Skip to main content

The Jump Number Problem: Exact and Parameterized

  • Conference paper
  • 1006 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8246))

Abstract

The Jump Number problem asks to find a linear extension of a given partially ordered set that minimizes the total number of jumps, i.e., the total number of consecutive pairs of elements that are incomparable originally. The problem is known to be NP-complete even on posets of height one and on interval orders. It has also been shown to be fixed-parameter tractable. Finally, the Jump Number problem can be solved in time \(\mathcal{O}^*(2^n)\) by dynamic programming.

In this paper we present an exact algorithm to solve Jump Number in \(\mathcal{O}(1.8638^n)\) time. We also show that the Jump Number problem on interval orders can be solved by an \(\mathcal{O}(1.7593^n)\) time algorithm, and prove fixed-parameter tractability in terms of width w by an \(\mathcal{O}^*(2^w)\) time algorithm. Furthermore, we give an almost-linear kernel for Jump Number on interval orders for parameterization by the number of jumps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sysło, M.M.: Minimizing the jump number for partially-ordered sets: a graph-theoretic approach, ii. Discrete Mathematics 63(2-3), 279–295 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sysło, M.M.: An algorithm for solving the jump number problem. Discrete Mathematics 72(1-3), 337–346 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Müller, H.: Alternating cycle-free matchings. Order 7(1), 11–21 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Reuter, K.: The jump number and the lattice of maximal antichains. Discrete Mathematics 88(2-3), 289–307 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pulleyblank, W.R.: On minimizing setups in precedence constrained scheduling (1981) (Unpublished manuscript)

    Google Scholar 

  6. Bouchitté, V., Habib, M.: NP-completeness properties about linear extensions. Order 4(2), 143–154 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Trotter, W.T.: Combinatorics and partially ordered sets: Dimension theory. John Hopkins University Press (2001)

    Google Scholar 

  8. Mitas, J.: Tackling the jump number of interval orders. Order 8(2), 115–132 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Felsner, S.: A 3/2-approximation algorithm for the jump number of interval orders. Order 6(4), 325–334 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sysło, M.M.: The jump number problem on interval orders: A 3/2 approximation algorithm. Discrete Mathematics 144(1-3), 119–130 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krysztowiak, P.: Improved approximation algorithm for the jump number of interval orders. Electronic Notes in Discrete Mathematics 40, 193–198 (2013)

    Article  Google Scholar 

  12. Steiner, G., Stewart, L.K.: A linear time algorithm to find the jump number of 2-dimensional bipartite partial orders. Order 3(4), 359–367 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sysło, M.M.: Minimizing the jump number for partially ordered sets: A graph-theoretic approach. Order 1(1), 7–19 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Habib, M., Möhring, R., Steiner, G.: Computing the bump number is easy. Order 5(2), 107–129 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. El-Zahar, M.H., Schmerl, J.H.: On the size of jump-critical ordered sets. Order 1(1), 3–5 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. McCartin, C.: An improved algorithm for the jump number problem. Inf. Process. Lett. 79(2), 87–92 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fishburn, P.C.: Interval orders and interval graphs. Wiley (1985)

    Google Scholar 

  18. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)

    Google Scholar 

  19. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Marion, J.Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  20. Suchan, K., Villanger, Y.: Computing pathwidth faster than 2n. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 324–335. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Björklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS, pp. 173–182. IEEE Computer Society (2010)

    Google Scholar 

  22. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Scheduling partially ordered jobs faster than 2n. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 299–310. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Woeginger, G.J.: Exact Algorithms for NP-Hard Problems: A Survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization (Edmonds Festschrift). LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Micali, S., Vazirani, V.V.: An \(O(\sqrt{|{V}|} |{E}|)\) algorithm for finding maximum matching in general graphs. In: FOCS, pp. 17–27. IEEE Computer Society (1980)

    Google Scholar 

  25. Spinrad, J.P.: Efficient graph representations. American Mathematical Society (2003)

    Google Scholar 

  26. Felsner, S.: Interval Orders: Combinatorial Structure and Algorithms. PhD thesis, Technical University Berlin (1992)

    Google Scholar 

  27. Colbourn, C.J., Pulleyblank, W.R.: Minimizing setups in ordered sets of fixed width. Order 1(3), 225–229 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kratsch, S., Pilipczuk, M., Rai, A., Raman, V.: Kernel lower bounds using co-nondeterminism: Finding induced hereditary subgraphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 364–375. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Kratsch, D., Kratsch, S. (2013). The Jump Number Problem: Exact and Parameterized. In: Gutin, G., Szeider, S. (eds) Parameterized and Exact Computation. IPEC 2013. Lecture Notes in Computer Science, vol 8246. Springer, Cham. https://doi.org/10.1007/978-3-319-03898-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03898-8_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03897-1

  • Online ISBN: 978-3-319-03898-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics