Skip to main content

Transmission Line Management Using Multi-objective Evolutionary Algorithm

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8297))

Abstract

This paper presents an effective method of transmission line management in power systems. Two conflicting objectives 1) generation cost and 2) transmission line overload are optimized to provide non-dominated Pareto-optimal solutions. A fuzzy ranking-based multi-objective differential evolution (MODE) is used to solve this complex nonlinear optimization problem. The generator real power and generator bus voltage magnitude is taken as control variables to minimize the conflicting objectives. The fuzzy ranking method is employed to extract the best compromise solution out of the available non-dominated solutions depending upon its highest rank. N-1 contingency analysis is carried out to identify the most severe lines and those lines are selected for outage. The effectiveness of the proposed method has been analyzed on standard IEEE 30 bus system with smooth cost functions and their results are compared with non-dominated sorting genetic algorithm-II (NSGA-II) and Differential evolution (DE). The results demonstrate the superiority of the MODE as a promising multi-objective evolutionary algorithm to solve the power system multi-objective optimization problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsac, O., Scott, B.: Optimal load flow with steady state security. IEEE Transactions on Power Systems 93(3), 745–751 (1974)

    Google Scholar 

  2. Stott, B., Hobson, E.: Power system security control calculations using linear programming. IEEE Transactions on Power Systems 97, 1713–1931 (1978)

    Google Scholar 

  3. Todorovski, M., Rajicic, D.: An Initialization Procedure in Solving Optimal Power Flow by Genetic Algorithm. IEEE Transactions on Power Systems 21(2), 480–487 (2006)

    Article  Google Scholar 

  4. Abido, M.A.: Optimal power flow using particle swarm optimization. International Journal of Electrical Power and Energy Systems 24(7), 563–571 (2002)

    Article  Google Scholar 

  5. Varadarajan, M., Swarup, K.: Solving multi-objective optimal power flow using differential evolution. IET, Generation, Transmission and Distribution 2(5), 720–730 (2008)

    Article  Google Scholar 

  6. Duman, S., Guvenc, U., Sonmez, Y., Yorukeren, N.: Optimal power flow using gravitational search algorithm. Energy Conversion and Management 39, 86–95 (2012)

    Article  Google Scholar 

  7. Abido, M.A.: Optimal power flow using tabu search algorithm. Electric Power Components and Systems 30 (2002)

    Google Scholar 

  8. Sumpavakup, C., Chusanapiputt, S.: A Solution to the Optimal Power Flow Using Artificial Bee Colony Algorithm. In: International Conference on Power System Technology, pp. 1–5 (2010)

    Google Scholar 

  9. Udupa, A.N., Purushothama, G.K., Parthasarathy, K., Thukaram, D.: A fuzzy control for network overload alleviation. International Journal of Electrical Power and Energy Systems 23(2), 119–128 (2001)

    Article  Google Scholar 

  10. Sreejith, S., Psimon, S., Selvan, M.P.: Optimal location of Interline Power Flow Controller in a power system network using ABC algorithm. Archives of Electrical Engineering 62(1), 91–110 (2013)

    Article  Google Scholar 

  11. Lu, Y., Abur, A.: Static Security Enhancement via Optimal Utilization of Thyristor-Controlled Series Capacitors. IEEE Transactions on Power Systems 17(2), 324–329 (2002)

    Article  Google Scholar 

  12. Abou, E.L., Ela, A.A., Spea, S.R.: Optimal corrective actions for power systems using multi-objective genetic algorithms. Electric Power System Research 79(5), 722–733 (2009)

    Article  Google Scholar 

  13. Hazra, J., Sinha, A.K.: Congestion management using multi objective particle swarm optimization. IEEE Transactions on Power Systems 22(4), 1726–1734 (2007)

    Article  Google Scholar 

  14. Ghahremani, E., Kamwa, I.: Optimal Placement of Multiple-Type FACTS Devices to Maximize Power System Loadability Using a Generic Graphical User Interface. IEEE Transactions on Power Systems 28(2), 764–778 (2013)

    Article  Google Scholar 

  15. Abido, M.A.: Multi-objective Evolutionary Algorithms for Electric Power Dispatch Problem. IEEE Transactions on Evolutionary Computation 11(43) (2006)

    Google Scholar 

  16. Gnanambal, K., Babulal, C.K.: Maximum loadability limit of power system using hybrid differential evolution with particle swarm optimization. Electrical Power and Energy Systems 43(1), 150–155 (2012)

    Article  Google Scholar 

  17. Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhangd, Q.: Multi-objective Evolutionary Algorithms: A Survey of the State-of-the-art. Swarm and Evolutionary Computation 1(1), 32–49 (2011)

    Article  Google Scholar 

  18. Xue, F., Sanderson, A.C., Graves, R.J.: Multi-objective-based multi-objective differential evolution. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, vol. 2, pp. 862–869 (2003)

    Google Scholar 

  19. Zimmerman, R.D., Murillo-Sanchez, C.E., Gan, D.(D.): MATPOWER: A MATLAB Power System Simulation Package, http://www.pserc.cornell.edu/matpower/

  20. Narmatha Banu, R., Devaraj, D.: Multi-objective Evolutionary Algorithm for Security Enhancement. Journal of Electrical Systems 5(4) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Pandiarajan, K., Babulal, C.K. (2013). Transmission Line Management Using Multi-objective Evolutionary Algorithm. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8297. Springer, Cham. https://doi.org/10.1007/978-3-319-03753-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03753-0_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03752-3

  • Online ISBN: 978-3-319-03753-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics