Skip to main content

Topological Features in Glyph-Based Corotation Visualization

  • Conference paper
  • First Online:
Book cover Topological Methods in Data Analysis and Visualization III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 2198 Accesses

Abstract

This chapter introduces a novel method for vortex detection in flow fields based on the corotation of line segments and glyph rendering. The corotation measure is defined as a point-symmetric scalar function on a sphere, suitable for direct representation in the form of a three-dimensional glyph. Appropriate placement of these glyphs in the domain of a flow field makes it possible to depict vortical features present in the flow. We demonstrate how topological analysis of this novel glyph-based representation of vortex features can reveal vortex characteristics that lie beyond the capabilities of visualization techniques that consider vortex direction and magnitude information only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Kolář, P. Moses, J. Sistek, Local corotation of line segments and vortex identification, in Proceedings of the Seventeenth Australasian Fluid Mechanics Conference, Auckland, ed. by G. Mallinson, J. Cater (2010), pp. 251–254

    Google Scholar 

  2. J.C.R. Hunt, A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, 1988, pp. 193–208

    Google Scholar 

  3. U. Dallmann, Topological structures of three-dimensional vortex flow separation, in 16th American Institute of Aeronautics and Astronautics, Fluid and Plasma Dynamics Conference, Danvers, 1983

    Google Scholar 

  4. H. Vollmers, H. Kreplin, H. Meier, Separation and vortical-type flow around a prolate spheroid-evaluation of relevant parameters, in Proceedings of the AGARD Symposium on Aerodynamics of Vortical Type Flows in Three Dimensions, Rotterdam, 1983, pp. 14-1–14-14

    Google Scholar 

  5. M. Chong, A. Perry, B. Cantwell, A general classification of three-dimensional flow fields. Phys. Fluids 2, 765–777 (1990)

    Article  MathSciNet  Google Scholar 

  6. J. Jeong, F. Hussain, On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Kolář, Vortex identification: new requirements and limitations. Intern. J. Heat Fluid Flow 28(4), 638–652 (2007)

    Article  Google Scholar 

  8. M. Roth, R. Peikert, A higher-order method for finding vortex core lines, in Proceedings of the Conference on Visualization’98, Minneapolis (IEEE, 1998), pp. 143–150

    Google Scholar 

  9. D. Sujudi, R. Haimes, Identification of swirling flow in 3D vector fields, in AIAA 12th Computational Fluid Dynamics Conference Paper, San Diego, 1995, pp. 95–1715.

    Google Scholar 

  10. D. Kenwright, R. Haimes, Automatic vortex core detection. IEEE Comput. Graph. Appl. 18, 70–74 (1998)

    Article  Google Scholar 

  11. B. Singer, D. Banks, A predictor-corrector scheme for vortex identification. Technical report, TR-94–11, 1994

    Google Scholar 

  12. D. Banks, B. Singer, Vortex tubes in turbulent flows: identification, representation, reconstruction, in Proceedings of the Conference on Visualization’94, Washington, DC (IEEE, 1994), pp. 132–139

    Google Scholar 

  13. D.C. Banks, B.A. Singer, A predictor-corrector technique for visualizing unsteady flow. IEEE Trans. Vis. Comput. Graph. 1, 151–163 (1995)

    Article  Google Scholar 

  14. J. Sahner, T. Weinkauf, H. Hege, Galilean invariant extraction and iconic representation of vortex core lines, in IEEE VGTC Symposium on Visualization, Leeds, 2005, pp. 151–160

    Google Scholar 

  15. J. Sahner, T. Weinkauf, N. Teuber, H.C. Hege, Vortex and strain skeletons in eulerian and lagrangian frames. IEEE Trans. Vis. Comput. Graph. 13(5), 980–990 (2007)

    Article  Google Scholar 

  16. S. Stegmaier, U. Rist, T. Ertl, Opening the can of worms: an exploration tool for vortical flows, in IEEE Visualization Conference, Minneapolis, 2005, pp. 463–470

    Google Scholar 

  17. T. Schafhitzel, D. Weiskopf, T. Ertl, Interactive investigation and visualization of 3D vortex structures, in Electronic Proceedings of 12th International Symposium on Flow Visualization, Gottingen, Sept 2006

    Google Scholar 

  18. T. Schafhitzel, J. Vollrath, J. Gois, D. Weiskopf, A. Castelo, T. Ertl, Topology-preserving λ2-based vortex core line detection for flow visualization, in Computer Graphics Forum, vol. 27 (Wiley Online Library, 2008), pp. 1023–1030

    Google Scholar 

  19. K. Baysal, T. Schafhitzel, T. Ertl, U. Rist, Extraction and visualization of flow features, in Imaging Measurement Methods for Flow Analysis. Volume 106 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, ed. by W. Nitsche, C. Dobriloff (Springer, Berlin/Heidelberg, 2009), pp. 305–314

    Google Scholar 

  20. F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, H. Doleisch, The state of the art in flow visualisation: feature extraction and tracking. Comput. Graph. Forum 22, 775–792 (2003)

    Article  Google Scholar 

  21. M. Jiang, R. Machiraju, D. Thompson, Detection and visualization of vortices, in The Visualization Handbook, ed. by C.D. Hansen, C.R. Johnson (Elsevier, Amsterdam, 2005), pp. 295–309

    Chapter  Google Scholar 

  22. C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, G. Scheuermann, Surface techniques for vortex visualization, in VisSym, Konstanz, 2004, pp. 155–164

    Google Scholar 

  23. M. Jankun-Kelly, M. Jiang, D. Thompson, R. Machiraju, Vortex visualization for practical engineering applications. IEEE Trans. Vis. Comput. Graph. 12(5), 957–964 (2006)

    Article  Google Scholar 

  24. X. Tricoche, C. Garth, G. Kindlmann, E. Deines, G. Scheuermann, M. Ruetten, C. Hansen, Visualization of intricate flow structures for vortex breakdown analysis, in Proceedings of the Conference on Visualization, VIS’04, Washington, DC (IEEE, 2004), pp. 187–194

    Google Scholar 

  25. C.D. Shaw, D.S. Ebert, J.M. Kukla, A. Zwa, I. Soboroff, D.A. Roberts, Data visualization using automatic perceptually motivated shapes, in SPIE Conference on Visual Data Exploration and Analysis, San Jose, 1998, pp. 208–213

    Google Scholar 

  26. F.H. Post, F.J. Post, T.V. Walsum, D. Silver, Iconic techniques for feature visualization, in Proceedings of the 6th Conference on Visualization, VIS’95, Washington, DC (IEEE, 1995), pp. 288–295

    Google Scholar 

  27. A. Wiebel, S. Koch, G. Scheuermann, Glyphs for non-linear vector field singularities, in Topological Methods in Data Analysis and Visualization II, ed. by R. Peikert, H. Hauser, H. Carr, R. Fuchs. Mathematics and Visualization (Springer, Berlin/Heidelberg, 2012), pp. 177–190

    Google Scholar 

  28. G. Kindlmann, Superquadric tensor glyphs, in Proceedings of the Sixth Joint Eurographics – IEEE TCVG Conference on Visualization, VISSYM’04, Aire-la-Ville (Eurographics Association, 2004), pp. 147–154

    Google Scholar 

  29. T. Schultz, C.F. Westin, G. Kindlmann, Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework, in Proceedings of the 13th International Conference on Medical Image Computing and Computer-Assisted Intervention: Part I, MICCAI’10, Beijing (Springer, Berlin/Heidelberg, 2010), pp. 674–681

    Google Scholar 

  30. T. Schultz, Towards resolving fiber crossings with higher order tensor inpainting, in New Developments in the Visualization and Processing of Tensor Fields, ed. by D.H. Laidlaw, A. Vilanova. Mathematics and Visualization (Springer, Berlin/Heidelberg, 2012), pp. 253–265

    Google Scholar 

  31. T. Peeters, V. Prckovska, M. van Almsick, A. Vilanova, B. ter Haar Romeny, Fast and sleek glyph rendering for interactive hardi data exploration, in Visualization Symposium, PacificVis’09, Beijing (IEEE, Apr 2009), pp. 153–160

    Google Scholar 

  32. M. van Almsick, T.H. Peeters, V. Prc̆kovska, A. Vilanova, B. ter Haar Romeny, GPU-based ray-casting of spherical functions applied to high angular resolution diffusion imaging. IEEE Trans. Visual. Comput. Graph. 17(5), 612–625 (2011)

    Google Scholar 

  33. R. Borgo, J. Kehrer, D.H.S. Chung, E. Maguire, R.S. Laramee, H. Hauser, M. Ward, M. Chen, Glyph-based visualization: foundations, design guidelines, techniques and applications, in Eurographics State of the Art Reports (EG STARs, Eurographics Association, May 2013), pp. 39–63. http://diglib.eg.org/EG/DL/conf/EG2013/stars/039-063.pdf

  34. T. Schultz, G. Kindlmann, A maximum enhancing higher-order tensor glyph. Comput. Graph. Forum 29(3), 1143–1152 (2010)

    Article  Google Scholar 

  35. S. Beucher, F. Meyer, The morphological approach to segmentation: the watershed transformation (Mathematical morphology in image processing). Opt. Eng. 34, 433–481 (1993)

    Google Scholar 

  36. H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions. Comput. Geom. Theory Appl. 24(2), 75–94 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. C. Hung, P. Buning, Simulation of blunt-fin-induced shock-wave and turbulent boundary-layer interaction. J. Fluid Mech. 154(1), 163–185 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Materials Design Institute, funded by the UC Davis/LANL Research Collaboration (LANL Agreement No. 75782-001-09). It was also supported by the NSF under contracts IIS 0916289 and IIS 1018097, the Office of Advanced Scientific Computing Research, Office of Science, of the US DOE under Contract No. DE-FC02-06ER25780 through the SciDAC programs VACET, and contract DE-FC02-12ER26072, SDAV Institute. We thank Simon Stegmaier for making available his software [16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Shafii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Shafii, S., Obermaier, H., Hamann, B., Joy, K.I. (2014). Topological Features in Glyph-Based Corotation Visualization. In: Bremer, PT., Hotz, I., Pascucci, V., Peikert, R. (eds) Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-04099-8_17

Download citation

Publish with us

Policies and ethics