 Primal-Dual Analysis of ALG

In this section we prove that the load on every edge is alwaysO(log |V |), and that each request is
rerouted at mostO(log |V |) times. We refer to an input sequenceσ asfeasibleif there is an allocation
A, such that for all requests that are alive at timet, it holds thatloadt(A) ≤ 1. The following theorem
holds under the assumption that the input sequenceσ is feasible. Note that the removal of this assumption
increases the competitive ratio only by a constant factor bystandard doubling techniques [AAPW01].

Theorem 1([AAPW01]). If the input sequenceσ is feasible and assuming thatce ≥ 1, thenALG is:

1. AnO(log |V |)-competitive online algorithm.

2. Every request is rerouted at mostO(log |V |) times.

We point out that the allocation computed byALG is nonsplittablein the sense that at every given
time each request is served by a single path. The optimal allocation, on the other hand, is both totally
flexible andsplittable. Namely, the optimal allocation may reroute all the requests in each time step,
and, in addition, may serve a request by a convex combinationof paths.

4

P-LP(t) : min
∑

rk∈Alivet

zk +
∑

e∈E

xe s.t.

∀rk ∈ Alivet ∀p ∈ Γk : zk +
∑

e∈p

xe
ce

≥ 1 (Covering Constraints.)

x ≥ ~0

(I)

D-LP(t) : max
∑

rk∈Alivet

∑

p∈Γk

fk(p) s.t.

∀e ∈ E :
1

ce
·

∑

rk∈Alivet

∑

{p|p∈Γk,e∈p}

fk(p) ≤ 1 (Capacity Constraints.)

∀rk ∈ Alivet :
∑

p∈Γk

fk(p) = 1 (Demand Constraints.)

f ≥ ~0

(II)

Figure 1: (I) The primal LP,P-LP(t). (II) The dual LP,D-LP(t).

The rest of the proof is as follows. We begin by formulating a packing and covering programs for our
problem in Section 4.1. We then prove Lemma 1 in Section 4.2. We conclude the analysis with the proof
of Theorem 1 in Section 4.3

4.1 Formulation as an Online Packing Problem

For the sake of analysis, we define for every prefix of events{σj}
t
j=1 a primal linear programP-LP(t)

and itsdual linear programD-LP(t). The primal LP is acoveringLP, and the dual LP is apackingLP.
The LP’s appear in Figure 1.

The variables of the LPs correspond to the variables maintained byALG, as follows. The covering
programP-LP(t) has a variablexe for every edgee ∈ E, and a variablezk for everyrk ∈ Alivet. The
packing programD-LP(t) has a variablefk(p) for every requestrk ∈ Alivet, and for every pathp ∈ Γk.
The variablefk(p) equals to the fraction ofrk ’s “demand” that is routed along pathp ∈ Γk.

The dual LP has three types of constraints: capacity constraints, demand constrains, and sign con-
straints. In the fractional setting the load of an edge is defined by

loadt(e) ,
1

ce
·

∑

rk∈Alivet

∑

{p|p∈Γk,e∈p}

fk(p) .

The capacity constraint in the dual LP requires that the loadof each edge is at most one. The demand
constraints require that each requestrk that is alive at timet is allocated a convex combination of paths.

If the dual LP is feasible, then the objective function of thedual LP simply equals the number of
requests that are alive at time stept, i.e., |Alivet|.

The primal LP has two types of constraints: covering constraints and sign constraints. The covering
constraints requires that for every requestrk that is alive and for every pathp ∈ Γk, the sum ofzk and
the “weight” ofp is at least1. Note that the sign constraints apply only to the edge variablesxe whereas
the request variableszk are free.

Note that the assumption thatσ is feasible is equivalent to requiring that the dual programD-LP(t)
is feasible for everyt.

5

4.2 Bounding the Primal Variables

In this section we prove that the primal variablesxe are bounded by a constant, as formalized in the
following Lemma.

Lemma 1. If σt is an original event, then

∀e ∈ E : x(t)e ≤ 3 .

The proof of Lemma 1 is based on a few lemmas that we prove first.

Notation. Let x(t)e , z
(t)
k denote the value of the primal variablesxe, zk before eventσt is processed by

ALG. LetPt denote the objective function’s value ofP-LP(t), formally:

Pt ,
∑

rk∈Alivet

z
(t)
k +

∑

e∈E

x(t)e .

Let∆tP , Pt+1 − Pt.
Note thatPt refers to the value ofP-LP(t) at the beginning of time stept. The definition ofAlivet

implies that the constraints and variables ofP-LP(t) are not influenced by the eventσt (this happens only
for P-LP(t+ 1)). Hence the variables in the definition ofPt are indexed by time stept.

Dummy events. The procedure ROUTE is invoked in two places: (i) in Line 5 of MAIN as a result
of an arrival of a request, or (ii) in Line 3 of MAKEFEASIBLE. To simplify the discussion, we create
“dummy” events each time the MAKEFEASIBLE procedure reroutes a request. Dummy events come
in pairs: first a dummy departure event for requestrk is introduced, and then a dummy arrival event
for a “continuation” requestrk is introduced. The combination of original events and dummyevents
describes the execution ofALG. The augmentation of the original input sequence of events by dummy
events does not modify the optimal value of the dual LP at timestepst that correspond to original events.
Hence, we analyze the competitive ratioρ(ALG(σ)) by analyzing the competitive ratio with respect to
the augmented sequence at time stepst that correspond to original events.

The following lemma follows immediately from the description of the algorithmALG and the defi-
nition of dummy events.

Lemma 2 (Primal Feasibility). If σt is an original event, then the variables{x(t)e }e∈E ∪ {z
(t)
ℓ }ℓ∈Alivet

constitute a feasible solution forP-LP(t).

Proof. When an original eventσt′ occurs, the MAKEFEASIBLE procedure generates dummy events at
the end of the time step to guarantee that the primal variables are a feasible solution of the primal LP.
Hence, ifσt is an original event, then the primal variables at the beginning of time stept are a feasible
solution forP-LP(t).

Lemma 3. If σt is an arrival of request, then∆tP < 1.

Proof. Assume thatσt is an event in which requestrk arrives. In Step 2 of the ROUTE algorithmzk is

set to1 − 1
2 ·

∑

e∈pk
x
(t)
e

ce
. In Step 5 of the ROUTE algorithm, for everye ∈ pk, xe is increased byx

(t)
e

4ce
.

All the other edge variablesxe remain unchanged. Hence,

∆tP =1−
1

2
·
∑

e∈pk

x
(t)
e

ce
+

∑

e∈pk

x
(t)
e

4ce

=1−
1

4
·
∑

e∈pk

x
(t)
e

ce
(1)

<1 ,

6

as required.

We refer to the number of requests that are routed along edgee by allocationALG at time t by
pathst(e).

Lemma 4. For everyt ande ∈ E,

x(t)e =
1

4m
· λ

pathst(e)
e .

Proof. The proof is by induction ont. At time t = 0, we havex(0)e = 1
4m andpathst(e) = 0. The proof

of the induction basis fort+ 1 depends on whether at time stept an arrival or a departure occurs. If the
event does not affect edgee, then the induction step clearly holds. Assume that the event affects edgee.
If a requestrk arrives at timet, thenpathst+1(e) = pathst(e) + 1 andx(t+1)

e = x
(t)
e · λe. If a requestrk

departs at timet, thenpathst+1(e) = pathst(e)− 1 andx(t+1)
e = x

(t)
e /λe.

Let Deadt , {rk | bk < t}. In general, it is not true that∆ajP +∆bjP ≤ 0, however on average it
is true, as stated in the following lemma.

Lemma 5. For everyt,
∑

rj∈Deadt

(

∆ajP +∆bjP
)

≤ 0 . (2)

Proof. First we prove the following proposition.

Proposition 1. Consider a set ofI = {Ij = [αj, βj]}
q
j=1 such that no two intervals share a common

endpoint. Let cut(t) denote the number of intervals that containt. Then, there is a permutationπ :
[1, q]→ [1, q] such that

∀j ∈ [1, q] : cut(αj) = cut(βπ(j)) . (3)

Proof. The proof is by induction on the number of intervals. The induction basis, forq = 1 holds
trivially becausecut(α1) = cut(β1) = 1. The proof of the induction step is based on the existence of
a pairαi < βj such that the open interval(αi, βj) does not contain any endpoint of the intervals inI.
For such a pair, we immediately havecut(αi) = cut(βj) so we defineπ(i) = j and apply the induction
hypothesis.

We first show that such a pairαi < βj exists. We say that an intervalIm is minimal if Im ∩ Ik 6= ∅
implies thatIm ⊆ Ik. If there exists a minimal intervalIm, then setαi = αm andβj = βm. In such
a case sinceπ(m) = m, we can eraseIm and proceed by applying the induction hypothesis to the
remaining intervals. Note that equality of cut sizes is preserved when the intervalIm is deleted.

Consider the set of pairs of intersecting intervals withoutcontainment defined as follows

A , {(i, j) | αj < αi < βj < βi} .

If there is no minimal interval, the setA is not empty. Any pair(i, j) ∈ A that minimizes the difference
(βj − αi) has the property that the interval(αi, βj) lacks endpoints of intervals inI.

We can defineπ(i) = j. We proceed by applying the induction hypothesis on(I \ {Ij , Ii}) ∪ Ik,
whereIk = Ii ∪ Ij. Note that equality of cut sizes is preserved whenIi andIj are merged into one
interval.

The difference∆ajP consists of two parts:

∆ajP = z
(aj+1)
j +

∑

e∈pj

x
(aj)
e

4ce
.

7

The difference∆bjP consists of two parts as well:

∆bjP = −z
(bj)
j −

∑

e∈pj

x
(bj+1)
e

4ce
.

It follows that
∑

rj∈Deadt

(

∆ajP +∆bjP
)

=
∑

rj∈Deadt

∑

e

1

4ce
·
(

x
(aj)
e − x

(bj+1)
e

)

=
∑

rj∈Deadt

∑

e

1

4ce
·
(

x
(aj)
e − x

(bπ(j)+1)
e

)

,

whereπ is any permutation over the set of requests. In fact, we shalluse for each edgee, a different
permutationπ = π(e) that is a permutation over the requestsrk such thate ∈ pk.

Assume first thatAlivet = ∅. We later lift this assumption.
Fix an edgee. For each requestrj such thate ∈ pj, map the duration(aj , bj] of requestrj to the

interval [aj + 1, bj]. The resulting set of intervals satisfiescut(t) = pathst(e) for every time stept. Let
π denote the permutation guaranteed by Prop. 1. Then, it suffices to prove that

x
(aj)
e − x

(bπ(j)+1)
e = 0. (4)

Indeed, by Lemma 4,4m ·
(

x
(aj)
e − x

(bπ(j)+1)
e

)

= λ
pathsaj
e − λ

pathsbπ(j)+1

e . In addition, the property

of permutationπ states thatcut(aj + 1) = cut(bπ(j)). It follows that pathsaj+1 = pathsbπ(j)
. But,

pathsaj = pathsaj+1 − 1 andpathsbπ(j)+1 = pathsbπ(j)
− 1, and Equation 4 follows.

To complete the proof, consider the requests inAlivet. Becauseaj , bπ(j) ≤ t, requests inAlivet do

not increase the differencex
(aj)
e − x

(bπ(j)+1)
e . Thusx

(aj)
e − x

(bπ(j)+1)
e ≤ 0, and the lemma follows.

We are now ready to prove Lemma 1. Recall that Lemma 1 states that the primal variablesxe are
bounded by a constant. The proof of Lemma 1 is by contradiction. In fact, we reach a contradiction to
weak duality, that is, we show that the value of the primal solution is strictly smaller than the value of a
feasible dual solution.

Proof of Lemma 1.The proof is by contradiction. Assumex(t)e > 3 andσt is an original event. Define

t2 , min{t | x(t)e > 3 andσt is an original event}.

Let t1 be the time step for whichx(t1)e < 1 andxt
′

e ≥ 1 for everyt′ ∈ [t1 + 1, t2].
Define:

Alive∈e(t1, t2) , {rj | t1 < aj < t2 < bj, e ∈ pj}.

Let δe denote the difference between the number of arrivals and thenumber of departures in the time
interval [t1, t2) among the requests that were routed alonge. Clearlyδe ≤ |Alive∈e(t1, t2)|.

Lemma 4 implies that

x(t2)e =x(t1)e ·

(

1 +
1

4ce

)δe

.

The assumption thatx(t2)e > 3 andx(t1)e < 1 imply
(

1 +
1

4ce

)δe

≥ 3 .

8

Since1 + x ≤ ex, it follows thatδe > 4 · ce. Hence,

|Alive∈e(t1, t2)| > 4 · ce . (5)

By Equation 1, for eachrj ∈ Alive∈e(t1, t2), we have:

∆ajP < 1−
1

4ce
. (6)

Hence,

Pt2 =
1

4m
·m+

t2−1
∑

t=0

∆tP

=
1

4
+

∑

rj∈Deadt2

(∆ajP +∆bjP) +
∑

rj∈Alivet2

∆ajP

≤
1

4
+

∑

rj∈Alivet2

∆ajP

<
1

4
+ |Alivet2 | −

|Alive∈e(t1, t2)|
4ce

< |Alivet2 | . (7)

The justification for these lines is as follows. The first linefollows from the initialization of the primal
variables. The second line follows since every event in timestept ∈ [0, t2 − 1] is either an arrival of a
request inDeadt2∪Alivet2 or a departure of a request inDeadt2 . The third inequality is due to Lemma 5.
The fourth equation is due to Equation 6. The last inequalityfollows from Equation 5.

By Lemma 2, the primal variables at timet2 are a feasible solution ofP-LP(t2). The optimal value
of D-LP(t2) equals|Alivet2 |. Hence, Equation 7 contradicts weak duality, and the lemma follows.

4.3 Proof of Theorem 1

We now turn to the proof of the main result. The proof is as follows.

Proof of Theorem 1.We begin by proving the bound on the competitive ratio. Lemma4 states that

∀t ∀e ∈ E : xe =
1

4m
·

(

1 +
1

4ce

)pathst(e)

.

Hence, by Lemma 1, for each original eventσt,

∀e ∈ E :
1

4m
·

(

1 +
1

4ce

)pathst(e)

≤ 3 .

Since2x ≤ 1 + x for all x ∈ [0, 1], it follows that for each original eventσt

∀e ∈ E : pathst(e) ≤ ce · 4 log(12m) ,

and the first part of the theorem follows.

We now prove the bound on the number of reroutes. Rerouting analive requestrj occurs if there exists a
pathp ∈ Γj such that

∑

e∈p
xe

ce
< 1−zj . By Line 2 of the ROUTE algorithm, this condition is equivalent

to:
∑

e∈p
xe

ce
< 1

2 ·
∑

e∈pj
x
(aj)
e

ce
. Namely, each time a request is rerouted, the weight of the path is at

least halved. Note that the halving is with respect to the weight of the path at the time it was allocated.

9

Let us consider requestrj . Let p∗ , argminp∈Γj
{
∑

e∈p
1
ce
}. By the choice of a “lightest” path and

by Lemma 1, the weight of pathpj is upper bounded by

∑

e∈pj

xe
ce
≤

∑

e∈p∗

xe
ce
≤ 3 ·

∑

e∈p∗

1

ce
.

By Lemma 4,xe ≥ 1/(4m), hence the weight of pathpj is lower bounded by

∑

e∈p

xe
ce
≥

1

4m
·
∑

e∈p

1

ce
≥

1

4m
·
∑

e∈p∗

1

ce
.

It follows that the number of reroutes each request undergoes is bounded bylog2 (12m), and the
second part of the theorem follows.

Remark 1. Note that the first routing request will not be rerouted at all, the second routing request will
be rerouted at most twice, and so on. In general, a routing request that arrives at timet will be rerouted
at most|Alivet| times.

5 Discussion

We present a primal-dual analysis of an online algorithm in anonmonotone setting. Specifically, we
analyze the online algorithm by Awerbuch et al. [AAPW01] foronline routing of virtual circuits with
unknown durations. We think that the main advantage of this analysis is that it provides an alternative
explanation to the stability condition for rerouting that appears in [AAPW01]. According to the primal-
dual analysis, rerouting is used simply to preserve the feasibility of the solution of the covering LP.

Our analysis provides a small improvement compared to [AAPW01] in the following sense. The
optimal solution in our analysis is both totally flexible (i.e., may reroute every request in every time
step) and splittable (i.e., may serve a request using a convex combination of paths). The optimal solution
in the analysis of Awerbuch et al. [AAPW01] is only totally flexible and must allocate a path to each
request.

The primal-dual approach of Buchbinder and Naor [BN09] is based on bounding the change in the
value of the primal solution by the change in the dual solution (this is often denoted by∆P ≤ ∆D). The
main technical challenge we encountered was that this boundsimply does not hold in our case. Instead,
we use an averaging argument to prove an analogous result (see Lemma 5).

References

[AAF+97] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual circuits
with applications to load balancing and machine scheduling. Journal of the ACM (JACM),
44(3):486–504, 1997.

[AAP93] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line routing. InFOCS
’93: Proceedings of the 1993 IEEE 34th Annual Foundations ofComputer Science, pages
32–40, Washington, DC, USA, 1993. IEEE Computer Society.

[AAPW01] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of virtual circuits
with unknown duration.Journal of Computer and System Sciences, 62(3):385–397, 2001.

[AKP+97] Yossi Azar, Bala Kalyanasundaram, Serge Plotkin, Kirk RPruhs, and Orli Waarts. On-line
load balancing of temporary tasks.Journal of Algorithms, 22(1):93–110, 1997.

10

[BFGN11] Niv Buchbinder, Moran Feldman, Arpita Ghosh, and Joseph Seffi Naor. Frequency capping
in online advertising. InAlgorithms and Data Structures, pages 147–158. Springer, 2011.

[BN09] Niv Buchbinder and Joseph (Seffi) Naor. The design of competitive online algorithms via
a primal-dual approach.Foundations and Trends in Theoretical Computer Science, 3(2-
3):99–263, 2009.

11

	1 Introduction
	2 Problem Definition
	2.1 Online Routing of Virtual Circuits with Unknown Durations
	2.2 Rerouting

	3 The Online Algorithm alg
	4 Primal-Dual Analysis of alg
	4.1 Formulation as an Online Packing Problem
	4.2 Bounding the Primal Variables
	4.3 Proof of Theorem ??

	5 Discussion

