Skip to main content

A Soft-Computing Based Approach to Economic and Environmental Analysis of an Autonomous Power Delivery System Utilizing Hybrid Solar – Diesel – Electrochemical Generation

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8297))

Included in the following conference series:

  • 2150 Accesses

Abstract

Concerns toward the continued availability of reliable grid-based power and global warming and depleting oil reserves have made a decentralized power delivery model seeking energy from renewable energy resources an inevitability. Photovoltaic power generating modules (PV), diesel generators (DG), battery energy storage systems (BESS) are emerging generation/storage technologies. The present work depicts the economic analysis and environmental impacts of a decentralized or distributed power delivery system integrated with hybrid distributed energy resources (DERs). The model for decentralized power delivery system has been developed employing a modified form of the differential evolution algorithm implemented within MATLAB® Simulink considering load demand scenario for a locality in India. Optimal power generation has been made using different sets of distributed energy resources, pertaining to cost estimation and respective environmental impact. The results show a cost effective power delivering network for hybrid DG-BESS, but PV-BESS is more beneficial from the environmental perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jhonson, R.A., Agrawal, A.N., Chubb, T.J.: Simulink Model for Economic Analysis and En-vironmental Impacts of a PV With Diesel-Battery System for Remote Villages. IEEE Transactions on Power System 20(2), 692–700 (2005)

    Article  Google Scholar 

  2. Fyfe, W.S., Powell, M.A., Hart, B.R., Ratanasthien, B.: A global crisis: Energy in the future. Nonre-newable Resources, 187–195 (1993)

    Google Scholar 

  3. Lasserter, R., Akhil, A., Marnay, C., Stephens, H., Dagle, J., Guttromson, R., Meliopoulous, A.S., Yinger, R., Eto, J.: The CERTS Microgrid Concept, White paper for CERTS (2002)

    Google Scholar 

  4. Bhattacharyya, S.C.: Energy access problem of the poor in India: Is rural electrification a remedy? Energy Policy 34(18), 3387–3397 (2006)

    Article  Google Scholar 

  5. Hernandez-Aramburo, C.A., Green, T.C., Mugniot, N.: Fuelconsumption minimization of a microgrid. IEEE Trans. Ind. Appl. 41(3), 673–681 (2005)

    Article  Google Scholar 

  6. Marnay, C., Venkataramanan, G., Stadler, M., Siddiqui, A., Firestone, R., Chandran, B.: Optimal Technology Selection and Operation of Commercial-Building Microgrids. IEEE Trans. Power Systems 23(3), 975 (2008)

    Article  Google Scholar 

  7. Michiel, H., Petra, H., Bouwmans, I.: Socio-Technical Complexity in Energy Infrastruc-tures Conceptual Framework to Study the Impact of Domestic Level Energy Generation, Storage and Exchange. In: IEEE Int. Conf. Systems Man, and Cybernetics, October 8-11 (2006)

    Google Scholar 

  8. Maribua, M., Firestone, K., Ryan, M., Marnay, C., Siddiquica, A.: Distributed energy resources market diffusion model. Elsevier Energy Policy, 4471–4484 (April 2007)

    Google Scholar 

  9. Patterson, W.D., Whitham, J.W.: The Virtual Power Plant, Standard & Poor’s Utilities & Perspectives Special Technology Issue. McGraw-Hill Co. (1998)

    Google Scholar 

  10. Marin, F., Rey, A.B., Guerrero, A., de Ruz, F.A.: A future microgrid implementation based on renewable distributed resources for a clean green energy production. In: Proc. IEEE PES Winter Meeting, CERTS, pp. 305–308 (2002)

    Google Scholar 

  11. Miranda, V., Srinivasan, D., Proenca, L.M.: Evolutionary Computation in power system. International Journal of Electric power & Energy System 20(2), 89–98 (1998)

    Article  Google Scholar 

  12. Farhat, I.A., EI-Hawary, M.E.: Optimization methods applied for solving the short-term hydrothermal co–ordination problem. Electric Power System Research 79(9) (September 2009)

    Google Scholar 

  13. Mandal, K.K., Basu, M., Chakraborty, N.: Particle swarm optimization – based fuzzy satisfying method for economic environmental dispatch of hydrothermal power systems. International Journal of Automation and Control (3), 216–239 (2009)

    Google Scholar 

  14. Chen-Ching, L., Dillon, T.: State of the art of expert system application to power systems. International Journal of Electric Power & Energy System 14(2-3), 95–96 (1992)

    Google Scholar 

  15. AlRashidi, M.R., EI- Hawary, M.E.: Application of computational intelligence techniques for solving the revived optimal power flow problem. Electric Power System Research 79(4), 694–702 (2009)

    Article  Google Scholar 

  16. Marnay, C., Robio, F., Siddiqui, A.: Fuel Consumption Minimization of Microgrid. In: Proc. IEEE PES Winter Meeting, pp. 150–153 (2001)

    Google Scholar 

  17. Mallipeddi, R., Suganthan, P.N.: Efficient Constraint Handling for Optimal Reactive Power Dispatch Problem. Swarm and Evolutionary Computation 5, 28–36 (2012)

    Article  Google Scholar 

  18. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing 11(2), 1679–1696 (2011)

    Article  Google Scholar 

  19. Meliopoulos, A.P.S.: Challenges in simulation and design of grids. In: Proc. IEEE PES Winter Meeting, pp. 309–314 (2002)

    Google Scholar 

  20. Marin, F., Rey, A.B., Guerrero, A., de Ruz, F.A.: A future microgrid implementation based on renewable distributed resources for a clean green energy production. In: Proc. IEEE PES Winter Meeting, CERTS, pp. 305–308 (2002)

    Google Scholar 

  21. Marnay, C., Robio, F., Siddiqui, A.: Fuel Consumption Minimization of Microgrid. In: Proc. IEEE PES Winter Meeting, pp. 150–153 (2001)

    Google Scholar 

  22. Meliopoulos, A.P.S.: Challenges in simulation and design of grids. In: Proc. IEEE PES Winter Meeting, pp. 309–314 (2002)

    Google Scholar 

  23. Chen, C., Duan, S., Cai, T., Liu, B., Hu, G.: Smart Energy Management System for Optimal Microgrid Economic Operation. IET Renewable Power Generation 5(3), 258–267 (2011)

    Article  Google Scholar 

  24. Cooper, K., Dasgupta, A., Kennedy, K., Koelbel, C.: New Grid Scheduling and Re-Scheduling Methods in GRADs Project. In: Proceedings on 18th International Symposium on Parallel and Distributed Processing

    Google Scholar 

  25. Shi, R., Cui, C., Su, K., Zain, Z.: Comparison Study of Two Meta-Heuristic Algorithms with their Applications to Distributed Generation Planning. Energy Procedia 12, 245–252 (2011)

    Article  Google Scholar 

  26. Chen, C., Duan, S., Cai, T., Liu, B., Hu, G.: Optimal Allocation and Economic Analysis of Energy storage System in Microgrids. IEEE Transactions on Power Electronics 26(10), 2762–2773

    Google Scholar 

  27. Niknam, T., Golestaneh, F., Shafiei, M.: Probabilistic Energy Management of a Renewable Microgrid with Hydrogen storage using Self adaptive Charge Search Algorithm. Energy (2012)

    Google Scholar 

  28. Zoka, Y., Sugimoto, A., Yorino, N., Kawahara, K., Kubokawa, J.: An economic evaluation for an autonomous independent network of distributed energy resources. Electric Power System Research 77(7), 831–838 (2007)

    Article  Google Scholar 

  29. Stand-Alone Photovoltaic Systems: A Handbook of Recommended Design Practices (Revised), Sandia National Labs, Albuquerque (1995)

    Google Scholar 

  30. Dawson, F.P., Dewan, S.B.: Remote diesel generator with photovoltaic cogeneration. In: Proc. Solar Conf., Denver, CO, pp. 269–274 (September 1989)

    Google Scholar 

  31. Farhat, F.A., Simoes, M.G.: Itegration of Alternative Sources of Energy. John Wiley & Sons, Inc. (2006)

    Google Scholar 

  32. Wikipedia contributors. List of countries by greenhouse gas emissions, http://en.wikipedia.org/wiki/List_of_countries_by_greenhouse_gas_emissions

  33. http://www.retscreen.net/ang/emission_factors_for_diesel_generator_image.php

  34. Lampinen, J.: A Constraint Handling Approach for Differential Evolution Algorithm. In: Proc. of the Congress on Evolutionary Computation, vol. 2, pp. 1468–1473 (2002)

    Google Scholar 

  35. Mezura–Montes, E., Velazquez–Reyes, J., Coello Coello, C.A.: Modified Differential Evolution of Constrained Optimization. IEEE Congress on Evolutionary Computation Sheraton (July 2006)

    Google Scholar 

  36. Bhattacharya, A.B., Kar, S.K., Bhattacharya, R.: Diffuse Solar Radiation and associated meteorological pa-rameters in India. Annales Geophysicae 14(10), 1051–1059 (1994)

    Google Scholar 

  37. Kolhe, M., Kolhe, S., Joshi, J.C.: Economic viability of stand-alone solar photovoltaic system in comparison with diesel-powered system for India. Energy Economics 24(2), 155–165 (2002)

    Article  Google Scholar 

  38. Hunt, G.W.: Operational experience and performance characteristics of a valve-regulated lead–acid bat-tery energy-storage system for providing the customer with critical load protection and energy-management benefits at a lead-recycling plant. Journal of Power Sources 78, 171–175 (1999)

    Article  Google Scholar 

  39. Dvoskin, D., Heady, E.O.: Commodity Prices and Resource Use Under Various Energy Alter-natives in Agriculture. Western Journal of Agricultural Economics, 53–62 (1977)

    Google Scholar 

  40. Private communication: E & M State Head Office, IIT kharagpur, West Bengal, India

    Google Scholar 

  41. Hybrid mini-grids for rural electrification: lessons learned. USAID: Alliance for rural electrification, http://www.ruralelec.org/fileadmin/DATA/Documents/06_Publications/Position_papers/ARE_Mini-grids_-_Full_version.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Som, T., Chakraborty, N. (2013). A Soft-Computing Based Approach to Economic and Environmental Analysis of an Autonomous Power Delivery System Utilizing Hybrid Solar – Diesel – Electrochemical Generation. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8297. Springer, Cham. https://doi.org/10.1007/978-3-319-03753-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03753-0_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03752-3

  • Online ISBN: 978-3-319-03753-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics