
The Fine Details of Fast Dynamic Programming
over Tree Decompositions

Hans L. Bodlaender1, Paul Bonsma2, and Daniel Lokshtanov3

1 Institute of Information and Computing Sciences, Utrecht University, PO Box
80.089, 3508 TB Utrecht, the Netherlands

2 Faculty of EEMCS, University of Twente, the Netherlands, PO Box 217, 7500 AE
Enschede, the Netherlands p.s.bonsma@ewi.utwente.nl (corresponding author)
3 Department of Informatics, University of Bergen, PO Box 7803, 5020 Bergen,

Norway

Abstract. We study implementation details for dynamic programming
over tree decompositions. Firstly, a fact that is overlooked in many papers
and books on this subject is that it is not clear how to test adjacency
between two vertices in time bounded by a function of k, where k is
the width of the given tree decomposition. This is necessary to obtain
linear time dynamic programming algorithms. We address this by giving
a simple O(kn) time and space preprocessing procedure that enables
adjacency testing in time O(k), where n is the number of vertices of the
graph.
Secondly, we show that a large class of NP-hard problems can be solved
in time O(qk+1n), where qk+1 is the natural size of the dynamic program-
ming tables. The key improvement is that we avoid a polynomial factor
in k. This holds for all problems that can be formulated as a Min Weight
Homomorphism problem: given a (large) graph G on n vertices and a
(small) graph H on q vertices, with integer vertex and edge weights, is
there a homomorphism from G to H with total (vertex and edge im-
age) weight at most M? This result implies e.g. O(2kn) algorithms for
Max Independent Set and Max Cut, and a O(qk+1n) algorithm for q-
Colorability. The table building techniques we develop are also useful for
many other problems.

1 Introduction

Dynamic programming over tree decompositions has become an important algo-
rithmic technique, that is used as a central subroutine in many parameterized,
exact and approximation algorithms for NP-hard problems. The key property
that is often used is that for any constant k, many NP-hard graph problems can
be solved in linear time, if a tree decomposition of the graph of width at most k
is provided. Examples of early results of this kind are [3, 4, 7, 9, 19]. Good intro-
ductions can be found in [15, 6, 8]. Recent breakthrough results appear in [16,
10, 5].

In this paper, we study implementation details of dynamic programming over
tree decompositions. Throughout, denote by n the number of vertices of the in-
put graph, and by k the width of the given tree decomposition. (k is viewed as

a parameter, not a constant.) Firstly, a fact that has been overlooked in many
papers and books on this subject, is that it is not clear how to test adjacency
between two vertices in time bounded by any function of k. This is necessary
to obtain linear time algorithms. Note that we cannot simply assume that an
adjacency matrix is given: graphs of bounded treewidth are sparse (they have
fewer than kn edges), and therefore an n2 bit adjacency matrix cannot be con-
structed in linear time from a typical O(kn log n) bit input encoding, e.g. based
on adjacency lists. (Note that for all cases where this method is relevant, k is
much smaller than n.) We remark that if using quadratic space is allowed, then
there is an easy linear time preprocessing procedure that enables constant time
adjacency testing, using a lazy (i.e. uninitialized) adjacency matrix [1, Exer-
cise 2.12]. However, there seems to be no straightforward way of obtaining linear
time and space dynamic programming algorithm. In Section 3 we discuss these
claims in more detail, and also present our first result: a simple O(kn) time and
space preprocessing procedure that, given a graph on n vertices and a tree de-
composition on O(n) nodes of width k, enables adjacency testing in time O(k).
This is not very deep, but also not obvious. Since it solves a gap in the existing
literature, we feel it should be published.

There are more examples of seemingly trivial problems on sparse graphs
where the fact that adjacency testing cannot be done in constant time is sur-
prisingly problematic. For instance, it is well-known that a graph is a series
parallel graph if and only if it can be reduced to a K2 by iteratively suppress-
ing vertices of degree two, and replacing multi-edges by single edges. Assuming
that adjacency testing can be done in constant time, this characterization would
easily yield a linear time algorithm for recognizing series parallel graphs. Never-
theless, without this assumption, a significantly more sophisticated algorithm is
needed; see [18, Section 3.3].

Secondly, we consider the dependency of the complexity on the parameter
k. For many NP-hard problems, O(poly(k)ckn) time algorithms are known, for
some constant c (poly(k) denotes a polynomial factor in k). For problems where
solutions can be characterized using local properties, this has been known for a
long time, see e.g. [17]. In recent breakthrough results, such a complexity has
also been obtained for problems with global connectivity constraints [5, 10]. How-
ever, we study the simpler local problems here. For various of these problems,
O(poly(k)ckn) algorithms are known, where ck is the natural size of the dy-
namic programming tables. For various problems such as Max Independent Set,
Max Cut and q-Colorability (problems without complex join operations), such a
complexity is relatively easy to prove (see e.g. [6, 15]). For other problems, such
as in particular Min Dominating Set, this is significantly harder, but a (3kk2n)
complexity has been achieved using the fast subset convolution technique [16],
improving on the previous O(4kn) algorithm [2].

Assuming the Strong Exponential Time Hypothesis [12], it has been shown
in [14] that the constant c in the exponential factor ck cannot be improved for the
aforementioned problems. Therefore, we study the question whether the poly(k)
factor can be removed. For problems addressed by the fast subset convolution

2

technique, this seems impossible. However, for a large class of other problems
this can be done: in Section 4 we consider the Minimum Weight Homomorphism
(MWH) problem: given a graph G on n vertices, and a graph H on q vertices
with integer vertex and edge weights, find a minimum weight homomorphism
from G to H, or decide that none exists. This weight is the sum of the vertex
and edge image weights. The graphs G and H may be directed and may have
loops. MWH generalizes well-studied problems such as Max Independent Set,
Max Cut and q-Colorability, and many others. We give a O(qk+1n) dynamic
programming algorithm for MWH in Section 5.

Removing the poly(k) factor requires precise treatment of various dynamic
programming details that can usually be ignored, such as bag and table ordering,
fast table building, and enabling constant time adjacency checking. One of the
few papers that also discusses some of these in detail is the paper by Alber
and Niedermeier [2], presenting an O(4kn) algorithm for Min Dominating Set
(see also [15]). To be precise, only the join operation requires time O(4k) in [2].
For the case of path decompositions, where no join operation is required, they
give an O(k3kn) algorithm. To illustrate that our techniques can be applied
to a wider variety of problems, in the full version of this paper we will show
that the O(k) factor can be removed in this result. More precisely, using our
techniques an O(3kn) algorithm for Min Dominating Set can be constructed,
when a path decomposition of width k is given. In [6], another algorithm without
poly(k) factor is presented: a O(2kn) time algorithm for Max Independent Set is
sketched, although various details are omitted. This inspired the current study.

We remark that from a purely theoretical asymptotic analysis viewpoint,
removing poly(k) factors seems irrelevant. Indeed, abusing the O-notation, for
any ε > 0 one may for instance write O(k23kn) ⊆ O((3 + ε)kn). Nevertheless,
we note that e.g. k23k < 4k only holds when k ≥ 22. Since at this point,
dynamic programming tables cannot be stored in a normal computer memory
anymore, we conclude that the previous O(4kn) MDS algorithm by Alber and
Niedermeier [2] is still the most efficient one in practice! (Compared to [16].)
Similarly, the complexity improvements we present are important in practice.
We start in Section 2 with basic definitions. Proofs omitted for space constraints
are marked with a star, and can be found in the appendix.

2 Preliminaries

For basic graph theory notations, see [11]. By uv and (u, v) we denote undi-
rected and directed edges, respectively. By N(u), N+(u) and N−(u) we denote
the (undirected) neighborhood, out-neighborhood and in-neighborhood of u, re-
spectively.

Definition 1 A tree decomposition of a (di)graph G is a 2-tuple (T,X) where
T is a tree and X = {Xv : v ∈ V (T)} is a set of subsets Xv of V (G) such that
the following properties hold:

1. For every xy ∈ E(G) (resp. (x, y) ∈ E(G)), there is a v ∈ V (T) with
{x, y} ⊆ Xv.

3

2. For every x ∈ V (G), the subgraph of T induced by X−1(x) = {v ∈ V (T) :
x ∈ Xv} is non-empty and connected.

To distinguish between vertices of G and T , the latter are called nodes. For
v ∈ V (T), the set Xv is also called the bag of v. The width of a tree decomposition
is maxv∈V (T) |Xv| − 1. The treewidth tw(G) of a graph G is the minimum width
over all tree decompositions of G. A rooted tree decomposition (T,X), r of G is
obtained by additionally choosing a root r ∈ V (T), which defines a child/parent
relation between every pair of adjacent nodes, and ancestors/descendants in the
usual way. A node without children is called a leaf.

Definition 2 A rooted tree decomposition (T,X), r of G is nice if every node
u ∈ V (T) is of one of the following types:

Leaf: u has no children.
Forget: u has one child v with Xu ⊂ Xv and |Xu| = |Xv| − 1.
Introduce: u has one child v with Xv ⊂ Xu and |Xu| = |Xv|+ 1.
Join: u has two children v and w with Xu = Xv = Xw.

The tree decomposition is called very nice if in addition, for every leaf node u it
holds that |Xu| = 1.

If u is an introduce node with child v and Xu \ Xv = {x}, then we say x is
introduced in u. The following fact is well-known and easy to prove: if G is
a graph on n vertices with tree width k, then G has at most kn edges. For
dynamic programming (DP) over tree decompositions, the following definitions
are important. Let (T,X), r be a rooted tree decomposition of G. For a node
u ∈ V (T), we denoteX(u) = ∪vXv, where the union is taken over all descendants
v of u, including u itself. The subgraph G(u) is then defined as G(u) = G[X(u)].
DP algorithms rely on the following two key properties, which follow easily from
Definition 1: firstly, G(r) = G. Secondly, for every u ∈ V (T), the only vertices
of G(u) that (in G) may be incident with edges that are not in G(u) are vertices
in Xu.

Computation model and Assumptions We use the standard computation model
(i.e. the RAM model, see e.g. [1]). The memory consists of an unbounded number
of registers ri, i ∈ N, which can hold integer values. In constant time, we can
read or write any ri, execute an elementary program control instruction, or carry
out a basic arithmetic operation. As basic arithmetic operations, we only require
addition, subtraction, multiplication, and testing whether an integer is positive.

For convenience, we assume that for all graphs G we consider, V (G) =
{1, . . . , n}. The following standard (but usually implicit) assumption is impor-
tant when discussing linear time (space) algorithms: if for an algorithmic result,
no input encoding is specified, the result should hold for all “reasonable input en-
codings”. For the case of a graph G with n vertices and m edges, and tw(G) = k,
this implies in particular that for designing linear time algorithms, we cannot
assume that an adjacency matrix is given. This is because an n2 bit adjacency

4

matrix cannot be constructed in linear time (which is O(m) ⊆ O(kn)) from ad-
jacency lists, or edge lists. On the other hand, an adjacency list representation
of G can be constructed in linear time from all other reasonable representations,
so we may assume that an adjacency list encoding of G is given. Similarly, if a
tree decomposition (T,X) of G is given, we should assume that the bags Xu are
given as unordered lists of vertices of G, and that no additional information is
available (such as a list of edges of G[Xu]).

3 Enabling Fast Adjacency Testing

We first discuss the useful and simple quadratic space solution using lazy adja-
cency matrices. Note that we may not assume that all registers are initialized
to zero at the beginning of the computation, so using an n2 bit adjacency ma-
trix requires (non-linear) initialization time Θ(n2). However this can be avoided
using the following known trick (see e.g. [1, Exercise 2.12]): Store a list of edge
objects in a consecutive memory block of size O(m) ⊆ O(kn). Reserve n2 reg-
isters for the adjacency matrix, called ai,j for i, j ∈ V (G), but do not initialize
these. Instead, for every edge e = {i, j}, initialize ai,j and aj,i with a pointer to
the register containing the edge object e. Observe that this now allows constant
time adjacency checking.

Nevertheless, if we insist on using linear space, there is no obvious reason why
known dynamic programming algorithms can be implemented in linear time. For
instance, graphs of treewidth k may contain vertices for which the degree is not
bounded by any function of k. Furthermore, it may be that in any low width nice
tree decomposition, such high degree vertices are introduced many times. So if
for every introduce node, one considers the entire neighbor list of the introduced
vertex, this does not yield a linear time algorithm.

Let T be a tree with root r. For any set S ⊆ V (T), define a node v ∈ S to
be a top node if the unique (r, v)-path contains no vertices from S other than v.
We will need the following basic properties of top nodes.

Proposition 3 Let T, r be a rooted tree, and S ⊆ V (T) with T [S] connected.

(i) S contains exactly one top node; denote this node by >(S).

(ii) Let u ∈ S with parent v. Then u = >(S) if and only if v 6∈ S.
(iii) For any S′ ⊆ V (T) with T [S′] connected and S ∩ S′ 6= ∅: >(S′) ∈ S or

>(S) ∈ S′.

Proof: (i): Suppose to the contrary that S contains two top nodes u and v. Let
Pu and Pv be the unique (r, u)-path and (r, v)-path in T , respectively. Let w be
the last vertex on Pu that is also in Pv (i.e. the lowest common ancestor of u
and v). Combining the subpath of Pu from u to w and the subpath of Pv from
w to v yields a path Puv from u to v with an internal vertex w, with w 6∈ S. But
then Puv is the unique path from u to v in T , so deleting w separates u from v,
contradicting that T [S] is connected.

5

(ii): Suppose to the contrary that the unique (r, u)-path contains another
vertex w with w ∈ S. Then the unique path from u to w contains v 6∈ S,
contradicting that S is connected.

(iii): Consider a top node u of S ∩S′. Then the parent v of u is not in S ∩S′.
If v 6∈ S, then by (ii), u = >(S). Analogously, if v 6∈ S′, then v = >(S′). �

Theorem 4 Given a rooted tree decomposition of width k on O(n) nodes, of
a (di)graph G with V (G) = {1, . . . , n}, there is an O(kn) time preprocessing
procedure that enables testing whether x ∈ N(y) (resp. x ∈ N+(y) or x ∈ N−(y))
in time O(k), for all x, y ∈ V (G).

Proof: Let (T,X), r be the given tree decomposition of width k, of a graph G
on n vertices. For x ∈ V (G), denote >(x) = >(X−1(x)), i.e. the top node of all
nodes that contain x in their bag. We now argue that in time O(kn), >(x) can
be computed for every x ∈ V (G). For every node u ∈ V (T): if u has a parent
v, then mark all x ∈ Xv. Next, set >(x) = u for all unmarked x ∈ Xu. This
is correct by Proposition 3(ii). Finally, reset the markings for all x ∈ Xv. For
a single node, this procedure takes time O(k). During this process, we can also
compute for every node u ∈ V (T) a list L(u) of vertices x with >(x) = u.

For x ∈ V (G), define Ntop(x) = N(x) ∩ X>(x). We argue that in time

O(kn), Ntop(x) can be computed for every x ∈ V (G). For every node u, first

mark all vertices in Xu. Next, for every vertex x ∈ L(u), construct Ntop(x) by

considering all neighbors and adding those that are marked to Ntop(x). Finally,
reset the markings for all x ∈ Xu. For a single node u this procedure takes
time O(k) + O(

∑
x∈L(u) d(x)). Since G has at most O(kn) edges, This yields a

complexity of O(kn).
We argue that for any two vertices x, y ∈ V (G), xy ∈ E(G) if and only if

x ∈ Ntop(y) or y ∈ Ntop(x). Suppose xy ∈ E(G). By Definition 1, both X−1(x)

and X−1(y) are connected, and X−1(x) ∩X−1(y) 6= ∅. So by Proposition 3(iii),
>(x) ∈ X−1(y) or >(y) ∈ X−1(x) holds. Thus y ∈ Ntop(x) or x ∈ Ntop(y).

Finally, since every bag contains at most k + 1 vertices, |Ntop(x)| ≤ k + 1

holds for all x ∈ V (G). So testing whether x ∈ Ntop(y) or y ∈ Ntop(x) can be

done in time O(k).
I simple modification of the above proof yields the statement for the case

of digraphs. (The key statement then is that (x, y) ∈ E(G) if and only if x ∈
N−top(y) or y ∈ N+

top(x).) �

4 Dynamic programming rules for Min-Weight
Homomorphism

Let G and H be digraphs, possibly with loops. A homomorphism from G to H is a
function f : V (G)→ V (H) such that for all (u, v) ∈ E(G), (f(u), f(v)) ∈ E(H).

6

Let a : V (H) → N and b : E(H) → N be weight functions. The weight of a
homomorphism f from G to H is then

w(f) =
∑

v∈V (G)

a(f(v)) +
∑

(u,v)∈E(G)

b(f(u), f(v)).

The problem Min-Weight Homomorphism (MWH) is defined as follows: given
digraphs G and H, with vertex and edge weights a and b, decide whether a
homomorphism from G to H exists, and if so, compute on of minimum weight.
Note that the analog problem where both G and H are undirected is a special
case, since undirected edges can be replaced by a pair of oppositely directed
edges. This problem generalizes many well-studied problems, such as:

– Max Independent Set (Min Vertex Cover): choose H to be an undirected
graph on two vertices u and v, with an edge between them and a loop on u.
The two edges and v have weight zero, u has weight one.

– q-Colorability: choose H to be a complete undirected graph on q vertices.
The weights are irrelevant, since this is a decision problem.

– Max-Cut (Min Edge Bipartization): choose H to be an undirected graph on
two vertices, with an edge between them and loops on both. The loops both
receive weight one, and the other edge and both vertices receive weight zero.

For notational convenience, we modify H as follows: for every u, v ∈ V (H)
(including u = v), if (u, v) 6∈ E(H) then add an edge (u, v) with weight ∞. So
the original graph admits a homomorphism if and only if the new graph admits
a homomorphism of finite weight. From now on, assume that (u, v) ∈ E(H) for
all u, v, possibly with infinite weight.

Let (T,X), r be a rooted tree decomposition of G. For a node u ∈ V (T), our
DP computes values valu(f) for every f : Xu → V (H), defined as follows:

valu(f) = min{w(h) | h : X(u)→ V (H) s.t. h|Xu = f}.

So val(f) is the minimum weight of a homomorphism from G(u) to H that
coincides with f . Then since G(r) = G, the minimum weight of a homomorphism
from G to H is computed by taking the minimum value of valr(f) over all
f : Xr → V (H). The values valu(f) can be computed as follows, in case (T,X), r
is a nice tree decomposition:

Lemma 5 (*) Let (T,X), r be a nice tree decomposition, and let u ∈ V (T).

Leaf: If u is a leaf node, then valu(f) = w(f).
Forget: If u is a forget node with child v, then valu(f) = min{valv(h) | h :

Xv → V (H) s.t. h|Xu
= f}.

Introduce: If u is an introduce node with child v and Xu \Xv = {x}, then4

valu(f) = valv(f |Xv
) + a(f(x))+

4 Note that summing over y ∈ N+(x) ∩Xu and y ∈ N−(x) ∩Xv is done to guarantee
that a possible loop on x is only considered once.

7

∑
y∈N+(x)∩Xu

b(f(x), f(y)) +
∑

y∈N−(x)∩Xv

b(f(y), f(x)).

Join: If u is a join node with children v and x, then valu(f) = valv(f)+valx(f)−
w(f).

5 Implementation

We now show how the above rules can be implemented to yield a total DP
complexity of O(qk+1n). First note that we use nice tree decompositions, and
not very nice tree decompositions, i.e. we do not require for leaf nodes u that
|Xu| = 1. This has the downside that the computation for leaf nodes becomes
more complicated. However, the problem with very nice tree decompositions is
that they may have more than O(n) nodes (recall that we do not view k as a
constant!): Consider the graph Gn with vertex set {x1, . . . , xn} ∪ {y1, . . . , yn},
and edges xixj for all i, j, and xiyj for all i 6= j. This graph has treewidth n−1:
it has a tree decomposition (T,X) where T is a K1,n, where the central node u
has Xu = {x1, . . . , xn}, and every yi is contained in the bag for exactly one leaf.
All bags have size n. It can be verified that any very nice tree decomposition
of this graph, of width k = tw(Gn) = n − 1, has Ω(kn) nodes. This makes
it hard to prove the desired complexity, so we use nice tree decompositions
instead, for which it is well-known that they have at most 4k nodes (see e.g. [13,
Lemma 13.1.2]). Algorithmically, using the fact that for any uv ∈ E(T), Xu \Xv

and Xv \Xu can be computed in time O(k) (see Section 3), one can prove the
following:

Lemma 6 (*) Let G be a graph on n vertices. Given a tree decomposition (T,X)
of G of width k, on O(n) nodes, in time O(kn), a nice tree decomposition (T ′, X ′)
of G of width k can be constructed, with at most 4n nodes.

(We remark that in the end, this distinction is not so important; our compu-
tation method for leaf nodes can also be viewed as a way of analyzing very nice
tree decompositions that have a specific form, which can always be guaranteed.)
So now it suffices to prove that for any single node u, all values valu(f) can be
computed in time O(qk+1). Since there may be qk+1 functions f : Xu → V (H),
this requires that every value can be computed in (amortized) constant time.
In the case of a join node (which is the most challenging to implement), the
value valv(f)+valw(f)−w(f |Xu

) should be be computed in constant time. This
provides two challenges: computing w(f |Xu

) in constant time for every f , and
looking up the matching values valv(f) and valw(f) in constant time. The latter
challenge is addressed by storing the values valu(f) and valv(f) for all f in two
tables (for u and for v), which have to be ordered the same way. We first discuss
details related to this ordering.

Ordered bags and tables W.l.o.g. we assume throughout that V (H) = Q =
{0, . . . , q − 1}. Let u ∈ V (H) and Xu = {x1, . . . , xp}. Functions f : Xu → Q

8

will be represented by a vector (c1, . . . , cp) here ci = f(xi). This requires a
complete order on the bag vertices. We assume that the vertices of Xu are or-
dered (x1, . . . , xp) such that for all i < j, xi < xj holds. (Recall that V (G) =
{1, . . . , n}.) Ordered bags are denoted as tuples instead of sets. The values
valu(f) are then stored in a table (array) Tu of length qp, according to the
order given by index(f) =

∑p
i=1 q

i−1ci. So Tu[index(f)] = valu(f). (Note that
index(f) is a bijection from all possible functions f to {0, . . . , qp − 1}.) If this
ordering method is used, we say that Tu is a table representing all functions
f : Xu → Q, ordered according to (x1, . . . , xp). For a join node u with children
v and w, we now have for every i that Tu[i] = Tv[i] + Tw[i] − w(f |Xu) (where
i = index(f)), so we can easily find matching values in the tables of v and w.
The desired order on the vertices of each bag can be guaranteed using a simple
preprocessing step: Using any O(k log k) time sorting algorithm, this can be done
with in time O(nk log k) for all nodes.

However, this introduces a small problem for forget and introduce nodes:
e.g. for an introduce node u with child v, it is convenient to assume that Xu =
(x1, . . . , xp+1) and Xv = (x1, . . . , xp), i.e. the newly introduced vertex is the last
one. This means that the tables may need to be reordered. Since this reordering
corresponds to ‘swapping only one coordinate’, this can be done in time O(qp),
as shown in the next lemma.

Lemma 7 Let X = {x1, . . . , xp}, and Q = {0, . . . , q − 1}. Let T and T ′ be
tables representing all functions f : X → Q, ordered according to (x1, . . . , xp)
and (x1, . . . , xi−1, xi+1, . . . , xp, xi), respectively. Then T and T ′ can be computed
from each other in time O(qp).

Proof: For f : X → Q with f(xi) = ci for all i, recall that index(f) =∑p
j=1 q

j−1cj . Define index′(f) =
∑i−1
j=1 q

j−1cj +
∑p
j=i+1 q

j−2cj + qp−1ci. This

way, for every f it holds that T [index(f)] = T ′[index′(f)].

Define x(f) =
∑i−1
j=1 q

j−1cj , y(f) =
∑p−i
j=1 q

j−1cj+i and z(f) = ci. Then we

can alternatively write index(f) = x(f) + qiy(f) + qi−1z(f) and index′(f) =
x(f) + qi−1y(f) + qp−1z(f). In addition, observe that for every combination of
values x ∈ {0, . . . , qi−1− 1}, y ∈ {0, . . . , qp−i− 1} and z ∈ {0, . . . , q− 1} there is
a function f with x(f) = x, y(f) = y and z(f) = z. Therefore, the tables T and
T ′ can be computed from each other by looping over all possible combinations of
values x, y and z, and using the equality T [x+qiy+qi−1z] = T ′[x+qi−1y+qp−1z].
The values qi, qi−1 and qp−1 can be computed beforehand, which ensures that
the computation for a single combination of x, y and z requires only a constant
number of elementary arithmetic operations (addition and multiplication). Since
there are exactly qp combinations of x, y and z, this proves the statement. �

Table computation We now show for every type of node u how the table Tu can
be computed efficiently.

Lemma 8 Let u be a forget node with child v, for which the table Tv is known.
Let p = |Xv|. Then in time O(qp), the table Tu can be computed.

9

Proof: First suppose that Xu = (x1, . . . , xp−1) and Xv = (x1, . . . , xp), i.e. the
last vertex in the (ordered) bag Xv is forgotten. Then we compute the values
Tu[i] as follows. First, initialize Tu[i] = ∞ for all i ∈ {0, . . . , qp−1 − 1}. Next,
for all combinations of i ∈ {0, . . . , q − 1} and j ∈ {0, . . . , qp−1 − 1}, reassign
Tu[j] := Tv[j + iqp−1], if the latter value is smaller than the current value of
Tu[j]. Because of the way the tables are ordered, and because Xv \Xu = {xp},
this correctly computes Tu[index(f)] = minh Tv[index(h)] over all h : Xv → Q
with h|Xu = f . This computation takes constant time for one entry of Tv (using
the precomputed value qp−1), so time O(qp) in total.

In the case that Xv = (x1, . . . , xp) and Xu = (x1, . . . , xi−1, xi+1, . . . , xp) for
i < p, we can first translate the table Tv into a table T ′ ordered according to
(x1, . . . , xi−1, xi+1, . . . , xp, xi), in time O(qp) (Lemma 7), and then apply the
above procedure. �

Next, we show how to efficiently compute the table Tu for an introduce
node u. Recall that if u is an introduce node with child v and Xu \Xv = {x},
then valu(f) can be computed by adding to valv(f |Xv) a correction term of
a(f(x))+

∑
y∈N+(x)∩Xu

b(f(x), f(y))+
∑
y∈N−(x)∩Xv

b(f(y), f(x)). We will show

how to compute this correction term in (amortized) constant time. This involves
looping over all y ∈ Xu, and deciding whether y ∈ N+(x) or y ∈ N−(x),
respectively. This needs to be done in constant time, instead of time O(k), as
given by the method from Section 3. To this end, we use an initial preprocessing
step that computes a local adjacency matrix Au for every node u. To define Au,
we use the bag order introduced above again. Let Xu = (x1, . . . , xp). Then for
i, j ∈ {1, . . . , p}, Aui,j = 1 if and only if (xi, xj) ∈ E(G), and Aui,j = 0 otherwise.

Proposition 9 (*) Let (T,X) be a tree decomposition on O(n) nodes of width
k, of a graph G on n vertices, with ordered bags. In time O(k2n), local adjacency
matrices can be computed for every node.

Furthermore, for H we store a vertex weight vector and edge weight matrix
in the memory, to ensure that for any x, y ∈ V (H), the values a(x) and b(x, y)
can be retrieved in constant time. (Recall that V (H) = {0, . . . , q − 1}). This
introduces at most a negligible term O(q2) to the complexity.

Lemma 10 Let u be an introduce node with child v, for which the table Tv is
known. Let p = |Xu|. Then in time O(qp), the table Tu can be computed.

Proof: We assume that Xu = (x1, . . . , xp) and Xv = (x1, . . . , xp−1), so xp is the
vertex that is introduced to the bag. This assumption is justified after using an
O(qp−1) preprocessing step, similar to the case of forget nodes (see above).

For α ∈ Q and j ∈ {0, . . . , p− 1}, define Xj
u = {x1, . . . , xj , xp} (in particular

X0
u = {xp}) and

corαj (f) = a(α) +
∑

y∈N+(x)∩Xj
u

b(α, f(y)) +
∑

y∈N−(x)∩Xj
u\{x}

b(f(y), α),

10

for any function f : Xj
u → Q with f(xp) = α. Define Cαj to be a table containing

these values, ordered according to (x1, . . . , xj). (More precisely: Cαj [index(f)] =

corαj (f), where index(f) =
∑j
i=1 q

i−1f(xi). The table Cαj has length qj .)

The table Tu can then be computed using the equality Tu[i + qp−1α] =
Tv[i] + Cαp−1[i], for all i ∈ {0, . . . , qp−1 − 1} and α ∈ {0, . . . , q − 1}. So it now
suffices to show how, for every α ∈ Q, the table Cαp−1 can be computed in time
O(qp−1). These tables can be computed as follows: Cα0 has a single entry, with
value a(α) if there is no loop on xp, and value a(α) + b(α, α) otherwise. For
every j ≥ 1, Cαj can be computed from Cαj−1 as follows. Loop over all values
β := f(xj) ∈ {0, . . . , q− 1}. For every such β, the next segment of Cαj (of length

qj−1) consists of a copy of the table Cαj−1, with a term val− + val+ added to
each entry, where

– val− = b(β, α) if xj ∈ N−(xp), and val− = 0 otherwise, and
– val+ = b(α, β) if xj ∈ N+(xp), and val+ = 0 otherwise.

We use the entries Auj,p and Aup,j of the local adjacency matrix Au to decide
in constant time whether xj ∈ N−(xp) or xj ∈ N+(xp). Recall that using a
precomputed edge weight matrix, the value b(β, α) can be retrieved in constant
time. Since every entry computation now takes constant time, Cαj can be com-

puted from Cαj−1 this way in time O(qj), for every j ∈ {0, . . . , p − 1}. In total,

this gives a complexity of q + q2 + . . .+ qp−1 = qp−1
q−1 − 1 ∈ O(qp−1). �

Lemma 11 Let u be a leaf, with p = |Xu|. Then in time O(qp), the table Tu
can be computed.

Proof: Let Xu = (x1, . . . , xp). Essentially, computing Tu is done by turning the
nice tree decomposition into a very nice tree decomposition: the leaf u is replaced
by a path up, up−1, . . . , u1 (rooted at up), with Xui = (x1, . . . , xi). In particular,
Xup = Xu.

The table for node u1 can be trivially computed in time O(q). For i ≥ 2, ui
is an introduce node, and by Lemma 10, the table Tui

can be computed in time

O(qi). Since q + q2 + . . .+ qp = qp+1−1
q−1 − 1 ∈ O(qp), this shows that computing

the table Tup = Tu can be done in time O(qp). �

Lemma 12 Let u be a join node, with p = |Xu|, and children v and w for
which the tables Tv and Tw are known. Then in time O(qp), the table Tu can be
computed.

Proof: Recall that valu(f) = valv(f) + valw(f)−w(f) holds for every f : Xu →
Q. Because the tables for Tv and Tw are ordered the same way, the only remaining
challenge lies in computing the correction terms w(f). Essentially, this is done
by introducing a new leaf child ` for u, with X` = Xu (ordered the same way
as Xu). Then we can write valu(f) = valv(f) + valw(f)− val`(f) for every f . In
other words, Tu[i] = Tv[i] + Tw[i] − T`[i] for every index i. By Lemma 11, the
table T` can be computed in time O(qp), which concludes the proof. �

Now we can prove our main result.

11

Theorem 13 Let G be a digraph on n vertices, for which a tree decomposition
(T,X) on O(n) nodes is given, of width k. Let H be a digraph with |V (H)| =
q ≥ 2, and nonnegative integer vertex and edge weights. Then in time O(nqk+1),
it can be decided whether a homomorphism f : V (G)→ V (H) exists, and if so,
one of minimum weight can be computed.

Proof: The algorithm can be summarized as follows. First, in time O(kn) we
transform the given tree decomposition into a nice tree decomposition of width
k, on O(n) nodes (Lemma 6). Next, we order the bags for every node, in time
O(k log k n). Then we use the O(kn) time preprocessing procedure from The-
orem 4 to ensure that (directed) adjacency testing can be done in time O(k).
Finally, we use this to compute local adjacency matrices for every node, as de-
fined above, in total time O(k2n) (Proposition 9). This preprocessing phase has
a total complexity of O(k2n). For H, we precompute a vertex weight vector, edge
weight matrix and power vector, to ensure that for every x, y ∈ V (H), the values
a(x) and b(x, y) can be retrieved in constant time, and for every i ∈ {0, . . . , k},
the value qi can be retrieved in constant time. This adds only a negligible term
to the total complexity. Define b(x, y) =∞ if (x, y) 6∈ E(H).

At this point, the tree decomposition is in the desired form, and auxiliary data
structures have been built, so that Lemmas 8–12 can be applied. These lemmas
show that in time O(qp), the tables for a node u with |Xu| = p can be computed.
Since p ≤ k+1, and there are at most O(n) nodes, this yields a total complexity
of O(qk+1n), to compute the table Tr for the root node r ∈ V (T). Recall that by
definition of the tables, and because G(r) = G, there exists a homomorphism f
from G to H of weight at most m if and only if the table Tr contains a value of at
most m. The total complexity of this algorithm becomes O(k2n) +O(qk+1n) ⊆
O(qk+1n). Constructing a minimum weight homomorphism f can subsequently
be done in a standard way: mark a minimum entry in the table for Tr, and use
this to mark the corresponding entries in all other nodes, in a top down way
(for forget nodes, see the proof of Lemma 8). Then for every vertex x ∈ V (G),
f(x) can be computed by considering the marked entry in >(x). This can be
implemented such that the complexity does not increase. �

6 Discussion

The fast DP table building techniques we use here can be used for many other DP
problems. For instance, in the full version of this paper we will use them to show
that Min Dominating Set can be solved in time O(3kn), if a path decomposition of
width k is given. (For join nodes, no O(3k) implementation seems possible.) This
is somewhat surprising since values in introduce nodes tables are the minimum
of multiple values in the child table. These can nevertheless be computed in
constant time on average, by computing a table of correction pointers, similar
to the table of correction terms in Lemma 10.

12

References

1. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis
of computer algorithms. Addison-Wesley, Reading, 4:1–2, 1974.

2. Jochen Alber and Rolf Niedermeier. Improved tree decomposition based algorithms
for domination-like problems. In LATIN 2002: Theoretical Informatics, pages 613–
627. Springer, 2002.

3. Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard
problems restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24,
1989.

4. Hans L. Bodlaender. Dynamic programming on graphs with bounded treewidth.
In Proceedings 15th International Colloquium on Automata, Languages and Pro-
gramming, volume 317 of LNCS, pages 105–118. Springer, 1988.

5. Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof.
Solving weighted and counting variants of connectivity problems parameter-
ized by treewidth deterministically in single exponential time. arXiv preprint
arXiv:1211.1505, 2012. To appear in Proceedings ICALP 2013.

6. Hans L. Bodlaender and Arie M.C.A. Koster. Combinatorial optimization on
graphs of bounded treewidth. The Computer Journal, 51(3):255–269, 2008.

7. Richard B. Borie. Recursively Constructed Graph Families. PhD thesis, School of
Information and Computer Science, Georgia Institute of Technology, 1988.

8. Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Solving problems on
recursively constructed graphs. ACM Computing Surveys, 41(4), 2008.

9. Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of
finite graphs. Information and computation, 85(1):12–75, 1990.

10. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Johan M.M. van Rooij, and
Jakub O. Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Foundations of Computer Science (FOCS), 2011
IEEE 52nd Annual Symposium on, pages 150–159. IEEE, 2011.

11. Reinhard Diestel. Graph theory. Springer-Verlag, 2010. 4th edition.
12. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal

of Computer and System Sciences, 62(2):367–375, 2001.
13. Ton Kloks. Treewidth: computations and approximations, volume 842. Springer-

Verlag New York Incorporated, 1994.
14. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs

of bounded treewidth are probably optimal. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 777–789. SIAM,
2011.

15. Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford
Lecture Series in Mathematics and its Applications. Oxford University Press, Ox-
ford, 2006.

16. Johan M.M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic
programming on tree decompositions using generalised fast subset convolution. In
Algorithms-ESA 2009, pages 566–577. Springer, 2009.

17. Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning
problems on partial k-trees. SIAM Journal on Discrete Mathematics, 10(4):529–
550, 1997.

18. Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series
parallel digraphs. In Proceedings of the eleventh annual ACM symposium on Theory
of computing, pages 1–12. ACM, 1979.

13

19. Thomas V. Wimer. Linear Algorithms on k-Terminal Graphs. PhD thesis, Dept.
of Computer Science, Clemson University, 1987.

A Omitted proofs

Proof of Lemma 5: If u is a leaf node, then G(u) = G[Xu], so valu(f) = w(f)
follows immediately from the definitions.

Suppose u is a forget node with child v, so X(u) = X(v). Consider the
function g : X(u) → V (H) with g|Xu = f that minimizes w(g), so valu(f) =
w(g). Let h = g|Xv

. Then h|Xu
= f and valv(h) ≤ w(g). This yields

valu(f) = w(g) ≥ valv(h) ≥ min{valv(h
′) | h′ : Xv → V (H) s.t. h′|Xu

= f}.

Similarly, choose h : Xv → V (H) to be the function with h|Xu
= f that mini-

mizes valv(h). Let g : X(v) → V (H) with g|Xv
= h and w(g) = valv(h). Then

g|Xu
= f , so

min{valv(h
′) | h′ : Xv → V (H) s.t. h′|Xu = f} = valv(h) = w(g) ≥ valu(f).

This proves the equality.

Suppose u is an introduce node with child v, and Xu \ Xv = {x}. Let
g : X(u) → V (H) be the function with g|Xu = f that minimizes w(g), so
valu(f) = w(g). By Property (ii) of Definition 1, X(v) = X(u) \ {x} (x can-
not be contained again in bags for descendants of v). Furthermore, all edges
(x, y) ∈ E(G) or (y, x) ∈ E(G) with y ∈ X(v) satisfy y ∈ Xv: otherwise, Prop-
erty (ii) of Definition 1 shows that y is only contained in bags for descendants
of v, whereas x is not contained in any such bag, which contradicts Property (i)
of Definition 1. We conclude that the only edges in G(u) that are not in G(v)
are of the form (x, y) or (y, x) with y ∈ Xu. This shows that

valu(f) = w(g) = w(g|X(v)) + a(f(x))+∑
y∈N+(x)∩Xu

b(f(x), f(y)) +
∑

y∈N−(x)∩Xv

b(f(y), f(x)).

(Note that we have to be careful not to count a possible loop (x, x) twice, since
then x ∈ N+(x) and x ∈ N−(x).) Since w(g|X(v)) = valv(h) with h = f |Xv

, this
proves the statement.

Let u be a join node with children v and x. By Property (ii) of Definition 1,
X(v) ∩ X(x) = Xu. In addition, similar to before, Property (i) shows that
the edge set of G(u) is the union of the edge sets of G(v) and G(x). So if
g : X(u)→ V (H) is the function with g|Xu

= f that minimizes w(g), then

valu(f) = w(g) = w(g|X(v)) + w(g|X(x))− w(g|Xu
) = valv(f) + valx(f)− w(f).

�

14

Proof sketch of Lemma 6: Choose an arbitrary root r ∈ V (T) and root the tree
in time O(n) (i.e. construct lists of children for each node). For every edge uv ∈
E(T), compute Xu\Xv and Xv\Xu in time O(k) (See the proof of Theorem 4). If
both are empty (i.e. Xu = Xv) then contract uv (implemented properly, this can
be done in constant time). Otherwise, subdivide uv with |Xu\Xv|+ |Xv \Xu|−1
new nodes, with appropriate bags. Next, for every node with t ≥ 2 children,
introduce 2t−2 child nodes with the same bag, and connect these appropriately.
It can be shown that this way a nice tree decomposition with at most 4n nodes
can be constructed. Every new node introduction can be done in time O(k),
which yields a total complexity of O(kn). We leave the implementation details
as an exercise. �

Proof of Proposition 9: First compute >(x) and Ntop(x) for every x ∈ V (G)

in time O(kn) (see Section 3). Observe that for a node u with Xu = (x1, . . . , xp)
and a node xi with >(xi) = u, row i and column i of the local adjacency matrix
Aui,j can be initialized in time O(k), using the list Ntop(x). For the root node r,

every vertex in Xr satisfies this property, so Ar can be computed in time O(k2).
For children v of a join node u, Av = Au holds, so this matrix can simply be
copied in time O(k2). For children v of an introduce node u, Av is obtained from
Au by deleting the appropriate row and column, so Av can be constructed from
Au in time O(k2). For children v of a forget node u, say with x = Xv \ Xu,
Av can be constructed from Au by adding a new row and column for x. Since
>(x) = v (Proposition 3(ii)), this row and column can be constructed in time
O(k) using Ntop(x). �

15

