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Modulus Computational Entropy ⋆

Maciej Skórski ⋆⋆

University of Warsaw

Abstract. The so-called leakage-chain rule is a very important tool used
in many security proofs. It gives an upper bound on the entropy loss of
a random variable X in case the adversary who having already learned
some random variables Z1, . . . , Zℓ correlated with X, obtains some fur-
ther information Zℓ+1 about X. Analogously to the information-theoretic
case, one might expect that also for the computational variants of entropy
the loss depends only on the actual leakage, i.e. on Zℓ+1. Surprisingly,
Krenn et al. have shown recently that for the most commonly used def-
initions of computational entropy this holds only if the computational
quality of the entropy deteriorates exponentially in |(Z1, . . . , Zℓ)|. This
means that the current standard definitions of computational entropy
do not allow to fully capture leakage that occurred ”in the past", which
severely limits the applicability of this notion.
As a remedy for this problem we propose a slightly stronger definition
of the computational entropy, which we call the modulus computational

entropy, and use it as a technical tool that allows us to prove a desired
chain rule that depends only on the actual leakage and not on its his-
tory. Moreover, we show that the modulus computational entropy unifies
other,sometimes seemingly unrelated, notions already studied in the lit-
erature in the context of information leakage and chain rules. Our results
indicate that the modulus entropy is, up to now, the weakest restriction
that guarantees that the chain rule for the computational entropy works.
As an example of application we demonstrate a few interesting cases
where our restricted definition is fulfilled and the chain rule holds.

1 Introduction

Entropy is the most fundamental concept in Information Theory. First intro-
duced in this context by Shannon [Sha48], as a measure of the uncertainty asso-
ciated with a probability distribution, it has been generalized in many ways. The
commonly used generalization of Shannon Entropy is Rényi Entropy, defined for
any arbitrary nonnegative order, which includes Shannon Entropy as a special
case of order 1. Informally, a reasonable entropy measure indicates for a given
distribution how much randomness it contains. According to this intuition, dis-
tributions uniform over large sets should have very high entropy, in opposite to

⋆ This work was partly supported by the WELCOME/2010-4/2 grant founded within
the framework of the EU Innovative Economy Operational Programme.

⋆⋆ Cryptology and Data Security Group, University of Warsaw. Email:
maciej.skorski@gmail.com

http://arxiv.org/abs/1302.2128v3


2

distributions which has small support or hit a small set with high probability,
being easy to predict.

Indistinguishability and entropy. The notion of entropy has been generalized also
for the purpose of Computational Complexity Theory and Cryptography, to take
computational aspects into account. The reader might wish to refer to [Rey11]
for a short survey. Historically computational entropy was first introduced in
[Yao82] and, basing on a different concept, in [HILL99]. This last approach,
based on the notion of indistinguishability, is the one we follow in this work.
Let us try to give some intuitions here (the precisely definitions will be given in
Section 2). To define computational entropy of X , one relaxes the requirement
that X should have entropy itself. Instead, we assume that X is only close to
a distribution Y which has suitable information-theoretic entropy. We have to
specify two things: (a) the notion of entropy we use and (b) what does it mean
"being close". To give a rigorous formulation of (b), one uses the concept of
distinguishing, borrowed from convex analysis and topology. Function D sepa-
rates (distinguishes) a set X from another set Y with advantage at least ǫ if
D(x) − D(y) > ǫ for every x ∈ X, y ∈ Y. In turn, for a predefined class D of
functions, two sets are said to be (D, ǫ)-indistinguishable, if there is no D ∈ D
that can distinguish between these two sets with advantage greater than ǫ. The
smaller ǫ and the wider class D we take, the stronger indistingusihability we ob-
tain. Especially, indistinguishability applied to two probability distributions (as
one-element sets) and all boolean functions (as distinguishers), where acting D
on a distribution PX is defined by D (PX) = Ex←XD(x), yields the definition
of the statistical distance. In applications involving computational complexity,
one usually use circuits of bounded size as a class of distinguishers.

Leakage Lemma and Chain Rule. Leakage lemma is the term commonly used in
referring to various generalizations of the observation which, saying less formally,
states that min-entropy of a distribution X conditioned on another distribution
Z distributed over {0, 1}m decreases, with respect to min-entropy of X , by at
most m (the number of bits in the string encoding Z). The name comes from
security-related applications, where one considers entropy of a distribution condi-
tioned on information that might have been revealed to the adversary. The larger
difference between entropy of a distribution and entropy of the corresponding
conditioned distribution, the larger leakage is; such an approach, based on com-
putational entropy, was used first by Dziembowski and Pietrzak [DP08]. In turn,
the term leakage chain rule is used to state the same principle for the case when
we are given entropy of X conditioned on Z1, and observing some further leak-
age Z2 ask for the entropy of X conditioned on Z1Z2. Such conditioning of an
already conditioned distribution refers to the so called "leakage-after-leakage"
scenario. The name “Leakage Chain Rule” comes from the fact that we think of
Z1 and Z2 as information about X that “leaked” subsequently to the adversary.

For commonly used information-theoretic notions of conditional entropy, the
chain rule is known to be true, i.e. the loss in entropy depends on |Z2| and
not on Z1. The problems appear in the case of computational generalizations of
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entropy. The computational leakage lemma [DP08, FR12], turned out not to give
rise naturally to the leakage chain rule at least for important indistinguishability
based definitions of conditional computational entropy and was addressed as
an open problem [FOR12]. The computational leakage chain rule was proved
only for specific scenarios, either by adding strong assumptions to definitions
[FR12, CKLR11], or by changing definitions (see [Rey11] for the discussion of
computational relaxed entropy based on Leakage Lemma [GW10]). Recently, a
counterexample to the chain rule for computational min entropy has been found
[KPW13]. It shows that the computational entropy of X |Z1Z2 can decrease
dramaticaly with respect to the entropy of X |Z1, even if Z2 is just a one bit.

Our contribution. Interested in establishing the (possibly) weakest condition to
make the leakage chain rule work for the ’standard’ computational entropy (i.e.
defined using indistinguishablity and the min-entropy), we define the modulus
computational entropy and show that its definition is satisfied by technical as-
sumptions which have been used by other authors to obtain a chain rule: the
decomposable entropy introduced by Fuller and Reyzin [FR12] and the sampla-
bility assumption used by Chung et al. in [CKLR11]. Interestingly, it is implied
by the ”squared-indistinguishability" introduced in [DY13]. Furthermore, we in-
vestigate three cases that has not been considered yet: (a) when computational
entropy is almost maximal, (b) the existence of an NP oracle over the domain
of X to which distinguishers are given access 1, and (c) when the leakage is rela-
tively short. In all these cases our definition is fulfilled and the chain rule works.
Summing up, we reduce already known necessary conditions to the one simpler
concept and show a few new non-trivial cases where the chain rule works.

Our techniques We observe that to ensure the chain rule, one need to control the
conditional advantages of distinguishers, i.e. advantages calculated conditionally
on appropriate events. The same concept appears in [DY13]. This elementary
technique leads to quite non-trivial results and we believe that its application
can be of independent interest.

Outline of the work. Section 2 deals with some preliminary concepts, conventions
and notations. In Section 3 we explain basic definitions and terminology related
to the computational entropy, and discuss the positive and negative results re-
lated to the leakage chain rule problem. In Section 4 we introduce our main tool–
the modulus entropy and show that the leakage chain rule holds for this notion.
Section 5 contains a brief summary of the most important consequences of our
results - estimating the cost of conversions to the modulus entropy from several
technical assumptions. Section 6 provides their proofs.

1 We stress that this is a non-trivial result, as the computational entropy X given Z
is calculated by distiguishers on {0, 1}n+m, thus it might happen that even circuits
of size 2n are not able to break it.
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2 Preliminaries

Throughout this work we assume that all random variables are defined on some
finite probability space and they take values in {0, 1}∗. If X is a random variable
then PX will be its distribution. Writing X ∈ S we mean that X takes its values
in the set S. By |S| we denote the cardinality of S. For two random variables
X,Z by X |Z = z we denote the distribution of X conditioned on Z = z and
(X,Z) means the concatenation of X and Z. For every n, by Un we denote
the uniform distribution over {0, 1}n. By (det{0, 1}, s) and (det[0, 1], s) we mean
the class of all deterministic circuits of size at most s, with output in the set
{0, 1} and [0, 1] respectively. Similarly, we denote by (rand{0, 1}, s) the set of
all randomized boolean circuits of size at most s. All logarithms are taken to
the base 2. For D : X → [0, 1] and k ≤ log |X | we denote by MaxkD ⊆ X a set
of cardinality 2k such that for every x ∈ MaxkD and every x′ 6∈ MaxkD we have
D(x) > D(x′). For a boolean function D, we write |D| =

∑
x∈X D(x).

2.1 Min Entropy

We start with recalling information-theoretic notions.

Definition 1 (Min Entropy). A random variable X has at least k bits of
min-entropy, denoted by H∞ (X) > k, if and only if maxx PX (x) 6 2−k.

The conditional min-entropy can be defined in two ways, both compatible with
the above definition. The first one is given below.

Definition 2 (Worst-Case Conditional Min-Entropy). Given a pair of
random variables (X,Z) we say that X conditioned on Z has the min-entropy
at least k and denote it by H∞(X |Z) > k, if and only if for every z we have

max
x

PX|Z=z (x) 6 2−k.

It is called the worst-case because it requires X to have high min-entropy when
it is conditioned on the event “Z = z” for every z. The alternative definition
requires this fact to hold on average:

Definition 3 (Average Conditional Min-Entropy [DORS08]). Given a
pair of random variables (X,Z) we say that X conditioned on Z has the average

min-entropy at least k and denote H̃∞ (X |Z) > k, if and only if

Ez←Z

[
max
x

PX|Z=z (x)
]
6 2−k.

Usually it is not so important which one of these definitions is used, as one can
convert the average conditional min entropy into the worst-case variant.

Lemma 1 (See [DORS08], Lemma 2.2). Suppose that H̃∞ (X |Z) > k. Then
holds H∞ (X |Z = z) > k − log 1

δ with probability at least 1− δ over z ← Z.
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2.2 Indistinguishability

Below we outline the concept of indistinguishability, being a key point in defining
computational entropy.

Definition 4. Let X and Y be subsets of some set P. Given ǫ > 0 we say that a
function F : P → [0, 1] distinguishes between X and Y with advantage at least
ǫ if for every x ∈ X and every y ∈ Y we have |F (x) − F (y)| > ǫ.

Definition 5. Let X and Y be as in Def. 4. Given a class F of [0, 1]-valued
functions on P, we say that X and Y are (F , ǫ)-indistinguishable if there is no
F ∈ F that can distinguish between X and Y with advantage greater than ǫ.

In this paper we are mostly interested in the case when P is equal to the set of
all probability distributions over some finite space Ω. In this case, every function
D : Ω → [0, 1] gives rise to a distinguisher FD : P → [0, 1] defined as FD(µ) =
Ex←µD(x). Thus, we will overload the notation and say that D distinguishes
between X and Y with advantage at least ǫ if the corresponding function FD

distinguishes between X and Y with advantage at least ǫ. We note that D can
also be a randomized function, which receives an additional input R chosen
independently at random. The expectation ED(·) is then taken also over R.

3 Computational Entropy and Leakage - previous works

As mentioned before, computational entropy can be obtained by generalizing en-
tropy notions in many ways. We follow the approach based on indistinguishability
as it seems to be the most standard way and was originally used for studying leak-
age [DP08] as well as in further leakage-related works [CKLR11, FR12, GW10].

3.1 Defining Computational Entropy

Three-layer definition. There are three key points, essential for defining compu-
tational entropy via indistinguishability:

(a) specify, for every k, what it means that a distribution “has (non-computational)
entropy at least k”,

(b) model the adversary, in particular define his computational power, and de-
termine his maximal acceptable success probability, and

(c) define the measure of the “computational distance” between a given distri-
bution and the set of distributions with entropy at least k (in the sense of
(a)).

In (a) one usually uses information-theoretic notion of entropy, most often the
min-entropy2. For (b) one uses a pair (D, ǫ) within the framework described
in Section 2.2. Finally, a rigorous formulation of (c) can be given in two ways,

2 We use only min-entropy in this work. See, however, [VZ12] for a similar definition
based on Shanon Entropy.
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traditionally called the “HILL” or the “Metric” version. In the HILL version,
defining entropy of a random variable X , we require X to be indistinguishable
from one single distribution with high entropy (in the sense of (a)), whereas in
the definition of the Metric Entropy we require X to be indistinguishable from
the set of all of high-entropy distributions, which is a bit weaker assumption.
The formal definitions below are provided for the conditional versions of both
notions. The unconditional versions, denoted H

HILL,D,ǫ (X) and H
Metric,D,ǫ (X),

are special cases obtained by fixing in the definitions below Z to be constant.

Definition 6 (HILL Computational Conditional Entropy [HLR07]). Let
X,Z be random variables taking values in {0, 1}n and {0, 1}m respectively. Given
ǫ > 0 and a class of distinguishers D, we say that X conditioned on Z has
at least k bits of computational HILL entropy against (D, ǫ) and denote by

H̃
HILL,D,ǫ (X |Z) > k, if there exists a random variable Y ∈ {0, 1}n satisfying

H̃∞ (Y |Z) > k, such that (X,Z) is (D, ǫ)-indistinguishable from (Y, Z) .

Definition 7 (Metric Computational Conditional Entropy [HLR07]).
With ǫ,D, X and Z as in Def. 6, we say that X conditioned on Z has at least k
bits of computational metric entropy against (D, ǫ), denoting H̃

Metric,D,ǫ (X |Z) >
k, if (X,Z) is (D, ǫ)-indistinguishable from the set of all distributions (Y, Z),

satisfying H̃∞ (Y |Z) > k.

Usually one formulates both definitions more explicity without using the very
general notion of indistinguishability (as in Def. 5)

Definition 6: H̃
HILL,D,ǫ (X |Z) > k if there exists a random variable Y ∈

{0, 1}n, H̃∞ (Y |Z) > k satisfying |ED(X,Z)−ED(Y, Z)| 6 ǫ for all D ∈ D.

Definition 7: H̃Metric,D,ǫ (X |Z) > k if for every D ∈ D there exists a random

variable Y ∈ {0, 1}n, H̃∞ (Y |Z) > k and |ED(X,Z)−ED(Y, Z)| 6 ǫ.

However, our, more general, definitional approach appears to be more useful for
the applications presented in the sequel. The definitions of the HILL Computa-
tional Worst -Case Conditional Entropy H

HILL,D,ǫ (X |Z) and the Metric Com-
putational Worst -Case Conditional Entropy H

Metric,D,ǫ (X |Z) are obtained by

replacing H̃∞ (Y |Z) > k in Def. 6 and Def. 7 (resp.) with H∞ (Y |Z) > k.

The equivalence between the HILL and Metric-type Entropy. It has been observed
that the Metric Entropy is more convenient for proving leakage-related results
and, in fact, appears in all such proofs more or less implicitly. Fortunately, there
exists a conversion from the Metric Entropy (against real-valued circuits) to
HILL Entropy [BSW03]. This result in its full generality can be stated as follows:

Theorem 1 (Generalization of [BSW03], Thm. 5.2). Let P be the set of all
probability measures over Ω. Suppose that we are given a class D of [0, 1]-valued
functions on Ω, with the following property: if D ∈ D then Dc =def

1−D ∈ D.
For δ > 0, let D′ be the class consisting of all convex combinations of length
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O
(

log |Ω|
δ2

)
over D. Let C ⊂ P be any arbitrary convex subset of probability

measures and X ∈ P be a fixed distribution. Consider the following statements:

(a) X is (D, ǫ+ δ) indistinguishable from some distribution Y ∈ C
(b) X is (D′, ǫ) indistinguishable from the set of all distribution Y ∈ C

Then (b) implies (a).

This more general statement follows by inspection of the original proof.

Remark 1. By choosing Ω = {0, 1}n+m, a random variable Z ∈ {0, 1}m and C
to be the set of all distributions (Y, Z) satisfying H∞ (Y |Z) > k or alternatively

H̃∞ (Y |Z) > k, we obtain the conversion from Metric Conditional Entropy to
HILL Conditional Entropy, for both: the worst and average case variants.

3.2 Leakage Rules

We are now ready to state the leakage chain rule for conditional min-entropy
and compare it with its known generalizations to computational case. Generally,
we are interested in the following problem:

Suppose we have a pair of random variables (X,Z1) and we know the
conditional entropy of X given Z1. What is the lower bound on the
entropy of X given (Z1, Z2), where Z2 is some other (possibly correlated)
random variable?

In the information-theoretic case we have the following result (cf. [DORS08],
Lemma 2.2)

Lemma 2 (Leakage Chain Rule). Let X,Z1, Z2 be random variables over
{0, 1}n, {0, 1}m1, {0, 1}m2 respectively. Then

H̃∞ (X |Z1, Z2) > H̃∞ (X |Z1)−m2 (1)

In the computational framework, the first leakage-related result appeared in
[DP08] and (formulated in a different way) in [RTTV08]. The parameters were
improved next in [FR12].

Lemma 3 (Leakage Lemma [FR12]). Let X and Z be random variables over
{0, 1}n and {0, 1}m, resp. Then

H̃
Metric,(det[0,1],s′),ǫ′ (X |Z) > H

Metric,(det[0,1],s),ǫ (X)−m

where s′ = s + O(1), ǫ′ = 2mǫ and (det[0, 1], s) stands for the class of circuits
(as defined in Section 2).

Let us observe, at least under assumption that there exists an exponentially
secure pseudorandom generator, that both losses: in quantity (by m bits) and
security measured as s/ǫ (by factor almost equal to 2m) can appear simultane-
ously3 - see Theorem 10 in Appendix A.

3 The question whether it can happen was raised in [FR12]



8

Leakage Chain Rule for Computational Entropy - negative and positive results
It is a natural question to ask if the Leakage Chain Rule (Lemma 2) can be
“translated” into the computational version. In particular, one might be tempted
to conjecture that for X,Z1 and Z2 as in Lemma 2 it holds that

H̃
Metric,[0,1],s′,ǫ′ (X |Z1, Z2) >

?
H̃

Metric,[0,1],s,ǫ (X |Z1)−m2, (2)

with the security loss of factor 2m2 or poly (2m2 , 1/ǫ) for the above stated in

terms of HILL entropy, where by the security loss we mean s′

ǫ′ /
s
ǫ (reduces to

ǫ/ǫ′ if s′ ≈ s). Unfortunately, this conjecture is false in general [KPW13]. On
the positive side, some progress towards proving it for restricted definitions of
entropy has been recently made [FR12, CKLR11, Rey11, GW10]. In [FR12], the
authors use an assumption called decomposability:

Definition 8 ([FR12]). Let X,Z be as in Lemma 3. Given the parameter s,
we say that the decomposable metric-entropy of X conditioned on Z is at least
k and denote H̃

Metric-d,[0,1],s,ǫ (X |Z) > k, if for every z

H̃
Metric,[0,1],s,ǫ(z) (X |Z = z) > k(z)

where ǫ(z), k(z) are some numbers satisfying E
[
2−k(Z)

]
= 2−k and E [ǫ(Z)] 6 ǫ.

Using this definition they are able to prove the following.

Theorem 2 ([FR12]). Let X,Z1, Z2 be as in Lemma 2. Then for s′ ≈ s, and
ǫ′ = 2m2ǫ, we have

H̃
Metric-d,[0,1],s′,ǫ′ (X |Z1, Z2 ) > H̃

Metric-d,[0,1],s,ǫ (X |Z1 )− |Z2|
In the other approach [CKLR11], the authors use some samplability assumptions.

Theorem 3 ([CKLR11]). Let X,Z1, Z2 be as above. Suppose that there exists
a random variable Y ′ with the following properties: (a) H∞ (Y ′|Z1) > k, the
pair (Y ′, Z1), (X,Z1) is (s, ǫ) indistinguishable and (b) there exists a randomized
circuit Γ of complexity sΓ , which receives on its input z ∈ supp(Z1) and return
samples of Y ′|Z1 = z1. Then for s′ = Ω (s · 2−m2δ − sΓ ) , ǫ

′ ≈ ǫ+ δ we have

H
Metric,[0,1],s′,ǫ′ (X |Z1, Z2) > H

Metric,[0,1],s,ǫ(X |Z1)− |Z2| − log(1/δ).

Finally, there is yet another result related to the chain rule problem, due to
[GW10]. The authors prove a version of 3 for using a nonstandard definition
of Metric Conditional Min-Entropy, which they call the relaxed computational
entropy. The difference is in Layer (a) of the definition: they require (X,Z),
to be indistinguishable from all distribution (Y, Z ′) satisfying H∞ (Y |Z ′) > k,
where– in comparison to Definition 6– Z ′ is not necessarily equal to Z. As ob-
served in [Rey11], one can easily generalize their approach to prove an “efficient”
computational version of 2 for this definition, with a loss of a factor at most
poly

(
2m2 , ǫ−1

)
in security. It seems however, that in the context of leakage Defi-

nition 7 and 6 are more suitable, because Z can be what an adversary might have
learned about X [CKLR11]; see also the conclusions in [KPW13]. Being inter-
ested in applications in leakage cryptography, we follow the standard definition
of the computational entropy in this paper.



9

4 Modulus Entropy

Our definition is a bit different than Definition 8 .

Definition 9 (Modulus Metric Entropy). Let X ∈ {0, 1}n and Z ∈ {0, 1}m
be random variables. Given ǫ > 0 and a class of deterministic boolean functions
D, we say that X conditioned on Z has modulus entropy at least k against
(D, ǫ), and denote it by H̃

|Metric|,D,ǫ (X |Z) > k, if for any D ∈ D there exists a

random variable Y ∈ {0, 1}n, satisfying H̃∞(Y |Z) > k, such that

Ez←Z

∣∣Ex←(X|Z=z)D(x, z)−Ex←(Y |Z=z)D(x, z)
∣∣ 6 ǫ (3)

The definition above, formulated for the average-case conditional entropy, can be
stated also for the worst-case version, by replacing H̃∞ with H∞. Using Lemma
1 we obtain immediately a conversion (with some loss) between them:

Lemma 4. Suppose that H̃|Metric|,D,ǫ (X |Z) > k. Then H
|Metric|,D,ǫ+δ (X |Z) >

k − log(1/δ).

Intuitions and motivations behind modulus entropy. The only difference between
Def. 7 and Def. 9 is that they differ in order of the expectation and absolute value
signs. Thus, by the triangle inequality, the Modulus Entropy is smaller than Met-
ric Entropy. However, they are not necessarily equal in general. Indeed, for D
distinguishing between (X,Z) and (Y, Z) with the advantage no greater than ǫ,
contributions to this advantage from particular values of z, given by the expres-
sions ǫD(z) = Ex←X|Z=zD(x, z) − Ex←Y |Z=zD(x, z) can differ in signs. For a
few values z we can ”flip" the output of D(·, z) as to ensure that all their contri-
butions are of the same sign; this is however not possible if Z is to long, unless we
lose much in efficiency. Thus |Ez←ZǫD(z)| 6 ǫ does not imply Ez←Z |ǫD(z)| 6 ǫ,
which is required by inequality (3). In comparison to Definition 8, our approach
is far more general as allow ǫ(z) and k(z) to be dependent on a chosen D.

We stress that condition 3 is not unnatural. Its purpose is to give much more
control over the particular contributions to the advantage, corresponding to the
outcomes of Z. For instance, Dodis et al. in [DY13] control the average square

of the contributions to the advantage (by the inequality Ez←Z |ǫD(z)|2 6 ǫ),
defining ”squared indistinguishability".

4.1 Leakage Chain Rule for Modulus Entropy

We now show how modulus entropy allows us to prove a leakage chain rule. We
start with the reformulation of the leakage lemma proved in [FR12].

Lemma 5 (Corollary from [FR12], Proof of Lemma 3.5). Let D be a
boolean function, (X,Z) as in Lemma 3. Suppose |Ex←XD (x)−Ex←Y D (x)| 6
ǫ, where H∞(Y ) > k. Then for any z ∈ supp(Z) there exist a distribution Y ′z
such that H∞ (Y ′z ) > k − log(1/PZ(z)) and

∣∣Ex←X|Z=zD (x)−Ex←Y ′
z
D (x)

∣∣ 6
ǫ/P(Z = z).
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Now we are in position to prove the following (tight) chain rule.

Theorem 4. Let X,Z1, Z2 be as in Lemma 2 and D be a class of boolean func-
tions. Suppose that H̃|Metric|,D,ǫ (X |Z1) > k. Then H̃

|Metric|,D,2m2ǫ (X |Z1, Z2) >
k −m2.

Proof. Fix a distinguisher D = D (x, z1, z2). We will construct a distribution

(Y, Z1, Z2) such that H̃∞ (Y |Z1, Z2 ) > k−m2 and D cannot distinguish (X,Z1, Z2)
from (Y, Z1, Z2) with advantage better than 2m2ǫ. For any z2, let (Y z2 , Z1) be a
distribution corresponding to D (·, z2) in the sense of Definition 9 (we write Y z2

as this distribution depends also on z2). More precisely, (Y z2 , Z1) is such that

Ez1←Z1

∣∣Ex←(X|Z1=z1)D(x, z1, z2)−Ex←(Y z2 |Z1=z1)D(x, z1, z2)
∣∣

︸ ︷︷ ︸
ǫD(z1,z2):=

6 ǫ (4)

holds (cf. (3) in Definition 9). For every pair (z1, z2) let ǫD(z1, z2) denote the
value within the first expected value sign, as indicated on (4). Now, Lemma 5
implies that for any z1, z2 there exists a distribution Y ′z1,z2 such that

∣∣ED (X |Z1 = z1, Z2 = z2 , z1, z2)−ED
(
Y ′z1,z2 , z1, z2

)∣∣ 6 ǫD (z1, z2)

PZ2|Z1=z1 (z2)
(5)

and its min-entropy H∞
(
Y ′z1,z2

)
is at least k (z1, z2), where

k (z1, z2) > H∞ (Y z2 |Z1 = z1)− log(1/PZ2|Z1=z1 (z2)) (6)

Define (Y, Z1, Z2) by (Y |Z1 = z1, Z2 = z2 )
d
=Y ′z1,z2 . Now we have

E(z1,z2)←(Z1,Z2)

6
ǫD (z1,z2)

P(Z2=z2|Z1=z1)
(by(5))

︷ ︸︸ ︷∣∣∣Ex←X|Z1=z1,Z2=z2 D (x, z1, z2)−Ex←Y ′
z1,z2

D (x, z1, z2)
∣∣∣

6
∑

z1,z2

P((Z1, Z2) = (z1, z2)) ·
ǫD (z1, z2)

P (Z2 = z2|Z1 = z1)

=
∑

z1,z2

P (Z1 = z1) ǫD (z1, z2) =
∑

z2

Ez1←Z1ǫD (z1, z2) 6
∑

z2

ǫ = 2m2ǫ

where the last inequality follows from (4). It remains to prove that

H̃∞ (Y |Z1, Z2 ) > k −m2. We have:

E(z1,z2)←(Z1,Z2)2
−k(z1,z2) 6 E(z1,z2)←(Z1,Z2)

[
max
x

P [Y z2 = x|Z1 = z1]

PZ2|Z1=z1(z2)

]

=
∑

z1,z2

max
x

P [Y z2 = x|Z1 = z1] ·PZ1(z1)

=
∑

z2

Ez1←Z1

[
max

x
P [Y z2 = x|Z1 = z1]

]
6 2m2 · 2−k

where the first step follows from (6) and the last one from H̃∞ (Y z2 |Z1) > k.
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Remark 2. Note that the entropy obtained after the leakage is again the Modu-
lus Entropy. Thus, one can apply this theorem several times. The samplability
restriction in Thm. 3 does not have this feature.

Chain Rule for entropy against different circuits classes Theorem 4 deals only
with entropy against boolean deterministic distinguishers D. It is natural to ask
if one could replace this class with a more general one, in particular, would the
theorem still hold if, in its statement, D was equal to the class of randomized
or real-valued distinguishers. We answer this question affirmatively in Lemma 6
below. To make its statement as strong as possible, in the assumption we use the
Modulus Entropy against boolean deterministic circuits as the weakest option
and the HILL Entropy as the strongest notion in the assertion.4

Lemma 6. Let X,Z be as in Theorem 3. Suppose that H̃|Metric|,s,ǫ (X |Z) > k.

Then H
HILL,s′,ǫ′ (X |Z) > k′, where ǫ′ = ǫ+2δ, s′ = s ·O

(
δ2

n+m

)
, k′ = k− log 1

δ .

Proof. If H̃|Metric|,s,ǫ (X |Z) > k then H̃
Metric,det{0,1},s,ǫ (X |Z) > k, as we pointed

out in the discussion after Lemma 4. Lemma 4 yields HMetric,det{0,1},s,ǫ+δ (X |Z) >
k − log 1

δ . Since for the Metric Worst-Case Entropy it makes no significant dif-
ference whether we use real-valued or boolean distinguishers (see Theorem 11 in

Appendix B), we obtain H̃
Metric,s′,[0,1],ǫ+δ(X |Z) > k− log 1

δ where s′ = s+O(1).
The claim follows now from Theorem 1.

5 Passing to Modulus Entropy

While the modulus entropy, as shown in Theorem 4, solves the leakage chain rule
problem, it keeps being rather a technical assumption. We will give some con-
crete examples where its definition is fulfilled, and thus admits the chain rule. In
comparison to the assertion of Theorem 4, they rely on some other assumptions
added to the Metric Entropy of X |Z. Conversion to the modulus entropy, with
estimated loss in parameters, is summarized in Table 5.
As shown, some of these assumptions were already studied in the leakage liter-
ature. The proofs of conversions will be given in the next section.

5.1 Benefits of using Modulus Entropy

To summarize, let us mention the three key features of the modulus entropy:

(a) it implies the metric entropy which is widely used in the leakage-resilient
cryptography,

(b) it allows to apply the tight chain rule multiple times, and
(c) it can be obtained from the known assumptions that guarantee the chain rule

(decomposability, samplability) and from other important or at least non-
trivial cases (squared-indistinguishability, high pseudo-entropy, NP-oracle)

4 Recall that for the HILL Entropy all kinds of circuits: deterministic boolean, deter-
ministic real valued, randomized boolean are equivalent [FR12] thus we can abbre-

viate the notation writing just H
HILL,s′,ǫ′ (X|Z).
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Additional assumptions on

H̃
Metric,{0,1},s,ǫ (X|Z) > k

Our conversion: H̃|Metric|,s′,ǫ′ (X|Z) > k′

k′ ǫ′ s′

(a) Decomposabe entropy [FR12] k ǫ s Thm. 5

(b) Samplability of Y |Z = z given z,
where (Y,Z) ∼ǫ,s (X,Z) [CKLR11]

k −O
(
log 1

ǫ

)
O (ǫ) O

(
s/ 1

ǫ2

)
Thm. 7

(c) Entropy against poly(n)-circuits, given
an access to an NP oracle over {0, 1}n k −O

(
log 1

ǫ

)
O (

√
ǫ) O

(
s/poly

(
n, 1

ǫ

)) Thm. 8
(point b)

(d) Entropy very high,
i.e. k > n−O

(
log 1

ǫ

) k −O
(
log 1

ǫ

)
O (

√
ǫ) O

(
s/m+n

ǫ3
log 1

ǫ

) Thm. 8
(point a)

(e) None k 2tǫ s−O
(
2m−tm

)
Thm. 6

(f) X is (ǫ, s) squared-indistinguishable

from Y given Z, and H̃∞ (Y |Z) > k
k

√
ǫ s Thm. 9

Table 1. Conversions to the modulus entropy

Modulus Entropy vs Samplability and Decomposability Comparing the conver-
sion results in the table with Theorems 2 and 3, we see that Modulus Entropy is
a weaker restriction and still guarantees the chain rule with at least comparable
quality. Starting from decomposability or samplability, converting to the Modu-
lus Entropy first and applying the chain rule next (and possibly translating into
the HILL entropy) yields the same loss as the direct use of that assumptions.

6 Proofs of Conversion Results

Throughout all the proofs in this section, X,Z are random variables over {0, 1}n
and {0, 1}m respectively. The proofs are based on the following technical lemma.

Lemma 7. Let X,Z be random variables over {0, 1}n, {0, 1}m. Suppose that D
is such that for all distributions (Y, Z) with H∞ (Y |Z) > k the following holds:

Ez←Z

∣∣Ex←X|Z=zD (x, z)−Ex←Y |Z=zD (x, z)
∣∣ > ǫ. (7)

Then either for D′ = D or for D′ = Dc we have that for all distributions (Y, Z)
with H∞ (Y |Z) > k the following is true:

P(x,z)←(X,Z)

[
D′(x, z)−Ex←Y |Z=zD

′ (x, z) > ǫ/4
]
> ǫ2/16.

Proof. Consider the distribution (Y +, Z) which minimizes the left-hand side of
(7). Define ǫ(z) :=

∣∣Ex←X|Z=zD (x, z)−Ex←Y +|Z=zD (x, z)
∣∣. Observe that

min
(Y,Z):H∞(Y |Z)>k

Ez←Z

∣∣Ex←X|Z=zD (x, z)−Ex←Y |Z=zD (x, z)
∣∣ =

= Ez←Z

[
min

Yz:H∞(Yz)>k

∣∣Ex←X|Z=zD (x, z)−Ex←Yz
D (x, z)

∣∣
]
.

Therefore, for every distribution Yz with min-entropy H∞ (Yz) > k we have
∣∣Ex←X|Z=zD (x, z)−Ex←Y |Z=zD (x, z)

∣∣ > ǫ(z)
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Note that if ǫ(z) > 0 then either (a) Ex←X|Z=zD (x, z) − Ex←Y |Z=zD (x, z) >
ǫ(z) or (b) Ex←X|Z=zD (x, z) − Ex←Y |Z=zD (x, z) 6 −ǫ(z) holds for all Yz

with H∞ (Yz) > k. This follows from the convexity of the set of distribu-
tions H∞ (Yz) > k, which in turn implies that all values of Ex←X|z=zD (x, z)−
Ex←Yz

D (x, z), over the choice of Yz, form a convex set. Therefore

Ex←X|z=zD
′ (x, z)−Ex←Yz

D′ (x, z) > ǫ(z)

holds for all Yz with H∞ (Yz) > k, where D′ is defined, depending on z, by

D′(x, z) :=





D(x, z) in case (a)
Dc(x, z) in case (b)
0 if ǫ(z) = 0.

(8)

Since ǫ(z) > ǫ
2 holds5 with probability at least ǫ

2 over z ← Z, we get

Ex←X|Z=zD
′ (x, z)− max

Yz:H∞(Yz)>k
Ex←Y |Z=zD

′ (x, z) > ǫ/2

with probability at least ǫ
2 over z ← Z. For every such z we obtain

Px←X|Z=z

[
D′(x, z)− max

Yz:H∞(Yz)>k
Ex←Y |Z=zD

′ (x, z) >
ǫ

4

]
>

ǫ

4

Taking expectation over z ← Z we conclude that

P(x,z)←(X,Z)

[
D′(x, z)− max

Yz:H∞(Yz)>k
ED′ (Yz , z) >

ǫ

4

]
>

ǫ2

8
.

Therefore, either for D′ = D or D′ = Dc the probability on the left-hand side

of the above inequality needs to be at least 1
2 · ǫ

2

8 = ǫ2

16 , which proves the claim.

6.1 Decomposable entropy

We start by noticing that Definition 8 is stronger than our Definition 9.

Theorem 5. Suppose H̃
Metric-d,s,ǫ (X |Z) > k. Then H̃

|Metric|,s,ǫ (X |Z) > k.

Proof. Fix a distinguisher D = D(x, z). According to Def. 8, for every z we have a
distribution Yz such that H∞ (Yz) > k(z) and |ED(X |Z = z)−ED(Yz)| 6 ǫ(z).

Consider a distribution (Y, Z) defined by (Y |Z = z)
d
=Yz . Since Ez←Zǫ(z) 6 ǫ,

we obtain inequality (3). In turn, the assumptions on k(z) implies H̃∞ (Y |Z) > k.

The following theorem converts Metric Entropy into Modulus Entropy (cf. case
(e) in Table 5). Its principal significance is that the equivalence between both
definitions is established, provided that Z is sufficiently short (grows at most
logarithmically in the security parameters).

5 Throughout the proofs, we will make use of the simple Markov-style principle: let
X be a non-negative random variable bounded by M . Then X > 1

2M
EX with

probability at least 1

2
EX.
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Theorem 6. Suppose that HMetric,{0,1},s,ǫ(X |Z) > k. Then H
|Metric|,s′,ǫ′ (X |Z) >

k, where ǫ′ = 2tǫ and s′ = s−O (2m−tm).

Proof. For the sake of contradiction suppose that for some D of complexity s′

and for every (Y, Z) such that H∞(Y |Z) > k we have that

Ez←Z

∣∣Ex←X|Z=zD (x, z)−Ex←Y |Z=zD (x, z)
∣∣ > ǫ′.

Applying the same reasoning as at the beginning of the proof of Lemma 7, we
obtain that there exist a distinguisher D′ (cf. (8)) such that for every distribution
Yz with H∞ (Yz) > k it holds that

Ex←X|z=zD
′ (x, z)−Ex←Yz

D′ (x, z) > ǫ′(z), (9)

where Ez←Zǫ
′(z) > ǫ′. Thus, for every (Y, Z) such that H∞ (Y |Z) > k we have

E(x,z)←(X,Z)D
′ (x, z)−E(x,z)←(Y,Z)D

′ (x, z) > Ez←Zǫ
′(z) > ǫ′.

Recall that in the proof of Lemma 7, the value D′(x, z) is defined as equal to
D(x, z) or Dc(x, z) or 0, depending on z. Instead, we can follow that construction
with respect to only 2m−t “heaviest” values z maximizing P(Z = z)ǫ′(z) and set-
ting D′ = 0 for other z. The obtained circuit is of size at most s′+O (2m−tm) = s
and distinguishes with the advantage at least 2−tǫ′ = ǫ.

6.2 The samplability assumption

In the next theorem we deal with the samplability assumption used in [CKLR11].

Theorem 7. Suppose that (X,Z) is (s, ǫ)-indistinguishable from a distribution
(Y ′, Z), with the following properties (a) H∞ (Y ′|Z) > k and (b) there exists a
randomized circuit Γ receiving on its input z ∈ supp(Z) and returning samples
from the distribution Y ′|Z = z. Then

H
|Metric|,s· ǫ264−size(Γ ),8

√
ǫ (X |Z) > k − 2 log (1/ǫ)− 7.

Proof. Suppose that H|Metric|,s′,ǫ′ (X |Z) < k′, where k′ = k− 2 log (1/ǫ)− 7 and
ǫ′ = ǫ2/64 and s′ = ǫ2s/64 − size(Γ ). Thus, for some D of size s′ and every
(Y, Z) with H∞(Y |Z) > k′ we have

Ez←Z

∣∣Ex←X|Z=zD (x, z)−Ex←Y |Z=zD (x, z)
∣∣ > ǫ′. (10)

Let D′ be a distinguisher obtained from Lemma 7. Consider the following D′′:
on input (x, z), which comes either from (X,Z) or (Y ′, Z) do the following:

– for i = 1 to ℓ =
⌈
64
ǫ2

⌉
− 1 sample yi ← Y ′|Z = z using the circuit Γ ,

– if D′(x, z) > max
i=1,...,l

D′ (yi, z) — output 1, otherwise output 0.

Clearly D′′ has complexity at most (ℓ+ 1) · (s′ + size(Γ )) = s. We will show
that it gives sufficient distingishing advantage. We start with the following easy
observation, used implicitly in [CKLR11] (the proof of Lemma 16).
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Lemma 8. For D be a [0, 1]-valued function. If Y + is distributed uniformly over
MaxkD, then for any Y with H∞(Y ) > k + log 1

δ we have

Px←Y [D(x) −Ex←Y +D(x) > 0] < δ.

The proof that D′′ is indeed a good distinguisher consists of two steps

Claim. On input (x, z)← (X,Z) the circuit D′′ outputs 1 w.p. at least ǫ′2/32.

Proof. Consider a distribution (Y +, Z) such that for every z the distribution
Y +|Z = z is uniform over MaxkD(·,z). Since yi are independent and distributed
according to Y ′|Z = z, it follows from Lemma 8 that Ex←Y +|Z=zD

′ (x) >

max
i

D′(yi, z) holds with probability at least
(
1− 2k

′−k
)ℓ

> 1 − ℓ · 2k′−k > 1
2 .

Now, Lemma 7 yields D′(x, z) > Ex←Y +|Z=zD
′ (x) with probability at least ǫ′2

16
over (x, z). Since sampling yi is independent from (X,Z), the claim follows.

Claim. On input (y, z)← (Y ′, Z) the circuit D′′ outputs 1 w.p. at most ǫ′2/64.

Proof. Note that y and y1, . . . , yℓ are all independent copies of the distributions

Y ′|Z = z. Therefore probability that y > maxi=1,...,l yi is at most 1
ℓ+1 6

ǫ′2

64 .

From the last two claims we get P (D′′ (X,Z) = 1)−P (D′′ (Y, Z) = 1) > ǫ′2/64,
which completes the proof of Theorem 7.

6.3 Approximate counting

It turns out that using a technique called the approximate counting, one can show
a conversion from metric to modulus entropy. However, we need some additional
assumptions to achieve both: high accuracy and efficiency in counting:

Theorem 8. Suppose that one of the following is true:

(a) H
Metric,rand{0,1},s,ǫ(X |Z) > k against circuits of size s,

(b) H
Metric,{0,1},s,ǫ(X |Z) > k against circuits of size s = poly(n), with an

access to an NP-oracle.

Then we have H
|Metric|,s′,ǫ′ (X |Z) > k′, where ǫ′ = 8

√
ǫ, k′ = k − log 1

ǫ and s′

given by s′ = O
(
s · 2k−n−2·ǫ

log(1/ǫ)

)
in case (a) or s′ = poly (n, ǫ) in case (b).

Note that to make the conversion in (a) efficient, we need the assumption that k
is large as it is easy to see that if k is much smaller than n then, in the formula
that gives the bound on s′, the 2k−n−2 factor starts to dominate over ǫ.

Proof (Proof of Theorem 8). Suppose that H|Metric|,s′,ǫ′ (X |Z) < k′. Then Lemma
7 implies that for all Y ∈ {0, 1}n with H∞(Y |Z) > k′ and some distinguisher
D′ of complexity s′ + 1 we have

P(x,z)←(X,Z) [D
′(x, z)−ED′ (Y |Z = z, z) > ǫ′/4] > ǫ′2/16. (11)
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Since
max

Yz:H∞(Yz)>k′
ED (Yz, z) = min

(
1, 2−k

′ |D′(·, z)|
)

(12)

hence, combining this with (11), we obtain

P(x,z)←(X,Z)

[
D′(x, z)− 2−k

′ |D′ (·, z)| > ǫ′/4
]
> ǫ′2/16. (13)

We now show that there exists a randomized function h such that for every z

P

(∣∣∣h(z)− 2−k
′ |D′ (·, z)|

∣∣∣ 6 ǫ′/8
)
> 1− ǫ′2/64, (14)

and h(z) is samplable for all z’s satisfying |D′ (·, z)| < 2k
′

. More precisely: there

exists a randomized circuit of size O
(
s′ · 2n−k

ǫ2 log 1
ǫ

)
= s, which computes h(z)

correctly for every such z. This is a corollary from the following claim.

Claim. Let D be a boolean circuit such that |D| 6 2k. Then for δ′, δ′′ ∈
(
0, 1

2

)
,

ℓ > 4·2n−k 1
δ′2 log

1
δ′′ and (Ui)i=1,...,ℓ being independent and uniform over {0, 1}n,

the following inequality holds:

P

[∣∣∣∣∣ℓ
−1

ℓ∑

i=1

D (Ui)− 2−n|D|
∣∣∣∣∣ > 2k−nδ′

]
6 2δ′′.

Proof. Define g = 1
ℓ

∑ℓ
i=1 D (Ui). The Chernoff Inequality6 yields

P [|g −ED(U)| > δ] 6 2max
(
e−

δ2ℓ2

4σ2 , e−
ℓδ
2

)
,

where σ2 = Var
(∑ℓ

i=1 D (Ui)
)
. Since Var (D (Ui)) = 2k−n

(
1− 2k−n

)
we have

σ2 = ℓ · 2k−n
(
1− 2k−n

)
. By setting 2n−kδ = δ′ we get δ2ℓ2

4σ2 >
2k−nℓδ′2

4 and ℓδ
2 >

2k−nℓδ′

2 . Since ED(U) = |D|/2n, choosing ℓ sufficiently large so that 2k−nℓδ′2 >

4 log(1/δ′′), we obtain P
[∣∣g · 2n−k − |D| · 2−k

∣∣ > δ′
]
6 2e− log 1

δ′′ < 2δ′′.

It follows from the claim that h(z) = 2k−n

ℓ

∑ℓ
i=1 D (Ui, z) is a required sampler.

Consider the following distinguisher D′′: on input (x, z), which comes either

from (X,Z) or (Y, Z), return 1 iff D′(x, z) > h(z) + ǫ′

8 . We will prove that D′′

distinguishes between (X,Z) and all (Y, Z) satisfying H∞ (Y |Z) > k. Note that

if D′′(x, z) = 1 then h(z) < 1 − ǫ′

8 and hence |D′ (·, z)| < 2k
′

. Especially, D′′ is
of complexity at most s. Now, inequalities (14) and (13) yield

P(x,z)←(X,Z) [D
′(x, z) > h(z) + ǫ′/8] >

P(x,z)←(X,Z)

[
D′(x, z) > 2−k

′ |D′ (·, z)|+ ǫ′/4
]
− ǫ′2/64 > 3ǫ′2/64,

6 We use the following version: Let Xi be random variables satisfying |Xi −EXi| 6
1 and X =

∑
i
Xi. Then P [|X −EX| > λσ] 6 2min

(
e−

λ2

4 , e−
λσ
2

)
, where σ =

Var(X)
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Let k′ = k+ log(1δ where δ = ǫ′2

64 . From (12), (13), (14) and Lemma 8, we obtain

P(x,z)←(Y,Z) [D
′(x, z) > h(z) + ǫ′/8] 6

P(x,z)←(Y,Z)

[
D′(x, z) > 2−k

′ |D′ (·, z)|
]
+ ǫ′2/64 6 ǫ′2/32.

Combining the last two estimates yields, if only H∞(Y |Z) > k′, the inequality

P [D′(X,Z) = 1]−P [D′(Y, Z) = 1] > ǫ′2/64

which completes the proof for case (a). In case (b), we proceed in the same way
but we compute numbers h(z) using an NP oracle. The basic result we use can
be stated as follows:

Lemma 9. [OG09] There is a probabilistic algorithm which, given a boolean
circuit D over {0, 1}n of size poly(n) and a natural number M , decides, with
success probability at least 3

4 , whether 1
4M < |D| < 4M , in time poly (n), using

an oracle for NP.

Let us make three important observations:

– The success probability 3
4 can be amplified to 1 − δ, by repeating the algo-

rithm O
(
log 1

δ

)
times and taking the majority answer.

– The factor 4 can be improved to 1 + γ, by running the algorithm on the
circuit D′ = D1 ∧ . . . ∧Dk, where Di for i = 1, . . . , k are copies of D and k
is such that (1 + γ)k 6 4.

Hence, there is an algorithm which, with probability at least 1 − δ, computes a

value g such that (1− γ)M < |D| < (1 + γ)M , in time poly
(
n, 1

γ , log
1
δ

)
, using

an oracle for NP. For every z, let M(z) be a value obtained by applying this

algorithm to the circuit D′(·, z) and γ = ǫ′

16 , δ = 1− ǫ′2

64 . Define h(z) := 2−kM(z).

If |D′(·, z)| < 2k
′

, then |M(z)− |D′(·, z)|| 6 2 · 2k′ · ǫ′

16 holds with probability at

least 1− ǫ′2

64 , and thus for such values z holds the same estimate as in (14). We
proceed further with h as in the previous proof.

6.4 Squared Indistinguishability

Theorem 9. We say that X is (s, ǫ) squared-indistinguishable from Y given Z,

if for every circuit D of size s, Ez← [ED(X |Z = z, z)−ED(Y |Z = z, z)]
2
6 ǫ

(motivated by [DY13]). Suppose that X |Z is (s, ǫ) squared-indistinguishable from

Y given Z, and H̃∞ (Y |Z) > k. Then H
|Metric|,s,

√
ǫ (X |Z) > k.

Proof. From the inequality between the first and the second moment we obtain:

Ez←Z |ED(X |Z = z, z)−ED(Y |Z = z, z)| 6
(
Ez←Z [ED(X |Z = z, z)−ED(Y |Z = z, z)]2

) 1
2

6
√
ǫ. (15)
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A Tightness of the Leakage Lemma

Lemma 10. Let X ∈ {0, 1}n be a random variable, f : {0, 1}m → {0, 1}n be a

deterministic circuit of size s and ǫ < 1
12 . Then H̃

Metric,det{0,1},s,ǫ (f(X)|X) < 3.

Proof. Consider the following distinguisher D: on the input (y, x), where x ∈
{0, 1}m and y ∈ {0, 1}n, run f(x) and return 1 iff f(x) = y. Then for every x
we get D(f(x), x) = 1. Let Y be any random variable over {0, 1}n such that

H̃∞(Y |X) > 3. Then by Lemma 1, with probability 2
3 over x ← X we have

H∞(Y |X = x) > 3− log2(3). Since D(y, x) = 0 if y 6= x, for any such x we have
Ey←Y |X=xD (y, x) 6 2−(3−log2(3)) 6 3

8 , and thus, with probability 2
3 over x← X ,

we get Ey←f(X)|X=xD (y, x) − Ey←Y |X=xD (y, x) > 5
8 . Taking the expectation

over x← X we obtain finally ED(f(X), X)−ED(Y,X) > 2
3 · 58 − 1

3 · 1 = 1
12 .

We use this lemma to show that the esimate in Lemma 3 cannot be improved:

Theorem 10 (Tightness of the estimate in Lemma 3). Suppose that there
exists an exponentially secure pseudorandom generator f . Then for every m and

C > 0 we have H
HILL,rand{0,1},2O(m), 1

2O(m) (f (Um)) > m+C and simultaneously

H̃
Metric,det{0,1},poly(m), 1

poly(m) (f (Um)|Um) 6 3.

Proof. The first inequality follows from the definition of the exponentially secure
pseudorandom generator. The second inequality is implied by Lemma 10.

B Metric Entropy vs Different Kinds of Distinugishers

Below we prove the equivalence between boolean and real valued distinguishers
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Theorem 11. For any random variables X,Z over {0, 1}n, {0, 1}m we have
H

Metric,det[0,1],s′,ǫ(X |Z) = H
Metric,det{0,1},s,ǫ(X |Z), where s′ ≈ s.

Proof. We only need to prove H
Metric,det[0,1],s′,ǫ (X |Z) > H

Metric,det{0,1},s,ǫ
∞ as

the other direction is trivial (because the class (det[0, 1], s) is larger than (det{0, 1}, s)).
Suppose that HMetric,det[0,1],s,ǫ (X |Z) < k. Then for some D and all Y satisfying
H∞ (X |Z) > k we have

∣∣E(x,z)←(X,Z)D(x, z)−E(x,z)←(Y,Z)D(x, z)
∣∣ > ǫ. Apply-

ing the same reasoning as in Thm. 6 we can replace D with D′, which is equal
either to D or to Dc, obtaining for all distributions H∞ (Y |Z) > k, the following:

ED′(X,Z)−ED′(Y, Z) > ǫ.

Consider the distribution (Y +, Z) minimizing the left side of the above inequal-
ity. Equivalently, it maximizes the expected value of D′ under the condition
H∞ (Y |Z) > k. Since this condition means that H∞ (Y +|Z = z) > k for all
z, we conclude that Y +|Z = z, for fixed z, is distributed over 2k values of x
giving the greatest values of D′(x, z). Calculating the expected values in the last
inequality via integration of the tail yields

∫

t∈[0,1]

P(x,z)←(X,Z) [D(x, z) > t] dt−
∫

t∈[0,1]

P(x,z)←(Y +,Z) [D(x, z) > t] dt > ǫ

therefore for some number t ∈ (0, 1), the following holds:

P(x,z)←(X,Z) [D(x, z) > t] > P(x,z)←(Y +,Z) [D(x, z) > t] + ǫ.

Let D′′ be a {0, 1}-distinguisher that for every (x, z) outputs 1 iff D(x, z) > t.
Clearly D′′ is of size s+O(1) and satisfies

E(x,z)←(X,Z)D
′′(x, z) > E(x,z)←(Y +,Z)D

′′(x, z) + ǫ.

We assumed that (Y, Z) maximizes ED′(Y, Z). Now we argue that (Y, Z) is also
maximal for D′′. We know that for every z the distribution Yz is flat over the
set MaxkD′(·,z) of 2k values of x corresponding to largest values of D′(x, z). It is

easy to see that MaxkD′(·,z) = MaxkD′′(·,z). Therefore, we have shown in fact that

E(x,z)←(X,Z)D
′′(x, z)− max

(Y,Z):H∞(Y |Z)>k
E(x,z)←(Y,Z)D

′′(x, z) > ǫ,

which means exactly that H
Metric,{0,1},s′,ǫ (X |Z) < k.
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