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Abstract. Emotions are increasingly and controversially central to our public 
life. Compared to text or image data, voice is the most natural and direct way to 
express ones’ emotions in real-time. With the increasing adoption of smart 
phone voice dialogue applications (e.g., Siri and Sogou Voice Assistant), the 
large-scale networked voice data can help us better quantitatively understand 
the emotional world we live in. In this paper, we study the problem of inferring 
public emotions from large-scale networked voice data. In particular, we first 
investigate the primary emotions and the underlying emotion patterns in hu-
man-mobile voice communication. Then we propose a partially-labeled factor 
graph model (PFG) to incorporate both acoustic features (e.g., energy, f0, 
MFCC, LFPC) and correlation features (e.g., individual consistency, time asso-
ciativity, environment similarity) to automatically infer emotions. We evaluate 
the proposed model on a real dataset from Sogou Voice Assistant application. 
The experimental results verify the effectiveness of the proposed model. 

Keywords: public emotions, acoustic features, correlation features, factor graph 
model. 

1 Introduction 

It is an emotional world we live in. Emotions, which are associated with subjective 
feelings, cognitions, impulses to action and behavior [1], can be recognized from 
many different information sources, e.g., human voice [3], facial expression [15], 
physiological signal [16], or their multimodal combination [5]. Compared to individ-
ual emotions, public emotions pay attention to the major emotions of the public in-
duced by social events. Previous studies have shown the success of using networked 
text [2] or image data [17] to infer public emotions. Nowadays, with the rapid devel-
opment of smart phone voice dialogue applications (e.g., Siri1 and Sogou Voice Assis-
tant2), people can share voice messages to their friends or make requests to the voice 
                                                           
1  http://www.apple.com/ios/siri/, an intelligent personal assistant and knowledge 

navigator which works as an application for Apple's iOS. 
2  http://yy.sogou.com, an smart phone voice dialogue application developed by Sogou 

(one of China's largest internet service providers).   
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assistant easily. Voice is the most direct way to express emotions. And emotions can 
be conveyed by not only linguistic information but also acoustic information. For 
example, a user who intends to share happiness with his friend on special days may 
send voice messages saying "Happy New Year" or "Happy birthday" with pleasant 
tone of higher pitch. Since people's voice data can be regarded as microscopic instan-
tiations of emotions, the collection of all the public voice data uploaded over a given 
time period or around a special social event can unveil the trends of public emotions 
at a macroscopic scale. 

Previous researches have been conducted for empirical analyses of emotion based 
on text or image data from social networks. Some of these analyses focus on public 
emotions around specific events [17], while others further analyze broader social and 
economic trends [7]. However, due to the lack of availability of large-scale networked 
voice data, few have been done in studying public emotions from voice signals. As 
voice is the fastest and the most natural method of communication [9], it can express 
people's emotional states in a much more vivid and efficient way. Therefore, using 
available large-scale networked voice data to perform public emotion analyses can 
significantly reduce the costs and efforts. Furthermore, it can benefit lots of fields, 
e.g., improve the user-friendly voice communication applications, or help companies 
formulate marketing strategies [2]. 

In this paper, employing a mobile voice assistant application as the basic of our 
experiments, we systematically study the problem of  inferring public emotions from 
networked voice data. The problem is non-trivial and poses a set of unique challenges. 
First, the emotion patterns in human-mobile voice communication are quite different 
from that in human-human voice communication. It is unclear how to identify the 
underlying emotion patterns behind the human-mobile voice communication. Second, 
former studies have confirmed that acoustic features [3-5] can reflect the individual's 
emotions, while in different social environment, the acoustic features might be quite 
different. Third, technically, how to design a principled model to automatically infer 
public emotions by considering both the acoustic features and social environment? 

To address the above challenges, we make our efforts and make contributions on 
three aspects: 

• Emotion Patterns. Based on the observations of networked voice data, we inves-
tigate the primary emotions in human-mobile voice communication by combining 
the linguistic information with acoustic information. Furthermore, we identify two 
interesting emotion patterns behind the human-mobile voice communication. 

• Features. Besides the selected acoustic features which can reflect emotions, we 
take into consideration three social correlation features (individual consistency, 
time associativity and environment similarity), which can be combined with acous-
tic features for performance improvement in different social environment. 

• Model. We formulate our problem into a novel partially-labeled factor graph mod-
el (PFG) to infer public emotions by incorporating both acoustic features and cor-
relation features. 

Our experiments are based on a real networked voice dataset, which is from Sogou 
Voice Assistant. The experimental results demonstrate that the proposed model can 
achieve better performance than alternative method using SVM. Discussion and  
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analysis of the experimental results rationally verify the contribution of combining the 
acoustic features with the correlation features to improve the performance. 

The rest of this paper is organized as follows: Section 2 gives the basic formulation 
of our problem. Section 3 introduces the data observation and dataset setup. Section 4 
presents the PFG model for inferring public emotions. Section 5 carries out the expe-
riments employed to analyze the feature contribution and evaluate the performance of 
the proposed model. We'd like to show some interesting case studies in this section 
too. Finally, Section 6 summarizes this paper. 

2 Problem Formulation 

Fig. 1 gives an illustration of inferring public emotions from networked voice data. 
Each utterance in the voice dataset not only has its own acoustic features, but also 
correlations with other utterances, such as individual consistency (blue line), time 
associativity (pink line), and environment similarity (green line). Part of the utter-
ances in the dataset are labeled with emotions, and our task is predicting the emotions 
of unlabeled utterances. For further clarification, in this section, we give some essen-
tial definitions and subsequently present the problem formulation. 

The network of input utterances can be represented as , , where , … ,  is the set of | | N utterances,  is the set of | | K rela-
tionships between utterances. Each edge  indicates  having a correlation with  
(e.g.  and  recorded by the same speaker or recorded in the same city within a 
short time). We aim at learning a model that can effectively infer emotions from net-
worked voice data. For this reason, we first define the speaker's emotions and the 
partially labeled network as follows. 

Definition 1. Emotions: The emotion category of an utterance  is denoted as 
, where  is the emotion space that contains the primary emotions in human-

mobile communication. The investigation on primary emotions will be described in 
details in Section 3. 

 
Fig. 1. The illustration of inferring public emotions from large-scale networked voice data 
using partially labeled factor graph model 
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Definition 2. Partially labeled network: The partially labeled network is denoted as , , , , where   and are respectively the set of labeled and unlabeled 
utterances with ;  is the correlations between utterances;  is an 
attribute matrix associated with utterances in  with each row corresponding to an 
utterance, each column representing an attribute and an element  denoting the value 
of the  attribute of utterance . The label of utterance  is denoted as . 

Problem. Learning task: Given a partially labeled network , the objective is to 
infer the emotion categories of utterances by learning a predictive function 

 : , , ,  (1) 

where , … ,  is the set of inferred results, with each  belonging to one 
emotion category in . 

3 Data Preparation and Emotion Pattern Analysis 

3.1 Data Collection and Observation 

We collected a corpus of large-scale networked voice data from Sogou Voice Assis-
tant. The raw dataset contains 6,891,298 utterances recorded in Chinese by 405,510 
users during year 2013. Each utterance has some basic information (e.g. user ID, 
record time, geographical position) and the corresponding speech-to-text information 
provided by Sogou Corporation. 

For training and evaluating the proposed model for inferring emotions, we firstly 
need to know the primary emotions of networked voice data, and establish an experi-
mental dataset with emotional labels as ground truth. Due to the massive scale of our 
dataset, manually annotating the emotion category for each utterance is not practical. 
Considering that linguistic information contained in voice data can help us understand 
speaker's emotion, we conduct the investigation on primary emotions as following 
steps: 1) we screen all the utterances’ speech-to-text information and find the emo-
tional words in them; 2) we compute the occurrence frequency of each emotional 
word, and drop the emotional words appearing few times; 3) in view of previous work 
on Chinese emotional words categorization [4,6], we classify all the selected emo-
tional words into representative categories.  

Table 1. Emotional word examples and selected utterance number of each category 

Category Emotional word examples Utterance 
number 

Happy 
happy ('高兴'), joyful ('快乐'), delighted ('开心'), 
sweet ('甜蜜'), etc. 

12067 

Sad 
heart-broken ('伤心'), grieved ('痛苦'), 
 sorrow ('悲哀'), miserable ('难受'), etc. 

4754 

Angry 
angry ('生气'), rage ('愤怒'), idiot ('笨蛋'), 
 bastard ('可恶'), etc. 

13407 

Disgusted 
disagreeable ('讨厌'), disgusting ('恶心'), 
 despise ('鄙视'), dissatisfied ('不满'), etc. 

4320 

Bored bored ('无聊'), tired ('累'), toilsome ('辛苦'), etc. 13663 
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Fig. 2. The proportion of manually labeled emotions in each textual labeled category 

The classification results show the emotional words finally cluster to five main cat-
egories: Happy, Sad, Angry, Disgusted, and Bored. We can see that these five primary 
emotions in human-mobile communication are different from Ekman’s six basic emo-
tions proposed for human-human communication. Specifically, Fear and Surprise in 
Ekman’s six emotions are replaced by Bored. Following the above steps, from the raw 
dataset, we finally pick out 48,211 utterances whose speech-to-text information con-
tains emotional words that only belong to one of the five primary emotion categories. 
We annotate these utterances with that specific category as their textual labels. Table 
1 shows the emotional words and selected utterance number of each category. 

In order to further explore how an utterance's textual label is consistent with its real 
emotion, we randomly selected 200 utterances from each textual labeled category 
(1,000 utterances in total). Then we invite three human labelers to annotate each ut-
terance with an emotion category manually. Besides the above five emotions, we also 
allow the labelers to give Neutral annotation. When they have disagreement, they stop 
and discuss until they have final agreed views. The manually labeled results are re-
garded as the real emotions for these utterances. 

We observe the distinctions between textual labeled categories and manually la-
beled emotions. The observation results are quite interesting. The proportion of ma-
nually labeled emotions in each textual labeled category is shown as Fig. 2. We can 
easily find two phenomena as follows: 

• Phenomenon I: In some cases, the textual labels are not consistent with the real 
emotions. For example, some of the utterances with textual labels Happy are ac-
tually Angry emotion. It may happen when a user says “I’m really happy with what 
you said”, but actually he is angry and what he says means an irony. This pheno-
menon indicates the Emotion Pattern I: There exist insincerities in human-mobile 
communication (this pattern exists in human-human communication too). It also 
means that we cannot use the textual labels as real emotion categories directly. 

• Phenomenon II: A large part of the utterances, whose speech-to-text information 
contains emotional words, are actually neutral voice data. This phenomenon indi-
cates the Emotion Pattern II: The expressions in human-mobile communication 
are more rational and implicit. People pay much attention to linguistic information 
rather than paralinguistic information to express their meanings. It leads us to find 
that each textual labeled category is approximately consisted by two parts, the real 
emotional voice data, and the neutral voice data.   

Therefore, for each textual labeled category, we can further conduct a 2-cluster 
classification using acoustic features to separate it into two parts. Then we can 
establish an experimental dataset with emotional and neutral voices respectively. 
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Furthermore, we can use the manually labeled utterances as the reference of which 
part is the real emotional voice data while which part is the neutral one. 

3.2 Experimental Dataset Setup 

According to the above observations, we setup our experimental dataset. Based on 
previous research about emotional speech analysis [3,4,11], we use 113 acoustic fea-
tures to conduct the 2-cluster classification on 48,211 utterances: 

• Energy features (13): the energy envelop applied with 13 functionals (mean, std, 
max, min, range, quartile1/2/3, iqr1-2/2-3/1-3, skewness, kurtosis). 

• F0 features (13): the fundamental frequency contour, which are extracted using a 
modified STRAIGHT procedure[10], applied with 13 functionals the same as 
Energy. 

Algorithm 1. The feature selection algorithm 
Input:  
features[1..n][1..d]: acoustic features matrix with each row corresponding to an utterance, each column 
representing one kind of feature 
labels[1..n]: the manual labels of n utterances from one text category 
threshold: a const in {0.05, 0.01, 0.001, 0.0001, 0.00001, 0.000001} 
Output:  
The order numbers of the selected feature set 
1:    dnum ← 0 
2:    for j ← 1 to d do 
3:        calculate the p-value for testing the hypothesis of no correlation between  
           features[1..n][j] and labels[1..n] 
4:        if p-value < 0.05 then 
5:            dnum ← dnum + 1 
6:            fset[dnum].p ← p-value 
7:            fset[dnum].ind ← j 
8:         end if 
9:    end for 
10:  sort structure array fset[1..dnum] along its element p in ascending order 
11:  initialize tag[1..dnum] = 0 
12:  calculate a matrix P of p-values for array features[1..n][1..d] 
13:  current ← 1 
14:  tag[current] ← current 
15:  repeat 
16:      for j ← 1 to dnum do 
17:          if tag[j] = 0 then 
18:              if P[fset[current].ind][fset[j].ind] < threshold then 
19:                  tag[j] ← current 
20:              end if 
21:          else 
22:              if P[fset[current].ind][fset[j].ind] < P[fset[tag[j]].ind][fset[j].ind] and tag[j] != j 

then 
23:                  tag[j] ← current 
24:              end if 
25:          end if 
26:      end for 
27:      find the minimum value of k satisfying the equation tag[k] = 0 
28:      current ← k 
29:      tag[current] ← current 
30:  until all the elements in tag[1..dnum] are not zero 
31:  find the same values as in tag[1..dnum] without repetitions into tset[1..gnum] 
32:  return fset[tset[1..gnum]].ind 
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Table 2. The results of feature selection and emotion classification 

Category 

Manual 
labeled 
sample 

numbers 

Feature selection Emotion Classification 

Threshold Selected feature set F1-Measure 
Sample 

numbers in 
final dataset 

Happy H:   102 
NH: 161 0.001 

f0_quartile3, lfpc8_mean, 
energy_range, sc_skewness, 
f0_kurtosis, lfpc4_std, 
mfcc11_mean, sr_max

70.78% H:   5721 
NH: 6346 

Sad S:   167 
NS: 133 0.01 lfpc9_std, syldur_quartile3, 

mfcc3_mean 75.84% S:   2562 
NS: 2192 

Angry A:   100 
NA: 129 10E-4 

mfcc2_std, lfpc11_mean, 
lfpc10_std, mfcc9_mean, 
energy_skewness, 
mfcc8_mean, mfcc6_std, 
mfcc12_mean, mfcc2_mean, 
mfcc7_std

70.97% A:   7892 
NA: 5515 

Disgusted D:  103 
ND: 97 0.01 

lfpc7_mean, mfcc5_std, 
mfcc9_mean, lfpc11_std, 
syldur_iqr1-2

74.64% D:   2328 
ND: 1992 

Bored B:  125 
NB: 75 10E-4 

sr_std, f0_iqr1-2, mfcc5_std, 
mfcc4_mean, mfcc6_mean, 
mfcc3_mean, lfpc7_std, 
lfpc9_mean, energy_iqr2-3, 
mfcc6_std, energy_iqr1-2

79.20% B:   6968 
NB: 6695 

• MFCC features (26): the mean and standard deviation of mel-frequency cepstral 
coefficients 1-13. 

• LFPC features (24): the mean and standard deviation of log frequency power coef-
ficients 1-12, which are extracted using the method in [11] with α=1.4. 

• Spectral Centroid (SC) features (13): the spectral centroid contour applied with 13 
functionals the same as Energy. 

• Spectral Roll-off (SR) features (13): the spectral roll-off contour applied with 13 
functionals the same as Energy. 

• Syllable Duration (SD) features (11): the syllable duration sequence, which is ex-
tracted using the method in [12], applied with 11 functionals (mean, std, max, min, 
range, quartile1/2/3, iqr1-2/2-3/1-3). 
 
All the spectral features (MFCC, LFPC, SC, SR) are extracted from voiced seg-

ments of the utterances with the 20ms frame length and 10ms frame shift. Each kind 
of feature is normalized first, hence the mean is zero and the standard deviation is 
one. 

We make use of the correlation coefficients and their significances between acous-
tic features and manual labels for the feature selection (Algorithm 1 gives the details). 
The manual labels of utterances are defined as X / NX, where X {H, S, A, D, B} and 
NX is Neutral. By changing the threshold in Algorithm 1, we can obtain diverse fea-
ture sets. As we pay more attention to clustering most of the positive samples into one 
class, we apply the F1-Measure of positive samples to evaluate the performance of 
clustering. For simplicity, we run the classic k-means clustering for each category, 
and compute the F1-Measure by using the Hungarian algorithm [8] to assign which 
class is corresponding to the positive samples. The best classification results and the 
selected feature sets they used are summarized in Table 2.  
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By the above method, we finally establish an experimental dataset with emotional 
labels as ground truth. The dataset contains 48,211 utterances consisted of five prima-
ry emotions as well as Neutral: Happy (5721), Sad (2562), Angry (7892), Disgusted 
(2328), Bored (6968), and Neutral (22740). 

The emotional labels in our experimental dataset certainly still have some errors. 
But in the statistical level, it can be ignored in some ways such as using large-scale 
data. The most importance is the above method can help us avoid the impossible mis-
sion of manual annotation on large-scale networked voice data. Since our prime con-
cern is the accuracy of public emotions inferring, which is quite different from the 
task of individual emotion recognition, we believe the above method provide the good 
balance between efficiency and performance. 

4 Proposed Method 

4.1 Prediction Model 

As networked voice data are disposed in this paper, we take advantage of some social 
correlation information to improve the performance and identify three kinds of corre-
lation features: 

• Individual Consistency (IC): whether two utterances are recorded by the same 
speaker. 

• Time Associativity (TA): whether two utterances are recorded within the same 
hour of one day. 

• Environment Similarity (ES): whether two utterances are recorded in the same city. 

Since the correlations between utterances are hard to be modeled by traditional 
classifiers such as SVM, we utilize a partially-labeled factor graph model (PFG) [13] 
to learn and infer public emotions. All the utterances recorded by ordinary speakers 
can be formalized as variables and observation factor functions in a factor graph, 
basing on the theory of FGM [14]. Each utterance  can be mainly described as one 
kind of primary emotion, which can be mapped as an emotional node  in the PFG 
model. The labels of emotional nodes are denoted as , … , , where  is a 
hidden variable associated with . As the emotions in  are partially labeled, they 
can be divided into two subset  and  corresponding to the labeled and unla-
beled emotions. For each emotional node , we define the emotional attributes into a 
vector , considering that the speaker-independent acoustic features may contain 
information about emotions. At the same time, we can also find the basic intuition 
that the relationships between the utterances (correlation features) can constitute the 
correlations between hidden variables in our model. Based on the above intuitions, we 
define the following two factors: 

• Attribute factor: ,  represents the posterior probability of the emotion  
given the attribute vector . 

• Correlation factor: , R  denotes the correlation among the emotions, 
where R  is the set of correlated emotions to . 
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Given a partially-labeled network , , , , we can define the joint dis-
tribution over  as 
 P | ∏ , , R  (2) 

Since the two factors can be instantiated in different kinds of ways, we only give a 
general definition for them by using exponential-linear function. In particular, we 
define the attribute factor as 

 , Z exp αT ·  (3) 

where α is a weighting vector of  and Z  is a normalization factor. 
The correlation factor can be naturally modeled in a Markov random field. Thus, 

by the fundamental theorem of random fields, it can be defined as 

 , R Z exp ∑ β ·R ,  (4) 

where ,  is a feature function that captures the correlation between emotional 
nodes  and ; β is the weighting of this function; Z  is also a normalization 
factor. 

Finally, the joint probability defined in (2) can be written as 

 P | Z exp ∑ αT · ∑ β ·R ,  (5) 

where Z Z Z  is a normalization factor. 
Learning the predictive model is to estimate a parameters configuration φα , β  from the partially-labeled dataset, so that it can maximize the log-

likelihood objective function Θ logP | , i.e. φ argmaxΘ φ . 

4.2 Model Learning 

After learning the parameter values, we turn to address the problem of estimating the 
remaining free φ and inferring speakers' emotions. Specifically, we first calculate the 
gradient of each parameter with regard to the objective function: 

 E  , EP , ,  (6) 

where E  ,  is the expectation of feature function ,  given by the 

data distribution and EP , ,  is the expectation of feature function ,  under the distribution P ,  given by the estimated model. Simi-

lar gradients can be derived for parameter β. Then we update the parameters by φ φ γ · , where γ is the learning rate. 

Given the observed value  and the learned parameters φ, the inference task is to 
find the most likely ,as follows 
 arg max p | , φ  (7) 

Finally, we utilize the loopy belief propagation to compute the marginal probability of 
each emotional node and then predict the type of an unlabeled emotion as the label 
with largest marginal probability. 
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5 Experiments and Discussions 

5.1 Experimental Setup 

We use the dataset described in Subsection 3.2 in our experiments, which contains 
48,211 utterances that carefully chosen from networked voice data recorded by 
25,370 speakers and labeled with one of the six primary emotions. We perform five-
fold cross validation and quantitatively evaluate the performance of inferring public 
emotions in term of Accuracy and F1-Measure computed as 

 Accuracy ∑       ∑      (8) 

 F1‐ Measure ∑ F ‐M      (9) 

For the purpose that justifying whether the correlation information can help infer 
public emotions from utterances, we define a baseline method using the classic ma-
chine learning technique Support Vector Machine (SVM). We compare the perfor-
mance achieved by PFG model utilizing both acoustic features and correlation  
features (Individual Consistency (IC), Time Associativity (TA), and Environment Simi-
larity (ES)) with the baseline method. 

5.2 Results and Discussions 

Performance Comparison. Table 3 shows the Accuracy and F1-Measure for pro-
posed PFG and SVM. The Accuracy of the proposed PFG model achieves 86.11%, 
while the SVM model achieves only 49.15%. For F1-Measure shown in Table 3, PFG 
also shows clearly the best performance and yields an 27.04-83.51% improvement 
compared with SVM. These results demonstrate the effectiveness of our proposed 
method on inferring emotions from networked voice data. Furthermore, the proposed 
PFG model utilizes both acoustic features and correlation features, while SVM model 
cannot express the relationships between utterances. So the experimental results also 
verify that the correlation information among utterances can compensate the deficien-
cy of acoustic features and help infer public emotions in our problem. 

Table 3. Performance of emotion prediction with different method 

                         
Model 

Category 

F1-Measure (%) 

SVM  
PFG 

Acoustic All 
Happy 7.83 56.27 84.92 

Sad 6.50 49.65 69.46 
Angry 8.56 69.34 92.07 

Disgusted 8.47 26.07 67.64 
Bored 5.04 51.24 68.02 

Neutral 64.98 89.74 92.02 
Average 16.90 57.05 79.02 

Accuracy (%) 49.15 73.86 86.11 
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Feature Contribution Analysis. Fig. 3 shows the F1-Measure of each kind of acous-
tic or correlation feature when inferring emotions. Comparing the F1-Measures of 
different correlation features, we find that TA makes the improvement in the majority 
of the emotion categories, while ES benefits the prediction of several categories as 
well. Since the mean number of utterances per speaker is 1.9 and 62.03% of the utter-
ances are recorded by the speakers who only have one utterance in the dataset, there 
are lesser IC correlations than TA and ES, which leads to its lower performance. The 
aforementioned results confirm that public emotions are closely related to time and 
environment. For acoustic features, the spectral features (MFCC, LFPC) make a great 
contribution to inferring most emotions, which is consist with the feature selection 
results described in Table 2. 

 

Fig. 3. Feature contribution analysis 

Case Study. To further demonstrate the effectiveness of the proposed model, we 
would like to show two interesting case studies. Since Beijing, Shanghai and Shenz-
hen are the top 3 active cities with the most users in Sogou Voice Assistant, we use the 
utterances that respectively uploaded in these three cities as our case study data. The 
proposed PFG model is used to infer emotions from them. By analyzing the results, 
we find the trends of public emotions related to specific time period or social event. 
We take positive emotion Happy and negative emotion Angry as examples: 

• We all know that Beijing suffered the severest fog and haze in history during the 
week of Jan 21 to 27, 2013. What was the major public emotion inferred from the 
voice data in that period in Beijing? The answer is people felt less happy and more 
agonizing day by day, shown in Fig.4a(1). Comparing with Shanghai and Shenz-
hen’s results shown as Fig. 4a(2) and Fig. 4a(3), Beijing obviously had more 
people in bad moods due to the environmental problem. These results are rational 
and common in our daily life. 

• A strong earthquake struck the southwestern Chinese province of Sichuan on April 
20, 2013. Were the public emotions affected by the emergency? The answer is yes. 
Taking Beijing as an example, we can find an increasing of negative emotion from 
April 20 (Fig. 4b). After the earthquake, people were generally worried about the 
disaster and suffering from the tragedy of losing compatriots, so their anxieties 
caused the negative public emotions. These results also indicate the networked 
voice data can reflect the changes of public emotions on emergency in real-time. 
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Fig. 4. Case study: a) The major emotional trends in three cities from Jan 21 to 27, 2013. b) 
The major emotional trends in Beijing from April 20 to 24, 2013. 

6 Conclusions 

With the increasing adoption of smart phone voice dialogue applications, we can now 
use the large-scale networked voice data to achieve the goal of inferring public emo-
tions. Compared to text or image data, the most advantage of voice is that it is the 
most natural and direct way to express ones' emotions in real-time. Our main contri-
butions are: 1) we reveal the five underlying primary emotions in human-mobile 
communication, which are quite different from the widely-used Ekman’s six emotions 
in human-human communication; 2) we experimentally analyze the fundamental 
acoustic features, and combine them with social correlation features that can better 
reflect emotions in different social environment; 3) we formulate the problem into a 
PFG model for inferring public emotions from large-scale networked voice data, turn-
ing out good results.   

For future works, we are planning to investigate and model more social phenome-
non such as conformity in human-mobile communication for further improving the 
inferring accuracy. 
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