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Abstract. The dominating set problem has been extensively studied
in the realm of parameterized complexity. It is one of the most common
sources of reductions while proving the parameterized intractability of
problems. In this paper, we look at dominating set and its general-
ization r-dominating set on graphs of bounded diameter in the realm
of parameterized complexity. We show that Dominating set remains
W[2]-hard on graphs of diameter 2, while r-dominating set remains
W[2]-hard on graphs of diameter r+1. The lower bound on the diameter
in our intractability results is the best possible, as r-dominating set is
clearly polynomial time solvable on graphs of diameter at most r.

1 Introduction

In the dominating set problem, we are given a graph G and a non-negative in-
teger k, and the objective is to check if G contains a set of k vertices whose closed
neighborhood contains all the vertices of G. In its generalization, r-dominating
set, we are given a graph G and a non-negative integer k, and the question is
whether G contains a set of k vertices such that every vertex of G is at distance
at most r from one of these vertices. dominating set, together with its numer-
ous variants, is one of the most classic and well-studied problems in algorithms
and combinatorics [12].

A considerable part of the algorithmic study on this NP-complete problem
has been focused on the design of parameterized algorithms. Formally, a pa-
rameterization of a problem is assigning an integer k to each input instance
and a parameterized problem is fixed-parameter tractable (FPT) if there is an
algorithm that solves the problem in time f(k) · |I|O(1), where |I| is the size
of the input and f is an arbitrary computable function depending only on the
parameter k. Just as NP-hardness is used as evidence that a problem probably
is not polynomial time solvable, there exists a hierarchy of complexity classes
above FPT, and showing that a parameterized problem is hard for one of these
classes is considered evidence that the problem is unlikely to be fixed-parameter
tractable. The main classes in this hierarchy are:

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆W [P ] ⊆ XP



The principal analogue of the classical intractability class NP is W [1], which is a
strong analogue, because a fundamental problem complete forW [1] is the k-Step
Halting Problem for Nondeterministic Turing Machines (with unlim-
ited nondeterminism and alphabet size) — this completeness result provides an
analogue of Cook’s Theorem in classical complexity. In particular this means
that an FPT algorithm for any W [1] hard problem would yield a O(f(k)nc)
time algorithm for k-Step Halting Problem for Nondeterministic Tur-
ing Machines. A convenient source of W [1]-hardness reductions is provided
by the result that Clique is complete for W [1]. Other highlights of the theory
include that dominating set, by contrast, is complete for W [2]. We refer to the
following books for further details on parameterized complexity theory [8,9,13].

In general, dominating set and r-dominating set are W[2]-complete and
therefore do not admit FPT algorithms unless an unexpected collapse occurs
among certain parameterized complexity classes. However, there are interesting
graph classes where FPT algorithms do exist for the dominating set problem.
The project of widening the horizon where such algorithms exist spanned a
multitude of ideas that made dominating set the testbed for some of the
most cutting-edge techniques of parameterized algorithm design. For example,
the initial study of parameterized subexponential algorithms for dominating
set on planar graphs [2,4,10] resulted in the creation of bidimensionality theory,
characterizing a broad range of graph problems that admit efficient approximate
schemes or FPT algorithms on an equally broad range of graphs [5,6,7].

In this paper, we look at the effect of diameter on the parameterized com-
plexity of dominating set and r-dominating set. In other words we study
dominating set and r-dominating set on graphs of bounded diameter. We
show that dominating set remains W[2]-complete on graphs of diameter 2,
while r-dominating set remains W[2]-complete on graphs of diameter r + 1.
The lower bound on the diameter in our intractability results is the best pos-
sible, as any graph with diameter at most r has an r-dominating of set of size
exactly 1. The dominating set problem on split graphs was shown to be NP-
complete in [1] and W[2]-hard in [14], while in [3], dominating set was shown
to be NP-complete on graphs of diameter 2. In this paper, we demonstrate a
reduction from the dominating set problem on split graphs to the dominat-
ing set problem on graphs of diameter 2, showing the W[2]-hardness of the
problem on this graph class. Furthermore, this reduction will also demonstrate
that connected dominating set is both NP-hard and W[2]-hard on graphs
of diameter 2. We then extend these reductions in a non-trivial way to prove the
classical as well as the parameterized intractability of generalizations of these
problems. Our hardness reduction for r-dominating set on graphs of diameter
r + 1 for r ≥ 2 starts with a hypercube of diameter r + 1 and then embeds the
input graph in this hypercube. The hard part of the reduction is the reverse
direction where we need to argue that given a r-dominating set of the reduced
graph we can obtain a dominating set of the input graph. We believe that our
reduction strategy will be useful in other situations also.
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2 Preliminaries

A parameterized problem is denoted by a pair (Q, k) ⊆ Σ∗ × N. The first com-
ponent Q is a classical language, and the number k is called the parameter. Such
a problem is fixed–parameter tractable (FPT) if there exists an algorithm that
decides it in time O(f(k)nO(1)) on instances of size n. Next we define the notion
of parameterized reduction.

Definition 1. Let A,B be parameterized problems. We say that A is (uniformly
many:1) fpt-reducible to B if there exist functions f, g : N→ N, a constant α ∈
N and an algorithm Φ which transforms an instance (x, k) of A into an instance
(x′, g(k)) of B in time f(k)|x|α so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.

A parameterized problem is considered unlikely to be fixed-parameter tractable
if it isW [i]-hard for some i ≥ 1. To show that a problem isW [2]-hard, it is enough
to give a parameterized reduction from a known W [2]-hard problem. Through-
out this paper we follow this recipe to show a problem W [2]-hard. In fact, in this
paper, all our reductions will run in polynomial time. Since this will be easy to
see, we will not explicitly mention the time complexity of our reductions.

A split graph is a graph whose vertex set can be parititioned into two parts,
one of which is a (maximal) clique and the other is an independent set. For any
two vertices u and v, we let d(u, v) denote the length of the shortest path between
the vertices. Then the diameter of the graph G = (V,E) is maxu,v∈V d(u, v). In
other words, the diameter of a graph is the length of the longest shortest path
in the graph. For S ⊆ V , G[S] denotes the graph induced by S in G. The vertex
set of G[S] is S, and the edge set is {(u, v) | u ∈ S, v ∈ S and (u, v) ∈ E}. The
r-neighborhood of a vertex v is the set of all vertices that are at distance at most
r from v. The r-neighborhood of a vertex is denoted by Nr(v), and the closed
r-neighborhood of a vertex, given by Nr(v) ∪ {v}, is denoted by Nr[v]. The r-
neighborhood of a subset of vertices S is ∪v∈SNr(v), and is denoted by Nr(S).
Likewise, the closed r-neighborhood of a subset of vertices S is Nr(S) ∪ S, and
is denoted by Nr[S]. We say that a vertex v is global to a set S of vertices if v
is adjacent to every vertex in S. The hamming distance between two n-length
strings is the number of positions at which the two string differ.
The dominating set and connected dominating set problems are defined
as follows:

dominating set Parameter: k
Input: A graph G = (V,E), and an integer k.
Question: Does G have a subset S of at most k vertices such that for every
v ∈ V , either v ∈ S, or there exists u such that u ∈ S and (u, v) ∈ E?

connected dominating set Parameter: k
Input: A graph G = (V,E), and an integer k.
Question: Does G have a subset S of at most k vertices such that for every
v ∈ V , either v ∈ S, or there exists u such that u ∈ S and (u, v) ∈ E, and
G[S] is connected?
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The Dominating Set and the Connected Dominating Set problems
are fundamental NP-complete [11], and W[2]-complete problems [8]. The r-
dominating set and connected r-dominating set problems are defined
below, and are also known to be NP-complete and W[2]-hard for every fixed
constant r.

r-dominating set Parameter: k
Input: A graph G = (V,E), and an integer k.
Question: Does G have a subset S of at most k vertices such that for every
v ∈ V , v ∈ Nr[S]?

connected r-dominating set Parameter: k
Input: A graph G = (V,E), and an integer k.
Question: Does G have a subset S of at most k vertices such that for every
v ∈ V , v ∈ Nr[S] and G[S] is connected?

3 W-Hardness Of dominating set on graphs of diameter
two

In this section we show that dominating set remains W[2]-hard on split graphs
of diameter 2.

Theorem 1. dominating set is W [2]-hard on split graphs of diameter 2.

Proof. We demonstrate this by a parameterized reduction from dominating set
on connected split graphs. Let G = (V,E) be a split graph, where V = I]C with
G[C] being a clique and G[I], an independent set and let (G, k) be an instance
of Dominating Set. We first make the following claim regarding dominating
sets of G.

Claim 1. If (G, k) is a Yes instance, then there exists a dominating set of size
at most k that does not intersect I.

Proof. Since (G, k) is a Yes instance of dominating set, G admits some subset
S of size at most k that dominates all vertices in G. If S ∩ I = ∅, then we are
done. Suppose that this is not the case, and consider the set R obtained from S,
by replacing every v ∈ S ∩ I with some u ∈ N(v). Clearly, R is no larger than S
and R ∩ I = φ. It is also easy to see that R is a dominating set of G:

– every vertex in the clique is dominated by R since R ∩ C 6= φ,
– any vertex v ∈ I \ (S ∩ I) is dominated by some vertex in S ∩R, since S was

a dominating set, and vertices in S ∩ I cannot dominate the vertex under
consideration,

– any vertex in S ∩ I is dominated by R, by construction.

This completes the proof of the claim. ut
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We now proceed to the reduction. We will construct a split graph H = (VH =
C ′ ] I ′, EH). Recall that we desire H to be a graph of diameter 2. To this end,
we obtain H from G by “replacing” the vertices of C with

(|C|
2

)
vertices, that

is, H has one vertex for every pair of vertices in the clique partition of G. The
adjacencies are as expected: a vertex corresponing to a pair of vertices is adjacent
to the union of the neighborhoods of the original vertices. Finally, we induce a
clique on the newly added vertices. Formally,

– I ′ = I,
– C ′ = {v[i, j] | i, j ∈ C, i 6= j}
– (u, v[i, j]) ∈ EH if, and only if, either (u, i) ∈ E or (u, j) ∈ E,
– (v[i, j], v[k, l]) ∈ EH for all (v[i, j], v[k, l]) ∈

(
C′

2

)
. Here,

(
C′

2

)
is the family

of two sized subsets of C ′. This makes the set C ′ a clique, and hence H is
indeed a split graph.

We now claim that (H, k) is a Yes instance of dominating set if and only if
(G, 2k) is a Yes instance. Since it is easily checked that H is a split graph and
has diameter 2, the statement of the lemma will follow.

Indeed, let S = {u1, u2, . . . , ur} be a dominating set of G of size at most
2k. Notice that we can assume S ∩ I = φ (see claim 1). Also, without loss
of generality, we assume that r is even. Then, we claim that the set R =
{v[u1, u2], v[u3, u4], . . . v[ur−1, ur]} is a dominating set of H, of size at most k.
It is evident that all vertices in C ′ are dominated by R. Let v ∈ I ′, and let
ui ∈ S be such that (u, v) ∈ E (notice that such a choice of u always exists,
since S is – by assumption – a dominating set of G). But, since either v[ui, ui+1]
or v[ui−1, ui] is contained in R, the vertex v is also dominated by R in the graph
H.

On the other hand, let R = {v[u1, u2], v[u3, u4], . . . v[ur−1, ur]} be a domi-
nating set of H of size at most k. Again, by claim 1 (which applies since we have
that H is also a split graph), we may assume that R ∩ I ′ = φ. We claim that
the set S = {u1, u2, . . . , ur} is a dominating set of G of size at most 2k. Clearly,
|S| ≤ 2r ≤ 2k and all vertices in C are dominated by S. Now, consider a vertex
v ∈ I, and let v[ui, ui+1] ∈ R be such that (v[ui, ui+1], v) ∈ EH (notice that
such a vertex always exists, since R is – by assumption – a dominating set of
H). Since both ui and ui+1 are in S, v is also dominated by S. This completes
the proof of the lemma. ut

4 W-Hardness Of r-dominating set on graphs of
diameter (r + 1)

In this section, we describe a reduction from the dominating set problem on
split graphs of diameter two to the r-dominating set problem on graphs of
diameter (r + 1) for r ≥ 2.

The Construction. Let (G, k) be an instance of dominating set, where G =
(V,E) is a split graph of diameter two with V = (I ] C). The independent set
and clique of the split partition are given by I and C respectively.
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We first describe an intermediate graph G′ = (V ′, E′) that will serve as an
wireframe for the construction. Let α := 4kr|I| + |C|. The vertex set of G′

comprises of words of length (r+ 1) over the alphabet {1, . . . , α}, and the edges
are between vertices whose corresponding words differ in exactly one position.

Formally, we define V ′ := {1, . . . , α}r+1. For every u, v ∈ V ′, let δ(u, v) be
the number of positions in which the strings u and v differ. In other words,
δ(u, v) is the hamming distance between the strings u and v. We therefore have
E′ = {(u, v) | δ(u, v) = 1}. This completes the description of G′.

We abuse language and speak of the hamming distance between two vertices
to refer to the hamming distance between the strings corresponding to the ver-
tices in question. Also, for a vertex v and 1 ≤ i ≤ r+ 1, we will use v[i] ∈ [α] to
denote the value of the ith position in the string corresponding to v (sometimes
also referred to as the ith coordinate).

It turns out that in G′, the distance between a pair of vertices corresponds
exactly to the hamming distances between them. We formalize this in the obser-
vation below, where we show that for any vertex v in V ′, the vertices of distance
at most d from v in G′ are precisely the vertices whose hamming distance from
v is at most d.

Lemma 1. For every vertex v ∈ V ′, for every d > 0, the set

Nd(v) = {u | δ(u, v) ≤ d}.

Proof. The proof is by induction on d. In the base case, for d = 1, the claim
follows by the definition of adjacencies in G′. For the induction step, let d > 0,
and assume that the claim holds for all d∗ < d. Let u1, . . . , ut be the vertices at
distance (d − 1) from v. Consider Nd(v) =

⋃
u∈Nd−1(v)N [u]. By the induction

hypothesis, we have that Nd−1(v) = {u|δ(u, v) ≤ d− 1}. Therefore,

Nd(v) =
⋃

{u : δ(u,v)≤d−1}

⋃
{w : δ(w,u)≤1}

{w} = {u | δ(u, v) ≤ d}.

This completes the proof of the claim. ut

Notice that the distance between any pair of vertices in G′ is at most (r+1).
By Lemma 1, we also have that the distance between the vertices (i, i, . . . , i) and
(j, j, . . . , j) is r+ 1 for any i, j ∈ [α], i 6= j. It follows that G′ has diameter r+ 1.

We are now ready to incorporate an encoding of G in the reduction. It is
useful to think of V ′ as points inside an (r + 1)-dimensional hypercube with
sides of length α. We will focus on the plane obtained by setting all but first two
coordinates to 1 and embed the graph G here in a way that does not decrease
the diameter of the entire graph, and at the same time encodes a dominating
set of G as an r-dominating set of the newly constructed graph and vice versa.
We now formalize this intuition.

Recall that (I ] C) is the split partition of the instance G. Let p := |I| and
q := |C|. Begin by labelling the vertices in I as {v1, . . . , vp} and those in C as
{u1, . . . , uq}. Let β(i) = 4kr · (i − 1) and γ = (4kr) · p. Furthermore, we use 1i
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Fig. 1. (a) An illustration of the construction for r = 2 where the graph G is embedded
along the diagonal of the bottom face of the cube. (b) An illustration of the adjacencies
in G′. The red, blue and green vertices are the vertices adjacent to the yellow vertex
in G′.

to refer to the tuple (1, . . . , 1) of length i. We exclude the subscript when the
length of the tuple is clear from the context. Before we go further, we collect the
definitions of α, β and γ for easy reference.

– α := 4krp+ q, β(i) := 4kr · (i− 1) and γ := (4kr) · p.

Define the set P2 := {(i, j, 1) | 1 ≤ i, j ≤ α} and let R denote the remaining
vertices in V ′, that is, R := V ′ \ P2. Let D2 ⊂ P2 denote the “diagonal” entries
of P2, that is, D2 = {(i, i, 1) | 1 ≤ i ≤ α}. We now establish the following
correspondence between vertices of G and the vertices of D2:

– For each vertex v` ∈ I, the 4kr vertices – (β(`) + 1, β(`) + 1, 1), . . . , (β(` +
1), β(`+ 1), 1) in G′ all correspond to v` and we refer to this set as I`.

– For each vertex ui ∈ C, the vertex (γ + i, γ + i, 1) corresponds to ui and we
refer to this vertex as u?i .

We now add the following edges to G′. For each edge (v`, uj) ∈ E such that
v` ∈ I and uj ∈ C, we make u?j adjacent to every vertex in I`. Finally, we
consider the set P2 and make a clique on the set P2 \ (

⋃p
`=1 I`). This completes

the construction and we refer to the graph thus constructed as G′′ = (V ′′, E′′).
To tie back to the intuition described earlier, note that we considered the

points of V ′ that lie on the two-dimensional plane obtained by the restriction of
the last (r−1) coordinates to (1, 1, . . . , 1) (recall that we are now interpreting the
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elements of V ′ as points in (r+1)-dimensional space). Here, we embedded (4kr)
copies of each vertex in I and a single copy of each vertex in C along the diagonal
of this plane (see Figure 1). Following this, we replicated the adjacencies of G
between the corresponding vertices in G′ and finally, we made a complete graph
on all the vertices in this plane except for those that correspond to vertices of I.

Diameter Bound. Notice that G′ is a subgraph of G′′, and therefore, the
diameter of G′′ is no more than the diameter of G′. We now show that in spite
of the newly added edges, the diameter of G′′ is the same as the diameter of G′.

Lemma 2. The diameter of the graph G′′ is r + 1.

Proof. We show that the distance between the vertices u = (α, α, . . . , α) and
v = (α − 1, α − 1, . . . , α − 1) in G′′ is r + 1 which would imply the claim.
Suppose, for the sake of contradiction, that that there is a path L of length
at most r from u to v. Since such a path does not exist in G′, this path must
contain an edge from E′′ \ E′. Since every edge in E′′ \ E′ is contained in P2,
the path L has a non-trivial intersection with P2. Since u, v /∈ P2, L begins and
ends outside P2. We let u′ be the first vertex of P2 on L and let v′ be the last
vertex of P2 on L. Note that u 6= u′ 6= v′ 6= v.

Let Lu be the subpath of L from u to u′, Lv be the subpath of L from v′

to v. Clearly, Lu and Lv are also paths in G′. Note that the length of Lu is at
least the length of a shortest path from u to u′, and the length of Lv is at least
the length of a shortest path from v′ to v. Since Lu and Lv lie entirely outside
P2, the lengths of these shortest paths are the same in G′′ and G′. This implies
(using Lemma 1) that Lu and Lv both have length at least (r−1), which implies
that L has length at least 2(r − 1) + 1. Since r ≥ 2 we have that 2r − 1 can not
be less than r. Thus we get our desired contradiction. ut

Correctness of the reduction. We now turn to the correctness of the re-
duction. In the forward direction, consider a dominating set Z of size at most
k for G. We have already seen that we may assume that Z ⊆ C, without loss
of generality. Consider the set CZ := {u∗j | uj ∈ Z}. We claim that CZ is an
r-dominating set for G′′.

Clearly, every vertex in P2 is at a distance of at most 1 from CZ . Now,
consider any vertex v := (a1, a2, a3, . . . , ar+1) ∈ R. By Lemma 1, the vertex
(a1, a2, 1) ∈ P2 is at a distance of at most (r− 1) from v, and consequently at a
distance of at most r from CZ . Hence, CZ is indeed an r-dominating set for G′′.

Conversely, consider a set Z of size at most k which is an r-dominating set
for G′′. In this direction, we will have to work our way from Z ⊂ V ′′ to a subset
of P2, and eventually to a subset of D2 that will lead us to a correspondence
between the vertices of Z and vertices of C in G. In the process, we will ensure
that the vertices specified by the correspondence dominate I, using the fact that
Z was a r-dominating set in G′′.

The multiple copies of vertices in I will now be helpful in identifying vertices
of Z that lie in P2. To see this informally, fix v` ∈ I, and consider I`. We will first

8



show that any vertex outside P2 can r-dominate a limited number of vertices in
I`. In fact, it will follow from the choice of α that even k vertices from outside
P2 cannot r-dominate all of I`. Therefore, for every ` ∈ [p], there must be a
vertex from P2 that belongs to Z to witness the r-domination of I`. When these
vertices correspond to u?j for some j, then the correspondence with a vertex
in C is direct. In the other cases, it will turn out that the vertex in question
dominates copies of at most two distinct vertices of I. In this situation, we will
be able to identify an appropriate vertex from C to map to, using the fact that
G has diameter two.

We now turn to a formal argument. To begin with, in the following ob-
servation we show that for any v` ∈ I, there is an index j` in the range
[β(`) + 1, β(` + 1)] such that the dominating set does not contain any vertex
of the form (j`, ∗, ∗, . . . , ∗), or (∗, j`, ∗, . . . , ∗).

Observation 1 For every v` ∈ I, there is an index j` such that β(`) + 1 ≤ j` ≤
β(`+ 1) and Z does not contain a vertex of the form (j`, x) or (t, j`, y) for any
x ∈ [α]r, y ∈ [α]r−1 and 1 ≤ t ≤ α.

Proof. Let Z = {z1, z2, . . . , zk}. Let Z12 ⊆ [α] be the set of all values in the first
two coordinates of vertices in Z. Recall that for v ∈ V ′′, we let v[i] ∈ [α] denote
the value of the ith co-ordinate of v. Then, we have:

Z12 := {z[1] | z ∈ Z} ∪ {z[2] | z ∈ Z}.

Notice that |Z12| ≤ 2k and the range of ` is at least 4kr, and the observation
follows by a simple application of the pigeon-hole principle. ut

Now consider the vertices in the dominating set that lie outside P2, that is,
ZR = Z ∩R. Further, fix a vertex v` ∈ I, and consider j` given by Observation 1
above. Consider the set of all vertices of G that are obtained by restricting the
first two coordinates to (j`, j`). Formally, we let T` =

⋃
a(j`, j`, a). Notice that

no vertex in Z is contained in this set. To begin with, we will account for how
many vertices of T` can be r-dominated by a vertex in ZR.

Lemma 3. The r-neighborhood of any vertex in ZR intersects T` in at most
2αr−2 vertices.

Proof. Let v ∈ ZR. We will prove the claim by identifying a suitably large set of
vertices in T` that are at distance (r+ 1) from v. A natural candidate would be
the vertices in T` which are outside P2 and at hamming distance (r+ 1) from v.
For technical reasons, we will consider this set but with the additional property
that a particular coordinate is not equal to 1. Since v is not in P2 there exists a
coordinate t ∈ {3, . . . , r + 1} such that v[t] 6= 1. Formally,

Dv` := {u | u ∈ T`, u[t] 6= 1, and u[i] 6= v[i] for all 1 ≤ i ≤ r + 1}.

We first claim that no vertex from Dv` lies in the r-neighborhood of v. Indeed,
suppose not. Let u ∈ Dv` . For the sake of contradiction, consider any path L of
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length at most r from u to v. Note that such a path does not exist in G′ (by
Lemma 1 and the choice of u and v), this path must contain an edge from
E′′ \ E′. Since every edge in E′′ \ E′ is contained in P2, the path L has a non-
trivial intersection with P2. Since, by definition, u, v /∈ P2, L begins and ends
outside P2. We let u′ be the first vertex of P2 on L and let v′ be the last vertex
of P2 on L. Note that u 6= u′ 6= v′ 6= v.

Let Lu be the subpath of L from u to u′, Lv be the subpath of L from v′

to v. Clearly, Lu and Lv are also paths in G′. Note that the length of Lu is
at least the length of a shortest path from u to u′, and the length of Lv is at
least the length of a shortest path from v′ to v. Since Lu and Lv lie entirely
outside P2, the lengths of these shortest paths are the same in G′′ and G′, and
in particular, are equal to the hamming distances between the corresponding
vertices. Let p(u) and p(v) denote, respectively, the set of positions where the
last (r − 1) coordinates of u (respectively, v) differ from 1r−1. Note that the
tth position belongs to p(u) ∩ p(v). Also, every position that is not in p(u) is
in p(v) – this is simply because u and v differ at every coordinate. Therefore,
|p(u)|+ |p(v)| ≥ (r − 1) + 1 = r.

Now, using Lemma 1, we have that the length of Lu is at least |p(u)| and the
length of Lv is at least pv. Therefore, we have that L has length at least r + 1
(since L uses at least one edge inside P2), and this is the desired contradiction.

We have that among the vertices in T` the vertices from D` are not within
the r-neighborhood of v. Note that |T`| = α(r−1), and it is easy to see that
|Dv` | = (α− 1)(r−1) − (α− 1)(r−2). Thus, the intersection of the r-neighborhood
of v with T` is at most:

X := α(r−1) − [(α− 1)(r−1) − (α− 1)(r−2)]

Consider the term α(r−1) − (α− 1)(r−1). Let λ := (α− 1).

(λ+ 1)(r−1) − λ(r−1) =

r−1∑
j=0

(
r − 1
j

)
λj

− λ(r−1)

=
r−2∑
j=0

(
r − 1
j

)
λj

≤
r−2∑
j=0

(
r − 2
j

)
λj = λ(r−2) = (α− 1)(r−2)

Now we have:

X ≤ (α− 1)(r−2) + (α− 1)(r−2) ≤ 2(α− 1)r−2 ≤ 2αr−2,

which is the desired conclusion. ut

Next, we consider the vertices in the dominating set that are in P2, but do not
one-dominate the jth` copy of vj . In other words, we are concerned with vertices
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that are non-adjacent to (j`, j`, 1). Again, we will account for how much of T`
can be r-dominated by such vertices, and this observation will be analogous to
the previous lemma.

Lemma 4. Let T` be defined as before. The r-neighborhood of any vertex in P2

which is non-adjacent to (j`, j`, 1) intersects T` in at most αr−2 vertices.

Proof. Let v ∈ P2 be a vertex that is not adjacent to (j`, j`, 1). Notice that by
definition, v[1] 6= j` and v[2] 6= j`. Consider Sv` ⊆ T` defined as the set of vertices
whose hamming distance from v is equal to (r+1). We claim that for any vertex
u ∈ Sv` , the distance between v and u in G′′ is (r+ 1). Indeed, consider any path
from v to u. Since v ∈ P2 and u /∈ P2, we let w be the last vertex on this path
that belongs to P2. If the distance from v to w is at least two, then we claim that
the length of the path is at least (r + 1). This is because w ∈ P2, implying that
the hamming distance between w and v is at least (r− 1). (Recall that v and w
have 1r−1 on the last r−1 coordinates and the hamming distance between v and
u is equal to (r+1).) Since the subpath of L from w to u lies entirely outside P2,
the distance between w and u is equal to the hamming distance. Consequently,
as long as the distance between v and w is at least two, we are done.

On the other hand, suppose the distance between v and w is one, that is,
w ∈ N(v)∩P2. Since v is not adjacent to (j`, j`, 1), it follows that the hamming
distance between w and u is in fact r, and therefore, the length of the path
between w and u is r, for the same reasons as before. The only remaining case
is when the path between v and u uses no edges in P2, but in this case, the path
is at least as long as the hamming distance between v and u, which is (r+ 1) by
choice of u. Therefore, we conclude that the length of the shortest path between
v and any vertex in Sv` is r+ 1. Since |Sv` | = (α− 1)(r−1), the computation from
the proof of Lemma 3 can be used to derive the desired conclusion. ut

Let Z2 be the set of vertices of Z ∩P2 which are non-adjacent to (j, j, 1). By
Lemma 3 and Lemma 4, ZR and Z2 can together r-dominate at most 3kαr−2

vertices. Since |T`| = αr−1 > 3kαr−2, there is a vertex in Z∩P2 which is adjacent
to (j, j, 1).

For every independent set vertex vi, let ji be the index with all the nice
properties. For each i, let (xi, yi, 1) be a vertex in P2 ∩ Z which is adjacent to
(ji, ji, 1). Let Y ⊆ (Z ∩ P2) be those vertices of Z in P2 which are adjacent to
(ji, ji, 1) for some i.

We now define a mapping f : Y → C as follows. Consider a vertex (xi, yi, 1) ∈
Y .

– If xi = yi, then, since vertices corresponding to the independent set vertices
are independent in G′′, the vertex (xi, xi, 1) corresponds to a vertex vc ∈ C
and we set f(xi, yi, 1) = vc.

– If (xi, xi, 1) and (yi, yi, 1) correspond to vertices va and vb respectively where
va, vb ∈ I and vc ∈ C is a vertex adjacent to both va and vb in G (such a
vertex always exists since G has diameter 2), then we set f(xi, yi, 1) = vc.
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– If (xi, xi, 1) corresponds to a vertex va ∈ I and (yi, yi, 1) corresponds to a
vertex vb ∈ C, then we set f(xi, yi, 1) = vc where vc ∈ C is a vertex adjacent
to va in G.

Lemma 5. The set f(Y ) is a dominating set of size at most k for the graph G.

Proof. Since Y ⊆ Z, Y has size at most k. Furthermore, the mapping f is
clearly surjective, which implies that |f(Y )| ≤ k. It remains to show that f(Y )
is a dominating set of G. Consider a vertex vi ∈ I. We have already shown that
there is a ji and a vertex u = (xi, yi, 1) ∈ Z such that u is adjacent to (ji, ji, 1).
Furthermore, observe that the vertex f(xi, yi, 1) is by definition adjacent to vi.
Therefore f(Y ) dominates vi and by the same argument, every vertex in I. Since
f(Y ) ⊆ C and it is non-empty, the vertices in C are dominated as well. This
completes the proof of the claim. ut

Thus we obtain the following theorems.

Theorem 2. For all fixed r ≥ 1, r-dominating set is W [2]-hard on graphs of
diameter (r + 1).

We note that, in all our reductions, without loss of generality, the r-dominating
set in the reduced instances is connected. Hence, these reductions also prove
W[2]-hardness of the connected variants of r-dominating set.

Theorem 3. For all fixed r ≥ 1, Connected r-dominating set is W [2]-hard
on graphs of diameter (r + 1).

5 Conclusions

These results extend to the connected variant of the problem as well. It is an
interesting open problem to investigate if there are problems that are FPT on
graphs of bounded diameter, even if they are W-hard on general graphs.
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