

COMPUTING
SCIENCE

Optimistic Concurrency Control for Energy Efficiency in the Wireless
Environment

Kamal Solamain, Matthew Brook, Gary Ushaw and Graham Morgan

TECHNICAL REPORT SERIES

No. CS-TR-1402 November 2013

TECHNICAL REPORT SERIES

No. CS-TR-1402 November, 2013

Optimistic Concurrency Control for Energy Efficiency in the
Wireless Environment

K. Solamain, M. Brook, G. Ushaw and G. Morgan

Abstract

The ubiquity of smart portable devices has led to concurrency control for the mobile
network becoming an area of growing concern. Conventional optimistic concurrency
control techniques require retries of failed or disputed transactions, which place
additional drain on the energy consumption of both the network and the smart device.
We present a Distributed Later Validation Earlier Write Optimistic Concurrency
Control (DLVEW) algorithm to efficiently handle transactions running on the server
side without disturbing transactions running on clients. Our simulation shows an
increase in throughput and reduction in both the response time and the number of
missed deadlines of transactions. The corresponding reduction in contentious
transactions needing to be restarted leads to a lower power cost for the network as a
whole.

© 2013 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

SOLAMAIN, K., BROOK, M., USHAW, G., MORGAN, G.

Optimistic Concurrency Control for Energy Efficiency in the Wireless Environment
[By] K. Solamain, M. Brook, G. Ushaw and G. Morgan
Newcastle upon Tyne: Newcastle University: Computing Science, 2013.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1402)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1402

Abstract

The ubiquity of smart portable devices has led to concurrency control for the mobile network becoming an area of
growing concern. Conventional optimistic concurrency control techniques require retries of failed or disputed
transactions, which place additional drain on the energy consumption of both the network and the smart device.
We present a Distributed Later Validation Earlier Write Optimistic Concurrency Control (DLVEW) algorithm to
efficiently handle transactions running on the server side without disturbing transactions running on clients. Our
simulation shows an increase in throughput and reduction in both the response time and the number of missed
deadlines of transactions. The corresponding reduction in contentious transactions needing to be restarted leads to
a lower power cost for the network as a whole.

About the authors

Kamal Solamain is studying for his PhD under the supervision of Dr. Graham Morgan at Newcastle University in
the area of Distributed Systems, looking specifically at transactions.

Matthew Brook attained his PhD from Newcastle University in 2013 in the area of distributed systems. He
received his BSc (Hons) in Computing Science from Newcastle
University in 2008. In 2009 he received his MSc in System Design for Internet Applications (now known as
Internet Technologies and Enterprise Computing) from Newcastle University. Matthew is now working for
Hewlett Packard.

Dr Gary Ushaw is a Teaching Fellow in the School of Computing Science at Newcastle University . Having
worked for 15 years in the video games industry as Engineering Director and Project Manager, following PhD
attained from the University of Edinburgh's Signal Processing Group.

Graham Morgan is a lecturer in the School of Computing Science at the University of Newcastle upon Tyne. His
interests are in the area of distributed applications, including web services, networked virtual environments, fault
tolerance and group communications.

Suggested keywords

OPTIMISTIC CONCURRENCY CONTROL
TRANSACTIONS
ENERGY EFFICIENCY

Optimistic Concurrency Control for Energy
Efficiency in the Wireless Environment

Kamal Solamain, Matthew Brook, Gary Ushaw, and Graham Morgan

School of Computing Science, Newcastle University, Newcastle-upon-Tyne, UK

Abstract. The ubiquity of smart portable devices has led to concur-
rency control for the mobile network becoming an area of growing con-
cern. Conventional optimistic concurrency control techniques require re-
tries of failed or disputed transactions, which place additional drain on
the energy consumption of both the network and the smart device. We
present a Distributed Later Validation Earlier Write Optimistic Con-
currency Control (DLVEW) algorithm to efficiently handle transactions
running on the server side without disturbing transactions running on
clients. Our simulation shows an increase in throughput and reduction in
both the response time and the number of missed deadlines of transac-
tions. The corresponding reduction in contentious transactions needing
to be restarted leads to a lower power cost for the network as a whole.

1 Introduction

Smartphone applications are placing greater demands on energy resources. Mil-
lions of smartphones and tablet devices are being used for more complex tasks, so
the power consumption of the servers and network is increasing, and the battery
recharge life of each phone or tablet is becoming shorter. An algorithm which
reduces the energy cost of a transaction between a client (i.e. the phone) and
the server will multiply to a significant energy saving across all devices in use. In
particular, if the number of failed transactions due to contention can be reduced,
thereby lowering the number of times a transaction must be repeated, then the
overall power consumption will also be reduced.

Many applications require an asymmetrical channel whereby the frequency of
read transactions requested by the client is significantly higher than the number
of write transactions. Taking the example of a stock trading application; there are
far more transactions involving a read-only checking of stock prices, compared
to the number of transactions involving a sale or other event requiring an update
transaction (i.e. users typically check far more share prices than they buy shares).
A common implementation of this type of application involves the use of a
broadcast disk protocol [1], whereby the database is repeatedly broadcast to
the clients in its entirety. This approach means that there is no requirement
for the client to send a read request to the server; the client simply waits for
the requested piece of data to appear in the cycled transmission, and the server
does not have to respond to individual client requests to send data. Clearly this

2 Kamal Solamain, Matthew Brook, Gary Ushaw, and Graham Morgan

greatly reduces the amount of traffic on the network, and the amount of requests
which the server must process. This type of approach is particularly useful when
a relatively small database must be read by many clients.

Earlier studies on transaction processing in wireless environments were fo-
cused on read-only transactions [2] [3] [4]. Update transactions must also be
considered. Optimistic Concurrency Control (OCC) is a well-understood solu-
tion for this type of situation [5]. However these protocols tend to involve heavy
use of the network in both directions to request and validate read transactions,
which renders the approach less applicable to mobile networks [2] due to limited
uplink bandwidth and battery life. In [6] Lee proposed a variant of the OCC
algorithm suitable for a broadcast environment known as forward and back-
ward optimistic concurrency control (FBOCC). This algorithm performs partial
backward validation [7] against committed transactions at the beginning of ev-
ery broadcast cycle at mobile clients. It also performs forward validation [7]
against concurrently running transactions at the server (including both server
transactions and update mobile transactions).

In this paper we develop a DLVEW algorithm for broadcast disk which is
more efficient at handling concurrently running transactions at the server with-
out disturbing transactions running on the client. We achieve this by changing
the ordering of the validate step at the server so that it takes place after the write
step (conventionally it occurs before writing). In [8] we showed that this approach
is applicable as optimistic concurrency control on resource-constrained devices
such as smart-phones. We now extend this work to the broadcast disk model for
mobile network applications that require significantly more read transactions
than write transactions. Our results show that, with this technique, the number
of client-server transactions which miss their deadline due to concurrency issues
is reduced. The non-intuitive ordering of the validation phase, combined with
the requirement of a rerun policy, improves efficiency while reducing the energy
consumption of the network.

2 Background and Related Work

2.1 Broadcast Disk and Optimistic Concurrency Control

Many studies have proposed transmitting data over wireless networks using data
broadcasting techniques [9] [10]. The broadcast disk protocol continuously broad-
casts all data objects in the database. Clients view this broadcast as a disk, ac-
cessing required data as it is broadcast. The number of mobile devices does not
affect their access time (as it is read-only). This approach makes conventional
concurrency control techniques inapplicable [2]. E.g. using locking techniques
could lead to swamping the server with lock requests. Similarly for timestamp
based techniques, communication between clients and the server is needed for
every read operation to keep track of both read and write timestamp; this can be
unwieldy in broadcast environments. Conventional OCC [5] cannot be directly
applied to mobile transaction processing because of the communications which
consume the limited uplink bandwidth and battery power [6].

OCC in Wireless Environment 3

The optimistic concurrency control approach using a three-phased transac-
tion execution consisting of read, validate and write (RVW) phases was described
in [5]. During the read phase of a transaction, clients access data without restric-
tion and make their own local copy of this data. If any writes are required, they
are made to the client’s local copy before the validation phase is entered. The
validation phase ensures that any changes a client has made locally can be satis-
fied globally. Other executing transactions are considered to determine whether
the write requests made locally can be satisfied without invalidating the overall
read-write schedule. If the write requests are valid then the transaction moves
onto the write phase and the local changes are committed to the persistent store
at the server. Otherwise, the transaction must abort and restart.

Harder [7] proposed two schemes for the validation phase: Backward Oriented
Optimistic Concurrency Control (BOCC) and Forward Oriented Optimistic Con-
currency Control (FOCC). BOCC operates by comparing the read set of a val-
idating transaction with the write sets of all currently executing transactions
that have finished the read phase before the validating transaction. If a conflict
is identified then the validating transaction must be aborted and restarted in its
entirety. FOCC, on the other hand, is based on comparing the write set of the
validating transaction with the read sets of all currently executing transactions
that have yet to finish the read phase. When a conflict is found, FOCC provides
a degree of flexibility in that a number of resolution policies are possible. It is
this flexibility in resolution policy which has made FOCC the focus of further
works [11]. However, aborting validating transactions is expensive because such
transactions have used resources and completed execution. The Never Abort
Validating transactions (NAV) strategy ensures that these resources will not be
wasted by guaranteeing that the validating transaction commits [12]. However, a
major drawback of FOCC is that concurrent transactions have to be blocked in
their read phase while validating transactions are executing the validation and
write phase in a critical section.

Virtual execution [13] involves pre-fetching data which will be required for a
subsequent rerun of an aborted transaction. The approach enables transactions
that are known to be in conflict to continue execution and complete the read
phase, in order to pre-fetch the data that will be required for the subsequent
rerun. Significant performance gains can be made when allowing the transaction
to rerun using the pre-fetched data, due to access invariance. There is typically
no disk I/O overhead required for the transaction during rerun. Significantly,
battery power savings can be gained by deploying such a technique on mobile
devices [14]. However, the issue of consistency arises for a transaction that oper-
ates using pre-fetched data as some of the pre-fetched data may have since been
modified.

Lee has proposed a variant of the OCC algorithm called forward and back-
ward optimistic concurrency control (FBOCC) [6]. FBOCC is a concurrency
control algorithm suitable for mobile transactions in wireless broadcast envi-
ronments. It consists of two validation stages. Partial backward validation is
performed at clients between the write set of committed transactions at the

4 Kamal Solamain, Matthew Brook, Gary Ushaw, and Graham Morgan

server and the read set of running transactions at the client at the beginning of
every data cycle. This includes both read-only transactions and update trans-
actions. Any conflicted transaction will be aborted. Successfully validated read-
only mobile transactions will proceed to commit locally. Successfully validated
mobile updated transactions are sent to the server to be validated globally. For-
ward validation is performed at the server between the write set of validating
transactions and the read set of running transactions. This includes transac-
tions generated and executed at the server, and update transactions which are
sent for validation by clients to the server. Server conflicted transactions will be
aborted. Conflicted update transactions will be aborted and will restart at the
client. Update transactions must perform final partial backward validation at
the server before starting forward validation. This final validation is needed in
case of existing update transactions committed at the server since the last back-
ward validation performed at the client. FBOCC is designed to minimize the use
of the uplink channel in two ways: validation of read-only transactions locally
at clients (these constitute the majority of mobile transactions); and early vali-
dating and aborting update transactions locally at clients, which makes update
transactions more likely to pass the validation and write phases at the server.

2.2 Real-time requirements and phase ordering

The LVEW algorithm [8] [14] changes the order of the traditional RVW phases.
The write phase now follows the read phase with validation occurring after the
write is complete. In addition to the reordering of the phases the algorithm makes
use of a rerun policy. Transactions are rolled back using in-memory data derived
from retaining a buffer that records the writes of committing transactions and
the reads of uncommitted transactions. Moving the validation phase ensures
the nearest to expiring transaction (i.e. the closest to reaching its deadline) is
afforded priority to commit. Also, there is no need to block concurrently running
transactions during the write and validation phases. This promotes real-time
efficiency and allows greater determinism. Writes become visible to transactions
in the read phase earlier, affording more likelihood of reading up-to-date data.

In [14] we made two observations when considering real-time requirements.
Firstly, transactions that enter rerun execute quicker than those in their initial
run (as there is likely to be no disk access). Secondly, the validation phase
presents a degree of non-determinism with respect to how long it will take (i.e.
we can’t predict how many transactions require validation). Reruns can occur
multiple times with minimal hindrance to transaction deadlines, as they execute
with no disk latency. It would therefore be advantageous to keep transactions in
rerun until we can deterministically say that, when a transaction leaves rerun,
it will complete and meet its deadline, irrelevant of the delay imposed by the
validation step. This would provide prioritization of rerun transactions without
the concern for non-deterministic latency during the validation phase.

In [8] we applied this thinking to concurrent transactions on the shared re-
sources of a smart device. The use of a virtual execution enabled OCC coupled

OCC in Wireless Environment 5

with the reordering of the validation and write phases allowed for an overall im-
provement in performance. When transactions are in a rerun state we can offset
their validation until after the write phase of a transaction. The first benefit of
this approach is that writes may become visible to transactions in the read phase
earlier, affording more likelihood of reading up-to-date data. Secondly, overall
blocking may be reduced, as in the original OCC protocols, transactions in the
read phase will need to be blocked as a transaction commits changes to the
database (to prevent out of date reads from the database). Such blocking would
not be required, as out of date reads will be caught by the later validation step.

2.3 Energy Efficiency

An important objective of much of the work on concurrency control for mobile
networks is to reduce the energy consumption, especially the battery life of
the mobile devices. Much of the literature makes the point that conventional
OCC techniques are less suited to mobile applications for this reason [6] [11]
[15]. Accessing a conventional hard disk drive is expensive in terms of power
usage, as the disk must attain read speed, and the appropriate data sector be
found. Even solid state drives are significantly more expensive to access compared
to local memory. Consequently reducing the number of times that a disk is
accessed will reduce the energy consumed. Clearly a reduction in the frequency
of transactions that must be rerun will reduce the amount of disk accesses which
must be instigated, leading to a reduction in the energy usage. In general, it is
better to perform execution at the fixed server, rather than at a mobile client [16];
this thinking can also be applied to concurrency resolution. Any energy saving
achieved at the mobile device must be offset against the additional energy cost
caused by any increase in communication over the network [17]. A protocol based
on broadcast disk, which reduces the amount of validation messages going back
and forth between clients and server, appears to meet this constraint.

2.4 Contribution

The background described in this section leads to the contribution made by
this paper. Whereas previous work [18] [19] has described developments for the
broadcast disk protocol which improve the client performance, we concentrate
on the behaviour at the server. Our improvements are compatible with that
existing work on client efficiency. We describe a new optimistic concurrency
control algorithm suitable for a wireless broadcast environment in which the
write phase occurs before the validation phase at the server. This approach
has shown improvement in overall system throughput and the likelihood that
transactions complete within their specified deadline.

We also deploy a rerun policy at the client. This reduces the access cost in the
read phase when a transaction is aborted; this consequently reduces the battery
usage in the mobile device. Additionally we show a reduction of the effect of the
conflict increase rate on transaction results due to the increase of throughput
rate at the server. Our work allows a server to resolve more contention, and

6 Kamal Solamain, Matthew Brook, Gary Ushaw, and Graham Morgan

therefore increases mobile devices’ performance, while reducing the energy cost
due to retrying failed or conflicted transactions.

3 Protocol

We describe a read-write-validation approach to optimistic concurrency control
for energy efficiency of transaction processing in a wireless broadcast disk envi-
ronment. We also present pseudo-code to describe the algorithms execution. Our
protocol builds on the FBOCC protocol proposed in [6] by performing a LVEW
algorithm for validation at the server. The algorithm is performed in two stages.

3.1 Partial Backward Validation at Mobile Clients

All running transactions at clients (i.e. both the read-only transactions and up-
date transactions) are validated at the beginning of every broadcast cycle by
performing backward validation with the write set of committed transactions at
the server. Conflicted transactions are marked for rerun, but continue execution
until the end of the read phase in order to pre-fetch all read set data to memory
[13]. When a conflicted transaction reaches the end of the read phase, we update
the conflicted data objects in memory and rerun without accessing the persistent
store. Optimistic concurrency control performs better if transactions are allowed
to reach the end of their read phase before being aborted [20]. This is intuitive,
as transactions that have been aborted early have not retrieved all the required
data for the rerun phase. Rerun policy has a significant impact in saving battery
power consumption in resource-constrained clients such as mobile devices [18]
[14]. Not conflicted read-only transactions can proceed and commit locally at
the client. Not conflicted update transactions will be sent to the server in order
to be validated globally.

Pseudo-code for partial backward validation is presented as follows:

Algorithm 3.1: PartialBackwardValidation(Tm)

if (Ci ∩RS(Tm)) 6= 0

then



for each Ok in (Ci ∩RS(Tm))

{
do update Ok in CS(Tm)

if Tm is in initial run
then mark Tm for rerun

else

{
update Tm with CS(Tm)
rerun Tm

else store the data in Ci

Tm is the transaction generated at the client. ControlInfo(Ci) os the set of
data items which was updated. Conflicted Set (CS) given CS(Tm), this contains
the updated values from Ci and Tm has been found to conflict with. Each item
(Ok) in CS(Tm) is cached until RS(Tm) can be updated with these updated
values. We choose to cache these values rather than directly update the read

OCC in Wireless Environment 7

set of Tm so as to make it clear that the calculations (writes) would not be
automatically updated if we chose to update RS(Tm) directly. RS(Tm) can be
updated when Tm has finished the initial run or, if it is in rerun, when it is
aborted. Upon updating, CS(Tm) is discarded.

We assume that a transaction which is executing in the read phase reads the
required data and performs any necessary computation. Similarly, a transaction
which is in the commit phase will update any values that were written to during
its read phase. The scheduler will handle rerunning transactions that have been
marked for rerun, along with the process of updating the read sets for conflicting
transactions.

3.2 LVEW and Final Validation at the Server

One of the transactions which are ready to commit will be chosen to enter the
write phase by the scheduler. We employ an earliest deadline policy to give prior-
ity to transactions that are closest to deadline expiration. Once this transaction
has completed the write phase, it performs forward validation against all concur-
rently running transactions at the server [8] [14]. This includes locally generated
transactions and update transactions that have been received from clients for
global validation. Any locally generated conflicted transactions will be marked
for rerun. They will continue executing until the end of the read phase in the
first run as described previously. Conflicted update mobile transactions will be
aborted and rerun again at the client. When a validating transaction finishes the
write and validation phases, the write set will be broadcast in the next broad-
cast cycle with the control information table. This information is used for partial
backward validation at clients to keep mobile transactions consistent. However,
update transactions have to perform final backward validation with any pos-
sibly committed transactions after the update transaction has finished partial
validation at the client, and before starting LVEW validation at the server [18]
[6]. The results of this validation (commit or abort) will also be included in the
information table as acknowledgment to the mobile client for further actions.

3.3 Justifying Read-Write-Validate

This approach fundamentally changes the order of the traditional transactional
phases as introduced in [5]. The write phase now follows the read phase with
the validation phase now occurring after the write phase. Both the write and
validation phases are collectively considered a single critical section, so only
one transaction is allowed to be executing in either of these phases (adopted
widely and described originally in [5]). We use a forward validation strategy
in combination with a No Sacrifice policy [15] that guarantees a transaction
entering the critical section will commit. This means that transactions which
conflict with the validating transaction must be aborted. We choose to employ
a rerun policy so that transactions in their initial run will continue to the end
of the read phase before being rerun.

8 Kamal Solamain, Matthew Brook, Gary Ushaw, and Graham Morgan

By combining the write and validation phases into a single critical section, the
ordering of transactions becomes trivial as we can guarantee system correctness
based on serializability criteria in either scheme. However, without using forward
validation coupled with a No Sacrifice policy, it would be more costly to employ a
RWV ordering. Without these mechanisms, if a validating transaction is aborted,
it would be expensive to undo the changes made during the write. This would
also result in an increased number of conflicts due to any transactions that have
accessed the same data having to be aborted or rerun. With the addition of a
rerun policy we see further performance improvements when combined with a
RWV ordering.

Real-time transactional databases need to handle transactions with timing
constraints in the form of deadlines. Upon arrival, a transaction must be pro-
cessed in a timely fashion to ensure that the changes made during the read phase
are successfully committed to the database before a deadline is reached. Factors
such as system contention have a direct impact on satisfying transactional dead-
lines. Such factors occur during validation. Therefore in the traditional OCC
phase ordering the validation step introduces a degree of non-determinism with
regards to how long writes will take to become visible in the database (delaying
entry to the write phase). The validation phase is required to ensure system
correctness with regards to transactions that are still executing, rather than
providing a direct benefit to the validating transaction itself. If the write phase
is brought before the validation phase then we remove the non-deterministic
timing constraints of the validation phase allowing the transaction to commit
sooner. Consistency is still maintained in a virtual execution environment as the
validation phase will detect transactions that are in conflict during rerun stages.

By altering the phase ordering we also remove a degree of blocking present in
the original FOCC based on read-validate-write ordering (RVW). Under RVW
a transaction executing in the read phase will eventually have to be blocked to
allow a transaction in the critical section to complete. If any of these read-phase
transactions which do not conflict with the validating transaction are allowed
continuing execution, they may potentially enter a conflicted state. This will arise
if a future value is read by a transaction in the read phase that is shared with the
write set of a committing transaction. There will be ambiguity as to which value
would have been read (the one written by the committing transaction or the old
value). In essence, this undetected conflicted transaction will read inconsistent
data that the validating transaction will have modified during the write phase.
As a result, all concurrently running transactions must be blocked to allow the
validating transaction to commit. Any newly arriving transactions will also be
blocked from entering the read phase during this time to avoid further conflict.
By employing a read-write-validate (RWV) ordering, we no longer have to block
any transaction from progressing (we do not consider the transactions waiting to
enter the critical section as being blocked). Having completed the write phase, a
validating transaction will only need to validate against transactions that were
active while the validating transaction was writing. These active transactions
may have read data that has now been updated. Any newly arriving transac-

OCC in Wireless Environment 9

tions (those arriving while a transaction is validating) cannot conflict with the
validating transaction, as the data they read will have already been updated.

Pseudo-code for LVEW and final validation using the same notation ex-
plained in the section on partial backward validation is presented as follows:

Algorithm 3.2: ServerValidation(Tv)

comment: 1 Final backward validation:

for each Ti (i = 1...n)

{
if (RS(Tv) ∩WS(Ti) 6= 0)

then return (fail)

comment: 2 Write:

Commit WS(Tv) to database
Ci = Ci ∪WS(Tv)

comment: 3 Forward validation:

for each Tj (j = 1...n)

{
if (WS(Tv) ∩RS(Tj) 6= 0)

then abort Tj

Our approach is orthogonal to the back-off method [18] and the OCC for
broadcast disks scheme [19]. That is to say, both of these approaches can be
combined with our work.

4 Simulation and Results

We describe the simulation model which we have used to demonstrate our proto-
col, providing a brief overview of the structure of the model and the parameters
that were used. We then discuss the results by comparing the performance of
our simulated model with the a simulation of the original protocol FBOCC [6].

4.1 Simulation Environment

We have developed a simulation model that is based on the model presented in
[6] [18] [19]. We have increased the transaction arrival rate at the server by a
factor of 100 to a figure representative of current applications. The model was
also extended slightly in order to accommodate the rerun of transactions and
the format of our LVEW validation protocol, for meaningful comparison. The
model investigates different performance characteristics of our protocol versus
FBOCC combined with virtual execution. We present a range of results which
highlight the performance benefits of LVEW validation using a virtual execution
policy. The simulation model consists of a server, a client, and the broadcast disk
structure. Only one client was used in our simulation, to provide direct compari-
son to the existing work; the work is built upon broadcast disk implementations
where the read transaction is carried out entirely on the client (so the number

10 Kamal Solamain, Matthew Brook, Gary Ushaw, and Graham Morgan

Parameter Value

Server
Transaction length 8
Read operation probability 0.5
Disk access time 1000
Transaction arrival rate 1 per 20000 to 1 per 1667
Concurrency control protocol OCC with LVEW
Priority scheduling Earliest deadline first

Client
Transaction length 4
Read operation probability 0.5
Fraction of read only transactions 0.75
Minimum slack factor 2 (uniformly distributed)
Maximum slack factor 8 (uniformly distributed)
Mean inter-operation delay 65536
Mean inter-transaction delay 131072

Table 1. Parameters used in the simulation experiments

of clients is irrelevant), and mobile update transactions are relatively rare. The
server executes the server transactions based on conventional FV and LVEW
algorithms. The deadline of transactions is calculated by the following formula:

Deadline = arrival Time + uniform (Minimum Slack factor, Maximum Slack
factor) * execution time

Execution time is estimated using the values of transaction length, CPU
time and disk access (mean inter-operation delay in mobile transaction). Table 1
shows the parameters which were used during the simulation experiments. The
time unit is in bit-time, which is the time to transmit a single bit. For a broadcast
bandwidth of 64 kbps, 1 M bit-time is equivalent to approximately 15s.

4.2 Simulation Results

Due to the real-time nature of the application domain, our experiments focus
on measuring the miss rate percentage, which is the percentage of transactions
missing their deadlines. Another performance metric is the throughput which
is strongly connected to miss rate; throughput is the number of transactions
committed per time unit. Figures 1-3 show the throughput, average response
time and miss rate of server transactions. Figures 4-7 show the throughput and
miss rate of clients transactions. In each graph we present the results of two
protocols: DLVEW and FBOCC.

Figure 1 shows the throughput for an increasing rate of transactions. We
define throughput as the number of committed transactions, with the commit
occurring at the end of the write phase for both phase orderings. All protocols
share a common progression; of particular interest is the point that is reached
in both sets of data where contention is too high and the throughput starts
to degrade. The number of transactions which miss their deadline (fig 3) is

OCC in Wireless Environment 11

Fig. 1. Throughput at the server.

also impacting the throughput, as these transactions are aborted and will never
commit. As the rate increases, the number of late transactions increases and so
the throughput falls.

Fig. 2. Response time at the server.

Figure 2 shows the average response time for an increasing rate of trans-
actions. The response time is only included for transactions that successfully
commit. As the rate increases, the transaction response time increases due to
high contention. We see that, between 1 and 6∗(10−4) transactions per bit-time,
the LV approach has a lower response time than FV. This indicates that the cost
of the validation phase does not affect the transactions commit time in our ap-
proach. The response time stabilizes after 80000 bit-time due to the deadline
assignment; only transactions that have a sufficiently large deadline will be able
to commit. Regardless of the benefits of our protocol, at this level of contention,
transactions expire during the initial run in the read phase.

Figure 3 shows the percentage of transactions which miss their deadline. For
each protocol, as the rate increases, the percentage of missed deadlines also in-
creases. Between 2 and 6 ∗ (10−4) transactions per bit-time, the LV approach
has a lower miss rate than FV. With a high level of system contention, transac-

12 Kamal Solamain, Matthew Brook, Gary Ushaw, and Graham Morgan

tions experience longer delays in accessing the disk and the CPU. This results
in transactions being more likely to miss the deadline during the initial run and
never entering rerun.

Fig. 3. Miss rate at the server.

Fig. 4. Throughput and miss rate of read only transactions at clients

Figure 4 shows the miss rate and throughput of mobile read only transactions.
The figures demonstrate that both protocols generate similar results. This result
was expected because read only transactions execute and commit locally in the
client.

Figure 5 shows the miss rate and throughput of update mobile transactions.
Figure 5a illustrates that the throughput of both protocols is similar when con-
tention at the server is low. The LV protocol demonstrates higher throughput
whenever the server transaction arrival rate has increased. Figure 5b shows that
the miss rate of the LV protocol is always lower than the miss rate of the FV
protocol in all contentions, which is convenient for real-time mobile applications.

OCC in Wireless Environment 13

Fig. 5. Throughput and miss rate of update transactions at clients

5 Conclusions

In [8] we identified the possibility that, in combination with virtual execution,
a performance improvement could be made by allowing the write phase to be
accomplished before the validation phase . In [8] [14] we explored this idea in the
context of multiple applications running concurrently on a resource-constrained
device. We showed that, not only does this reversal maintain correctness, it also
brings performance benefits. This is particularly evident for real-time systems.
In this paper we deploy our approach to further develop forward backward opti-
mistic concurrency control for mobile transactions in the wireless environment.

We have developed a simulation of this technique (using an appropriate sim-
ulation as used by earlier works in the area) in order to demonstrate the per-
formance. We have then benchmarked the results from these tests against the
original FBOCC approach combined with a virtual execution model. We have
shown that our approach significantly improves both the throughput and the
miss rate of the overall system when compared to the original technique. We
have simulated 100x more frequent transaction arrivals than the previous works,
to reflect the modern usage of the technology.

Our seemingly counter-intuitive idea of changing the phase order to read-
write-validate, combined with virtual execution, requires significantly fewer ac-
cesses of the server data, and completely eliminates blocking transactions at the
read phase. This leads to resolving more contention by a more able server, and
therefore increases mobile devices performance, while reducing the energy cost
due to retrying failed or conflicted transactions.

References

1. Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast disks: data manage-
ment for asymmetric communication environments. In: ACM SIGMOD Record.
Volume 24., ACM (1995) 199–210

2. Shanmugasundaram, J., Nithrakashyap, A., Sivasankaran, R., Ramamritham, K.:
Efficient concurrency control for broadcast environments. ACM SIGMOD Record
28(2) (1999) 85–96

14 Kamal Solamain, Matthew Brook, Gary Ushaw, and Graham Morgan

3. Pitoura, E., Chrysanthis, P.K.: Scalable processing of read-only transactions in
broadcast push. In: Distributed Computing Systems, 1999. Proceedings. 19th IEEE
International Conference on, IEEE (1999) 432–439

4. Barbará, D.: Certification reports: supporting transactions in wireless systems.
In: Distributed Computing Systems, 1997., Proceedings of the 17th International
Conference on, IEEE (1997) 466–473

5. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM
Transactions on Database Systems (TODS) 6(2) (1981) 213–226

6. Lee, V.C.S., Lam, K.W., Kuo, T.W.: Efficient validation of mobile transactions
in wireless environments. Journal of Systems and Software 69(1-2) (Jan 2004)
183–193

7. Härder, T.: Observations on optimistic concurrency control schemes. Information
Systems 9(2) (1984) 111–120

8. Solaiman, K., Brook, M., Ushaw, G., Morgan, G.: A read-write-validate approach
to optimistic concurrency control for energy efficiency of resource-constrained sys-
tems. In: Proceedings of the 9th International Wireless Communications and Mo-
bile Computing Conference, IEEE (2013)

9. Juran, J., Hurson, A., Vijaykrishnan, N., Kim, S.: Data organization and retrieval
on parallel air channels: Performance and energy issues. Wireless Networks 10(2)
(2004) 183–195

10. Lee, V.C., Lam, K.W., Son, S.H., Chan, E.Y.: On transaction processing with par-
tial validation and timestamp ordering in mobile broadcast environments. Com-
puters, IEEE Transactions on 51(10) (2002) 1196–1211

11. Lee, J.: Precise serialization for optimistic concurrency control. Data & knowledge
engineering 29(2) (1999) 163–178

12. Huang, J., Stankovic, J.: Concurrency control in real-time database systems: Op-
timistic scheme vs. two-phase locking. Univ. of Messachusetts, COINS Technical
Report (1990) 90–66

13. Franaszek, P.A., Robinson, J.T., Thomasian, A.: Access invariance and its use
in high contention environments. In: Data Engineering, 1990. Proceedings. Sixth
International Conference on, IEEE (1990) 47–55

14. Solaiman, K., Morgan, G.: Later validation/earlier write: Concurrency control for
resource-constrained systems with real-time properties. In: Reliable Distributed
Systems Workshops (SRDSW), 2011 30th IEEE Symposium on, IEEE (2011) 9–12

15. Lee, J.: Concurrency control algorithms for real-time database systems. PhD
thesis, Citeseer (1994)

16. Kumar Madria, S., Mohania, M., Bhowmick, S.S., Bhargava, B.: Mobile data and
transaction management. Information Sciences 141(3) (2002) 279–309

17. Miettinen, A.P., Nurminen, J.K.: Energy efficiency of mobile clients in cloud com-
puting. In: Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing, USENIX Association (2010) 4–4

18. Park, S., Jung, S.: An energy-efficient mobile transaction processing method us-
ing random back-off in wireless broadcast environments. Journal of Systems and
Software 82(12) (2009) 2012–2022

19. Jung, S., Choi, K.: A concurrency control scheme for mobile transactions in broad-
cast disk environments. Data & Knowledge Engineering 68(10) (2009) 926–945

20. Yu, P.S., Dias, D.M.: Analysis of hybrid concurrency control schemes for a high
data contention environment. Software Engineering, IEEE Transactions on 18(2)
(1992) 118–129

	TRCover1402
	TRAbstract1402
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1402
	1402TRwithout covers

