Skip to main content

Optimal Sizing for Stand-Alone Hybrid PV-WIND Power Supply System Using PSO

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8297))

Abstract

Limited fuel reserves and harmful effects of environmental pollution have brought about a lot of development in renewable energy sources. Among these renewable energy sources, solar and wind are found to be the most viable energy sources in the world. Due to their uncertainties in supply and the non-linear characteristics of some of their components, the system becomes unreliable. But when applied as hybrid system, these sources are found to be more economical and efficient. In optimizing the sizing of such hybrid system parameters the evolutionary algorithms have been proved to give faster and more efficient results as compared to classical methods. This work concentrates in finding an optimal configuration of PV modules, Wind turbines and Battery numbers by minimizing the annualized cost considering the loss of power supply probability using Particle Swarm Optimization technique. The radiation and wind data of India obtained from the NASA meteorological website are considered for analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang, H.X., Lu, L., Burnett, J.: Weather Data and Probability Analysis of Hybrid Photovoltaic-Wind Power Generation Systems in Hong Kong. Renewable Energy 28, 1813–1824 (2003)

    Article  Google Scholar 

  2. Van Dyk, E.E., et al.: Long-Term Monitoring of Photovoltaic Devices. Renewable Energy 22, 183–197 (2002)

    Google Scholar 

  3. Duffie, J.A., Beckman, W.A.: Solar Engineering of Thermal Process. John Wiley & Sons, USA (1980)

    Google Scholar 

  4. Luis, C., Sivestre, S.: Modeling Photovoltaic Systems Using PSpice. John Wiley & Sons Ltd., Chichester (2002)

    Google Scholar 

  5. Gipe, P.: Wind Energy Comes of Age, p. 536. John Wiley & Sons (1995)

    Google Scholar 

  6. Berndt, D.: Maintenance-Free Batteries. John Wiley & Sons, England (1994)

    Google Scholar 

  7. Ashari, M., Nayar, C.V.: An Optimum Dispatch Strategy Using Set Points for A Photovoltaic (PV)–Diesel–Battery Hybrid Power System. Solar Energy 66(1), 1–9 (1999)

    Article  Google Scholar 

  8. Kellogg, W., Nehrir, M.H., Venkataramanan, G., Gerez, V.: Optimal Unit Sizing for A Hybrid PV/Wind Generating System. Electric Power System Research 39, 35–38 (1996)

    Article  Google Scholar 

  9. Gavanidou, E.S., Bakirtzis, A.G.: Design of A Stand Alone System With Renewable Energy Sources Using Trade Off Methods. IEEE Transactions on Energy Conversion 7(1), 42–48 (1993)

    Article  Google Scholar 

  10. Yang Lu, L., Burnett, J.H.X.: Investigation on Wind Power Potential on Hong Kong Islands-An Analysis of Wind Power and Wind Turbine Characteristics. Renewable Energy 27, 1–12 (2002)

    Article  Google Scholar 

  11. Borowy, B. S., Salameh, Z.M.: Methodology for Optimally Sizing The Combination of A Battery Bank and PV Array in A Wind/PV Hybrid System. IEEE Transactions Energy Conversion 11(2), 367–373 (1996)

    Article  Google Scholar 

  12. Yang, H.X., Lu, L., Zhou, W.: A Novel Optimization Sizing Model for Hybrid Solar– Wind Power Generation System. Solar Energy 81(1), 76–84 (2007)

    Article  Google Scholar 

  13. Zhou, W., Yang, H.X., Fang, Z.H.: A Novel Model for Photovoltaic Array Performance Prediction. Applied Energy 84, 1187–1198 (2007)

    Article  Google Scholar 

  14. Kattakayam, T.A., Srinivasan, K.: Lead Acid Batteries in Solar Refrigeration Systems. Renewable Energy 29(8), 1243–1250 (2004)

    Article  Google Scholar 

  15. Eftichios, K., et al.: Methodology for Optimal Sizing of Stand-Alone Photovoltaic/Wind-Generator Systems Using Genetic Algorithms. Solar Energy 80, 1072–1188 (2006)

    Article  Google Scholar 

  16. Guasch, D., Silvestre, S.: Dynamic Battery Model for Photovoltaic Applications. Progress in Photovol-taics: Research and Applications 11, 193–206 (2003)

    Article  Google Scholar 

  17. Markvart, T.: Sizing of Hybrid PV-Wind Energy Systems. Solar Energy 59(4), 277–281 (1996)

    Article  Google Scholar 

  18. Schott, T.: Operational Temperatures of PV Modules. In: 6th PV Solar Energy Conference, pp. 392–396 (1985)

    Google Scholar 

  19. Tina, G., Gagliano, S., Raiti, S.: Hybrid Solar/Wind Power System Probabilistic Modelling for Long-Term Performance Assessment. Solar Energy 80, 578–588

    Google Scholar 

  20. Yang, H.X., Lu, L.: Study on Typical Meteorological Years and Their Effect on Building Energy and Re-newable Energy Simulations. ASHRAE Transactions 110(2), 424–431 (2004)

    Google Scholar 

  21. Abouzahr, I., Ramakumar, R.: Loss of Power Supply Probability of Stand-Alone Electric Conversion Systems: A Closed Form Solution Approach. IEEE Transactions on Energy Conversion 5, 445–452 (1990)

    Article  Google Scholar 

  22. Borowy, B.S., Salameh, Z.M.: Optimum Photovoltaic Array Size for A Hybrid Wind/PV System. IEEE Transactions on Energy Conversion 9, 482–488 (1994)

    Article  Google Scholar 

  23. Lu, L., Yang, H.X., Burnett, J.: Investigation on Wind Power Potential on Hong Kong Islands – An Analysis of Wind Power and Wind Turbine Characteristics. Renewable Energy 27, 1–12 (2002)

    Article  Google Scholar 

  24. Yoon-Ho, K., Hoi-Doo, H.: Design of Interface Circuits with Electrical Battery Models. IEEE Transactions on Industrial Electronics (1997)

    Google Scholar 

  25. Ould Bilal, B., Sammbou, V., Ndiaye, P.A., Kebe, C.M.F., Ndongo, M.: Optimal design of a hybrid solar-wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability(LPSP). Renewable Energy 35, 2388–2390 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Suchitra, D., Jegatheesan, R., Reddy, M.U., Deepika, T.J. (2013). Optimal Sizing for Stand-Alone Hybrid PV-WIND Power Supply System Using PSO. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8297. Springer, Cham. https://doi.org/10.1007/978-3-319-03753-0_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03753-0_55

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03752-3

  • Online ISBN: 978-3-319-03753-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics