Skip to main content

Inferring Model Structures from Inertial Sensor Data in Distributed Activity Recognition

  • Conference paper
Ambient Intelligence (AmI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8309))

Included in the following conference series:

  • 1756 Accesses

Abstract

Activity-Event-Detector (AED) digraphs can describe relations between human activities, activity-representing pattern events from sensors, and distributed detector nodes. AED graphs have been successfully used to perform network adaptations, including reconfiguring networks to reduce recognition complexity and network energy needs. In this paper, we present an approach to infer AED graph configurations from distributed sensor data. We utilise a non-parametric clustering procedure and derive all relevant information about the AED graph structure, including the detector-specific activity grouping and activity-detector relations from measured data. We analysed our approach using a previously published dataset and compared our inferred AED graph with those designed by an expert. The system based on the inferred AED graph yielded a performance boost of 15% in the final classification accuracy and reduced computational complexity of detectors. These results indicate that our approach is viable to automate the configuration of distributed activity recognition sensor-detector networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rashidi, P., Mihailidis, A.: A survey on ambient assisted living tools for older adults. IEEE Journal of Biomedical and Health Informatics 17(3), 579–590 (2013)

    Article  Google Scholar 

  2. Schmidt, A.: Context-Aware Computing: Context-Awareness, Context-Aware User Interfaces, and Implicit Interaction (2013), http://www.interaction-design.org/encyclopedia/context-aware_computing.html

  3. Amft, O., Lombriser, C.: Modelling of distributed activity recognition in the home environment. In: EMBC 2011: Proceedings of the 33th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1781–1784. IEEE (2011)

    Google Scholar 

  4. Lombriser, C., Amft, O., Zappi, P., Benini, L., Tröster, G.: Benefits of Dynamically Reconfigurable Activity Recognition in Distributed Sensing Environments. Atlantis Ambient and Pervasive Intelligence, vol. 4, pp. 261–286. World Scientific Publishing Co. (2010)

    Google Scholar 

  5. Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)

    Article  Google Scholar 

  6. Aloimonos, Y.: Sensory grammars for sensor networks. Journal of Ambient Intelligence and Smart Environments 1(1), 15–21 (2009)

    Google Scholar 

  7. Zappi, P., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Troster, G.: Activity recognition from on-body sensors by classifier fusion: sensor scalability and robustness. In: 3rd International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 281–286 (2007)

    Google Scholar 

  8. Sarkar, A.M.J., Hasan, K., Lee, Y.-K., Lee, S., Zabir, S.: Distributed activity recognition using key sensors. In: 11th International Conference on Advanced Communication Technology, ICACT 2009, vol. 03, pp. 2245–2250 (2009)

    Google Scholar 

  9. Storf, H., Kleinberger, T., Becker, M., Schmitt, M., Bomarius, F., Prueckner, S.: An event-driven approach to activity recognition in ambient assisted living. In: Tscheligi, M., de Ruyter, B., Markopoulus, P., Wichert, R., Mirlacher, T., Meschterjakov, A., Reitberger, W. (eds.) AmI 2009. LNCS, vol. 5859, pp. 123–132. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: Hierarchical activity recognition using automatically clustered actions. In: Keyson, D.V., et al. (eds.) AmI 2011. LNCS, vol. 7040, pp. 82–91. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  12. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  13. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  14. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  15. Breiman, L.: Some infinity theory for predictor ensembles. Tech. rep. (2001)

    Google Scholar 

  16. Zahn, C.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers C-20(1), 68–86 (1971)

    Article  Google Scholar 

  17. Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)

    Article  Google Scholar 

  18. Ulrike, G.: Variable importance assessment in regression: Linear regression versus random forest. The American Statistician 63(4), 308–319 (2009)

    Article  MathSciNet  Google Scholar 

  19. Amft, O., Lombriser, C., Stiefmeier, T., Tröster, G.: Recognition of user activity sequences using distributed event detection. In: European Conference on Smart Sensing and Context (EuroSSC), pp. 126–141 (2007)

    Google Scholar 

  20. von Luxburg, U.: Clustering stability: An overview. Foundations and Trends in Machine Learning 2(3), 235–274 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Casale, P., Amft, O. (2013). Inferring Model Structures from Inertial Sensor Data in Distributed Activity Recognition. In: Augusto, J.C., Wichert, R., Collier, R., Keyson, D., Salah, A.A., Tan, AH. (eds) Ambient Intelligence. AmI 2013. Lecture Notes in Computer Science, vol 8309. Springer, Cham. https://doi.org/10.1007/978-3-319-03647-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03647-2_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03646-5

  • Online ISBN: 978-3-319-03647-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics