Skip to main content

City Block Distance for Identification of Co-expressed MicroRNAs

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8298))

Included in the following conference series:

Abstract

The microRNAs or miRNAs are short, endogenous RNAs having ability to regulate gene expression at the post-transcriptional level. Various studies have revealed that a large proportion of miRNAs are co-expressed. Expression profiling of miRNAs generates a huge volume of data. Complicated networks of miRNA-mRNA interaction increase the challenges of comprehending and interpreting the resulting mass of data. In this regard, this paper presents the application of city block distance in order to extract meaningful information from miRNA expression data. The proposed method judiciously integrates the merits of robust rough-fuzzy c-means algorithm and normalized range-normalized city block distance to discover co-expressed miRNA clusters. The city block distance is used to calculate the membership functions of fuzzy sets, and thereby helps to handle minute differences between two miRNA expression profiles. The effectiveness of the proposed approach, along with a comparison with other related methods, is demonstrated on several miRNA expression data sets using different cluster validity indices and gene ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M.J., Tuschl, T., Margalit, H.: Clustering and Conservation Patterns of Human microRNAs. Nucleic Acids Research 33, 2697–2706 (2005)

    Article  Google Scholar 

  2. Bargaje, R., Hariharan, M., Scaria, V., Pillai, B.: Consensus miRNA Expression Profiles Derived from Interplatform Normalization of Microarray Data. RNA 16, 16–25 (2010)

    Article  Google Scholar 

  3. Baskerville, S., Bartel, D.P.: Microarray Profiling of microRNAs Reveals Frequent Coexpression with Neighboring miRNAs and Host Genes. RNA 11, 241–247 (2005)

    Article  Google Scholar 

  4. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering Gene Expression Patterns. Journal of Computational Biology 6(3-4), 281–297 (1999)

    Article  Google Scholar 

  5. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  MATH  Google Scholar 

  6. Cai, X., Hagedorn, C.H., Cullen, B.R.: Human microRNAs are Processed from Capped, Polyadenylated Transcripts that can also Function as mRNAs. RNA 10, 1957–1966 (2004)

    Article  Google Scholar 

  7. Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 224–227 (1979)

    Article  Google Scholar 

  8. Dembele, D., Kastner, P.: Fuzzy C-Means Method for Clustering Microarray Data. Bioinformatics 19(8), 973–980 (2003)

    Article  Google Scholar 

  9. Fraley, C., Raftery, A.E.: How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal 41(8), 578–588 (1998)

    Article  MATH  Google Scholar 

  10. Ghosh, D., Chinnaiyan, A.M.: Mixture Modelling of Gene Expression Data from Microarray Experiments. Bioinformatics 18, 275–286 (2002)

    Article  Google Scholar 

  11. Hartuv, E., Shamir, R.: A Clustering Algorithm Based on Graph Connectivity. Information Processing Letters 76(4-6), 175–181 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Heyer, L.J., Kruglyak, S., Yooseph, S.: Exploring Expression Data: Identification and Analysis of Coexpressed Genes. Genome Research 9(11), 1106–1115 (1999)

    Article  Google Scholar 

  13. Jiang, D., Pei, J., Zhang, A.: DHC: A Density-Based Hierarchical Clustering Method for Time-Series Gene Expression Data. In: Proceedings of the 3rd IEEE International Symposium on Bioinformatics and Bioengineering, pp. 393–400 (2003)

    Google Scholar 

  14. Krishnapuram, R., Keller, J.M.: A Possibilistic Approach to Clustering. IEEE Transactions on Fuzzy Systems 1(2), 98–110 (1993)

    Article  Google Scholar 

  15. Lu, J., Getz, G., Miska, E.A., Saavedra, E.A., Lamb, J., Peck, D., Cordero, A.S., Ebert, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., Golub, T.R.: MicroRNA Expression Profiles Classify Human Cancers. Nature Letters 435(9), 834–838 (2005)

    Article  Google Scholar 

  16. Maji, P., Pal, S.K.: RFCM: A Hybrid Clustering Algorithm Using Rough and Fuzzy Sets. Fundamenta Informaticae 80(4), 475–496 (2007)

    MATH  MathSciNet  Google Scholar 

  17. Maji, P., Paul, S.: Rough-Fuzzy Clustering for Grouping Functionally Similar Genes from Microarray Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1–14 (2013)

    Google Scholar 

  18. Maragkakis, M., Alexiou, P., Papadopoulos, G.L., Reczko, M., Dalamagas, T., Giannopoulos, G., Goumas, G., Koukis, E., Kourtis, K., Simossis, V.A., Sethupathy, P., Vergoulis, T., Koziris, N., Sellis, T., Tsanakas, P., Hatzigeorgiou, A.G.: Accurate microRNA Target Prediction Correlates with Protein Repression Levels. BMC Bioinformatics 10(295) (2009)

    Google Scholar 

  19. McLachlan, G.J., Bean, R.W., Peel, D.: A Mixture Model-Based Approach to the Clustering of Microarray Expression Data. Bioinformatics 18, 413–422 (2002)

    Article  Google Scholar 

  20. Pasluosta, C.F., Dua, P., Lukiw, W.J.: Nearest hyperplane distance neighbor clustering algorithm applied to gene co-expression analysis in alzheimer’s disease. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 5559–5562 (2011)

    Google Scholar 

  21. Paul, S., Maji, P.: Robust RFCM Algorithm for Identification of Co-Expressed miRNAs. In: Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, Philadelphia, USA, pp. 520–523 (2012)

    Google Scholar 

  22. Pawlak, Z.: Rough Sets: Theoretical Aspects of Resoning About Data. Kluwer, Dordrecht (1991)

    Book  Google Scholar 

  23. Rousseeuw, J.P.: Silhouettes: A Graphical Aid to the Interpration and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  24. Shamir, R., Sharan, R.: CLICK: A Clustering Algorithm for Gene Expression Analysis. In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, pp. 307–316 (2000)

    Google Scholar 

  25. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting Patterns of Gene Expression with Self-Organizing Maps: Methods and Application to Hematopoietic Differentiation. Proceedings of the National Academy of Sciences, USA 96(6), 2907–2912 (1999)

    Article  Google Scholar 

  26. Xing, E.P., Karp, R.M.: CLIFF: Clustering of High-Dimensional Microarray Data via Iterative Feature Filtering Using Normalized Cuts. Bioinformatics 17(1), 306–315 (2001)

    Article  Google Scholar 

  27. Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., Ruzz, W.L.: Model-Based Clustering and Data Transformations for Gene Expression Data. Bioinformatics 17, 977–987 (2001)

    Article  Google Scholar 

  28. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Paul, S., Maji, P. (2013). City Block Distance for Identification of Co-expressed MicroRNAs. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8298. Springer, Cham. https://doi.org/10.1007/978-3-319-03756-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03756-1_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03755-4

  • Online ISBN: 978-3-319-03756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics