Skip to main content

Subgraphs Satisfying MSO Properties on z-Topologically Orderable Digraphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8246))

Abstract

We introduce the notion of z-topological orderings for digraphs. We prove that given a digraph G on n vertices admitting a z-topological ordering, together with such an ordering, one may count the number of subgraphs of G that at the same time satisfy a monadic second order formula ϕ and are the union of k directed paths, in time f(ϕ,k,zn O(k·z). Our result implies the polynomial time solvability of many natural counting problems on digraphs admitting z-topological orderings for constant values of z and k. Concerning the relationship between z-topological orderability and other digraph width measures, we observe that any digraph of directed path-width d has a z-topological ordering for z ≤ 2d + 1. On the other hand, there are digraphs on n vertices admitting a z-topological order for z = 2, but whose directed path-width is Θ(logn). Since graphs of bounded directed path-width can have both arbitrarily large undirected tree-width and arbitrarily large clique width, our result provides for the first time a suitable way of partially transposing metatheorems developed in the context of the monadic second order logic of graphs of constant undirected tree-width and constant clique width to the realm of digraph width measures that are closed under taking subgraphs and whose constant levels incorporate families of graphs of arbitrarily large undirected tree-width and arbitrarily large clique width.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M., Fagin, R., Stockmeyer, L.J.: The closure of monadic NP. J. Comput. Syst. Sci. 60(3), 660–716 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artin, E.: The theory of braids. Annals of Mathematics 48(1), 101–126 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and Combinatorics 22(2), 161–172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Mathematical Systems Theory 20(2-3), 83–127 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., Obdrzálek, J.: The DAG-width of directed graphs. J. Comb. Theory, Ser. B 102(4), 900–923 (2012)

    Article  MATH  Google Scholar 

  7. Berwanger, D., Grädel, E.: Entanglement - A measure for the complexity of directed graphs with applications to logic and games. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 209–223. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Berwanger, D., Grädel, E., Kaiser, L., Rabinovich, R.: Entanglement and the complexity of directed graphs. Theor. Comput. Sci. 463, 2–25 (2012)

    Article  MATH  Google Scholar 

  9. Borie, R.B., Parker, R.G., Tovey, C.A.: Deterministic decomposition of recursive graph classes. SIAM J. Discrete Math. 4(4), 481–501 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bozapalidis, S., Kalampakas, A.: Recognizability of graph and pattern languages. Acta Inf. 42(8-9), 553–581 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brandenburg, F.-J., Skodinis, K.: Finite graph automata for linear and boundary graph languages. Theoretical Computer Science 332(1-3), 199–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Courcelle, B.: Graph expressions and graph rewritings. Math. Syst. Theory 20, 83–127 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Handbook of Theoretical Computer Science, pp. 194–242 (1990)

    Google Scholar 

  14. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach, vol. 138. Cambridge University Press (2012)

    Google Scholar 

  15. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Th. of Comp. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Applied Mathematics 108(1-2), 23–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Oliveira Oliveira, M.: Hasse diagram generators and Petri nets. Fundam. Inform. 105(3), 263–289 (2010)

    MATH  Google Scholar 

  18. de Oliveira Oliveira, M.: Canonizable partial order generators. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 445–457. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. de Oliveira Oliveira, M.: Subgraphs satisfying MSO properties on z-topologically orderable digraphs. Preprint (full version of this paper) arXiv:1303.4443 (2013)

    Google Scholar 

  20. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In: Complexity Theory: Current Research, pp. 191–225 (1992)

    Google Scholar 

  21. Eggan, L.C.: Transition graphs and the star height of regular events. Michigan Mathematical Journal 10(4), 385–397 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  22. Engelfriet, J., Vereijken, J.J.: Context-free graph grammars and concatenation of graphs. Acta Informatica 34(10), 773–803 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Evans, W., Hunter, P., Safari, M.: D-width and cops and robbers. Manuscript (2007)

    Google Scholar 

  24. Ganian, R., Hliněný, P., Kneis, J., Langer, A., Obdržálek, J., Rossmanith, P.: On digraph width measures in parameterized algorithmics. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 185–197. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Ganian, R., Hliněný, P., Kneis, J., Meister, D., Obdržálek, J., Rossmanith, P., Sikdar, S.: Are there any good digraph width measures? In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 135–146. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Ganian, R., Hlinený, P., Langer, A., Obdrzálek, J., Rossmanith, P., Sikdar, S.: Lower bounds on the complexity of MSO1 model-checking. In: STACS 2012, vol. 14, pp. 326–337 (2012)

    Google Scholar 

  27. Giammarresi, D., Restivo, A.: Recognizable picture languages. International Journal Pattern Recognition and Artificial Intelligence 6(2-3), 241–256 (1992)

    Article  Google Scholar 

  28. Giammarresi, D., Restivo, A.: Two-dimensional finite state recognizability. Fundam. Inform. 25(3), 399–422 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Gruber, H.: On the d-width of directed graphs. Manuscript (2007)

    Google Scholar 

  30. Gruber, H.: Digraph complexity measures and applications in formal language theory. Discrete Math. & Theor. Computer Science 14(2), 189–204 (2012)

    Google Scholar 

  31. Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and regular expression size. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 39–50. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Hunter, P., Kreutzer, S.: Digraph measures: Kelly decompositions, games, and orderings. Theor. Comput. Sci. 399(3), 206–219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J. Comb. Theory, Ser. B 82(1), 138–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kreutzer, S.: On the parameterized intractability of monadic second-order logic. Logical Methods in Computer Science 8(1) (2012)

    Google Scholar 

  35. Kreutzer, S., Tazari, S.: Lower bounds for the complexity of monadic second-order logic. In: LICS, pp. 189–198 (2010)

    Google Scholar 

  36. Lampis, M., Kaouri, G., Mitsou, V.: On the algorithmic effectiveness of digraph decompositions and complexity measures. Discrete Optimization 8(1), 129–138 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Matz, O., Thomas, W.: The monadic quantifier alternation hierarchy over graphs is infinite. In: LICS, pp. 236–244 (1997)

    Google Scholar 

  38. Post, E.L.: A variant of a recursively unsolvable problem. Bulletion of the American Mathematical Society 52, 264–268 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  39. Reed, B.A.: Introducing directed tree width. Electronic Notes in Discrete Mathematics 3, 222–229 (1999)

    Article  Google Scholar 

  40. Safari, M.A.: D-width: A more natural measure for directed tree width. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 745–756. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  41. Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 482–493. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  42. Tamaki, H.: A polynomial time algorithm for bounded directed pathwidth. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 331–342. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  43. Thomas, W.: Finite-state recognizability of graph properties. Theorie des Automates et Applications 172, 147–159 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

de Oliveira Oliveira, M. (2013). Subgraphs Satisfying MSO Properties on z-Topologically Orderable Digraphs. In: Gutin, G., Szeider, S. (eds) Parameterized and Exact Computation. IPEC 2013. Lecture Notes in Computer Science, vol 8246. Springer, Cham. https://doi.org/10.1007/978-3-319-03898-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03898-8_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03897-1

  • Online ISBN: 978-3-319-03898-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics