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Abstract. With the growth of wireless networks, security has become a funda-
mental issue in wireless communications due to the broadcast nature of these
networks. In this work, we consider MIMO wiretap channels ina fast fading
environment, for which the overall performance is characterized by the ergodic
MIMO secrecy rate. Unfortunately, the direct solution to finding ergodic secrecy
rates is prohibitive due to the expectations in the rates expressions in this set-
ting. To overcome this difficulty, we invoke the large-system assumption, which
allows a deterministic approximation to the ergodic mutualinformation. Leverag-
ing results from random matrix theory, we are able to characterize the achievable
ergodic secrecy rates. Based on this characterization, we address the problem of
covariance optimization at the transmitter. Our numericalresults demonstrate a
good match between the large-system approximation and the actual simulated
secrecy rates, as well as some interesting features of the precoder optimization.

Keywords: MIMO wiretap channel, Large-system approximation, Randomma-
trix theory, Beamforming

1 Introduction

Wireless networks have developed considerably over the last few decades. As a conse-
quence of the broadcast nature of these networks, communications can potentially be
attacked by malicious parties, and therefore, security hastaken a fundamental role in
todays communications. The notion of physical layer security (or information-theoretic
security) was developed by Wyner in his fundamental work in [1]. Thewiretap chan-
nel, which is the simplest model to study secrecy in communications, was introduced
therein, consisting of a transmitter and two communicationchannels: to a legitimate
receiver and to an eavesdropper.

Thesecrecy capacityof the wiretap channel is then defined as the maximum trans-
mission rate from the transmitter to the receiver, providedthat the eavesdropper does not
get any information. Finding the aforementioned secrecy capacity is a difficult problem
in general, due to its non-convex nature.
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Notwithstanding, multiple-input multiple-output (MIMO)communications [2], [3]
have become an emerging topic during the last two decades dueto their promising
capacity gains. Similar to communication networks withoutsecrecy constraints, the
overall performance for channels with secrecy constraintsis limited by the channels
conditions. In particular, the legitimate parties need to have some advantage over the
eavesdropper in terms of channel quality to guarantee secure communications. Many
techniques have been proposed to overcome this limitation;one example is the use of
multi-antenna systems, as in [4], [5], [6] and [7], where thesecrecy capacity of the
MIMO wiretap channel with multiple eavesdroppers (MIMOME)was characterized.
These results extend to the problem of secret-key agreementover wireless channels,
as in [8] where key-distillation strategies over quasi-static fading channels were inves-
tigated, and [9] where the secret-key capacity of MIMO ergodic channels was con-
sidered. Finding the precoder matrix achieving the MIMO secrecy capacity has been
attempted in [7], [4], however the general form of the optimal covariance matrix re-
mains unknown. Nevertheless, in certain regimes, the optimal signaling strategies have
been derived. The high SNR case was investigated in [7], while the optimal transmitting
scheme at low SNR was found in [10]. In [11], the authors characterized the secrecy
capacity for some special cases of channel matrices with certain rank properties. The
special case where the transmitter and legitimate receiverhave two antennas, whereas
the eavesdropper has a single antenna, has been addressed in[5]. More recently, the
same problem has been investigated in a computationally efficient way in [12] by de-
veloping thegeneralized singular value decomposition(GSVD)-based beamforming at
the transmitter, and deriving the optimal transmit covariance matrix. Optimal signalling
in presence of an isotropic eavesdropper has been recently investigated in [13]. In par-
ticular the authors in [13] found a close-formed expressionfor the optimal covariance
matrix in the isotropic case as well as lower and upper boundson the secrecy capacity
for the general case.

All the references above considered quasi-static scenario, where the changes in
channel gains were slow enough, so that the transmitter could adapt its radiation pat-
tern to each channel realization. If, on the contrary, wireless channels are subject to
ergodic fading, a codeword spans many fading realizations and traditional notion of se-
crecy rate is no longer suitable. Hence, the concept ofergodic secrecy rate, proposed
in [14] and [15], has to be used to characterize the performance of the wiretap chan-
nel. In [16], [17] and [18] the problem of finding achievable ergodic secrecy rates was
addressed for multiple-input single-output (MISO) channels. In the context of MIMO
channels, in [19], following a previous work in [20], the authors characterize the se-
crecy capacity of an uncorrelated MIMOME channel with only statistical channel state
information (CSI) at the transmitter and investigate the optimal input covariance matrix
under a total power constraint.

Unfortunately, for general fast-fading MIMOME channels evaluation of ergodic se-
crecy rates is problematic due to the necessity of averagingover the channel realiza-
tions. Hence, asymptotic approaches based on methods fromrandom matrix theory[21]
have been proposed to circumvent these difficulties. Typically, such techniques assume
that the number of antennas at the transmitter and the receiver tend to infinity at a con-
stant rate. Then, an explicit expression – or adeterministic equivalent– of the ergodic
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mutual information (MI) is obtained. The expression is thenshown to describe well the
behavior of the systems with realistic (finite) numbers of antennas.

In this paper, we make a first step in studying the problem of the ergodic secrecy
rate maximization under power constraint in MIMO wiretap channels. After computing
the deterministic equivalents of the two MIMO channels, we address the problem of the
transmit precoder optimization. We further show that despite being capacity achieving
for a point-to-point MIMO channel, the water-filling strategy becomes a poor choice in
the wiretap setting. For instance, under the assumption that the transmitter performs the
GSVD-based beamforming, we derive the ergodic-secrecy-rate maximizing transmit
covariance matrix, which outperforms the water-filling solution.

2 System Model

PSfrag replacements
Alice Bob

Eve

HM

HE

nM

nE

Fig. 1. The MIMO wiretap channel.

Consider a scenario, where Alice, equipped with anM -antenna transmitter, wants
to communicate a message to Bob, who is equipped with anNM-antenna receiver. The
message has to be kept secret from unauthorized parties. Meanwhile, Eve tries to eaves-
drop the message with the aid of anNE-antenna receiver. The corresponding setup,
depicted in Fig. 1, has the following channel model

yM =HMx+ nM , (1a)

yE =HEx+ nE, (1b)

wherex ∼ CN (0M , IM ), nM ∼ CN (0NM , INM ), nE ∼ CN (0NE, INE), and the Kro-
necker model [22] is used,viz.,

HM =

√

ρM

M
R

1/2
M WMT

1/2
M ∈ CNM×M , (2a)

HE =

√

ρE

M
R

1/2
E W ET

1/2
E ∈ CNE×M , (2b)
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whereTM andRM are the transmit and receive correlation matrices of the channel
between Alice and Bob,T E andRE are the transmit and receive correlation matrices of
the channel between Alice and Eve, whileWM andW E have i.i.d.CN (0, 1) entries.
The channel described by (1a) is referred to as themain channel, whereas the channel
described by (1b) is called theeavesdropper channel.

For a given transmit covariance matrix,P , E{xxH}, under the assumption that
Alice uses Gaussian signals, the per-antenna achievable ergodic secrecy rate is ex-
pressed as

Rs =
1

M

[

EWM

{

log det(INM +HMPHH
M)

}

−EW E

{

log det(INE +HEPHH
E)

}

]+

,

(3)
where[·]+ = max{0, ·}. Note here the difference to [12], where quasi-static fading
scenario was considered.

For practical reasons, covariance matrixP is assumed to be designed based on the
long-termstatisticalCSI, namely,{ρM , ρE,TM ,T E,RM ,RE}. Note, however, that in
order to construct proper wiretap codes, Alice must have access to theinstantaneous
CSI, {HM ,HE}. Thus, the obtained result is regarded as a computationallyefficient
lower bound on the achievable secrecy rates.

By choosing the proper covariance matrixP , one can maximize the achievable
secrecy rate of the wiretap channel (1). The corresponding optimization problem is
formulated as

max
P

Rs

s.t. tr{P } ≤ M

P � 0M .

(4)

Unfortunately, the objective function of the above problemhas no explicit expres-
sion. To evaluate it, one has to perform averaging over the distribution ofWM andW E

using,e.g., Monte-Carlo simulation. This approach is, however, quitetime-consuming
and inefficient. Therefore, a new approach has to be applied to maximize the ergodic
secrecy rate. In the following section, we present an asymptotic expression for the er-
godic secrecy rate in the limit where dimensions of the channel matrix grow infinitely
large.

3 Achievable Ergodic Secrecy Rate

In this section, we provide the large-system approximationfor the ergodic secrecy rate
of a finite-antenna wiretap channel. We start with the following definition.

Definition 1. Given the wiretap channel (1), thelarge-system limit(LSL) is defined as
a regime, where

NM = βMM → ∞, βM = const, (5)

NE = βEM → ∞, βE = const. (6)
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That is, the numbers of antennas on each side of the channels grow large without bound
at constant ratios.

Based on the above definition, the following proposition presents the large-system
approximation for the ergodic MI.

Proposition 1. In the LSL, the following holds

Rs − [IM(ρM)− IE(ρE)]
+ → 0, (7)

where

IM(ρM) =
1

M
log det (IM + βMeMTMP ) +

1

M
log det (INM + δMRM)−

βM

ρM
δMeM

(8a)

IE(ρE) =
1

M
log det (IM + βEeET EP ) +

1

M
log det (INE + δERE)−

βE

ρE
δEeE,

(8b)

and sets of parameters{eM, δM} and{eE, δE} form the unique solutions to the following
two systems of equations

eM =
ρM

NM
tr
{

RM (INM + δMRM)
−1

}

, (9a)

δM =
ρM

M
tr

{

T
1/2
M PT

1/2
M

(

IM + βMeMT
1/2
M PT

1/2
M

)

−1
}

, (9b)

eE =
ρE

NE
tr
{

RE (INE + δERE)
−1

}

, (10a)

δE =
ρE

M
tr

{

T
1/2
E PT

1/2
E

(

IM + βEeET
1/2
E PT

1/2
E

)

−1
}

, (10b)

Proof. The proof is based on the concept of a deterministic equivalent [23], [24]. Con-
sider a matrix of the following type

B = R1/2WTW HR1/2, (11)

whereW is a random matrix consisting of i.i.d. entries with zero mean and variance
1/M , whileT andR are Hermitian non-negative definite of bounded normalized trace.
The latter are assumed to be generated by tight sequences [25]. Moreover, we assume
that∃ b > a > 0, such that

a < lim inf
N

β < lim sup
N

β < b, (12)

whereβ , N/M . As shown in Corollary 1 in [24], whenN andM grow large without
bound at ratioβ, the following holds

m(−x)−m◦(−x) → 0 (13)
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almost surely, wherem(−x) is the Stieltjes transform ofB for x > 0 and

m◦(−x) =
1

M
tr
{

(IN + δR)
−1

}

, (14)

wheree andδ form a unique solution of the following system of fixed-pointequations

e =
1

N
tr

{

1

x
R (IN + δR)−1

}

, (15a)

δ =
1

M
tr

{

1

x
T (IM + βeT )

−1

}

, (15b)

which, according to Proposition 1 therein, could be solvedvia an iterative algorithm
always converging to a unique fixed point.

Meanwhile, from Theorem 2 in [24] it follows that under the aforementioned as-
sumptions and some additional constraints on spectral radius of matricesT andR, the
Shannon transform [26] ofB satisfies

V(−x)− V◦(−x) → 0 (16)

almost surely, where

V◦(−x) =
1

M
log det (IM + βeT ) +

1

M
log det (IN + δR)− xβδe. (17)

The above Shannon transform represents the asymptotic behavior of the mean MI in
the LSL. Thus, having computed (17) atx = 1/ρ, with parameters satisfying (15a), we
can evaluate the ergodic MI of each MIMO channel within our wiretap model (viz., the
main and eavesdropper’s channels). To address the influenceof the transmit covariance
matrix, it suffices to considerTP

1/2 instead ofT for both channels. This leads us
exactly to (8), (9) and (10), thereby completing the proof.

4 Transmit Covariance Optimization

Based upon the asymptotic analysis carried out in the previous section, here we address
the problem of transmit covariance optimization (4). As mentioned before, working
directly with (3) is prohibitive due to expectation operators therein. Moreover, as we
have seen from the previous section, the influence of the random parts of the channels
WM andW E vanishes in the LSL. Thus, the objective function of the corresponding
optimization problem simplifies to

rs(P ) =
1

M

[

log det (IM + βMeMTMP )− log det (IM + βEeET EP )

]+

. (18)

Note that here, we considereM andeE as independent of the optimization variableP due
to the following reason. The optimal solution of the optimization problem has to satisfy
the KKT conditions, which require that∇P rs(P ) = 0. When taking into account the
dependence ofeM andeE onP , one has to take the derivatives ofrs(P ) w.r.t. the former.
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However, it can be verified that those are zero, and hence interdependence betweeneM,
eE andP does not play any role in the optimization.

Unfortunately, since the problem is non-convex, finding theoptimal covariance ofx
is difficult. Hence, we will provide several suboptimal solutions that give a lower bound
on the secrecy capacity of the ergodic MIMO wiretap channel.

4.1 Water-Filling over the Main Channel

Isotropic transmission is the simplest strategy Alice can perform. However, it is not
capacity achieving even for a generic MIMO channel. Instead, based on the statistical
CSI of the main channel,{TM ,RM}, Alice can perform SVD

√
βMeMT

1/2
M = UΣV H,

whereU andV are orthonormal matrices. Then, optimal transmit covariance is given
by thewater-filling (WF) solution as follows

P
⋆
WF = V ΣPV

H, (19)

where[ΣP ]m,m =
[

µ−1 − [Σ]−1
m,m

]+
, andµ is chosen to satisfy the power constraint.

In this case Alice acts as if Eve did not exist, achieving the ergodic capacity of the
main channel. However, in the presence of an eavesdropper this strategy may be quite
inefficient, as we shall see later on.

4.2 GSVD-Based Precoder

Consider the scenario where the transmitter performs GSVD on the matrices related to
channels (1a) and (1b). Although the solution based on this assumption is suboptimal, it
is advantageous, as compared to the isotropic precoding. Moreover, it takes into account
the presence of the eavesdropper and can potentially increase the ergodic secrecy rate
as compared to the WF precoder.

When applied to (18), the GSVD-based beamforming method is realized as fol-
lows. Based on the statistical CSI of both channels,{TM ,RM,T E,RE}, Alice performs
GSVD on matrices

√
βMeMT

1/2
M and

√
βEeET

1/2
E

√

βMeMT
1/2
M = UMΣMV

H, (20)
√

βEeET
1/2
E = UEΣEV

H, (21)

whereΣT
MΣM + Σ

T
EΣE = IM . The above GSVD simultaneously diagonalizesT

1/2
M

andT
1/2
E , converting those into a set of parallel subchannels. Then,the transmitted

vector is constructed asx = V −Hs, wheres ∼ CN (0M ,P ) andP is a positive semi-
definite diagonal matrix representing the power allocationacross the subchannels. For
the above beamforming strategy, the optimal power allocation was derived in [12] (here
we have corrected the minor typo therein)

[P ⋆
GSVD]i,i =

1

2
[sign(σM,i−σE,i)+1]





−1+
√

1−4σM,iσE,i+
4(σM,i−σE,i)σM,iσE,i

log(2)µvi

2σM,iσE,i





+

,

(22)
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whereσM,i, σE,i andvi are theith diagonal entries ofΣT
MΣM , ΣT

EΣE andV −1
V

−H,
respectively, andµ is chosen to satisfy the power constraint at the transmitter.
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Fig. 2. Ergodic secrecy ratevs.SNR (ρM = ρE = ρ) for a MIMO wiretap channel withM = 6,
NM = 6 andNE = 2 antennas. Transmit side correlation parameters:dλ = 1, θM = 40

◦, θE =

−10
◦, ∆M = ∆E = 5

◦. Solid curves denote analytic results, while markers denote simulated
values averaged over 10 000 channel realizations.

5 Numerical Results

In this section, we provide results based on numerical simulations along with some
discussion. As seen from the objective function (18), spatial correlation at the receiver
side has no effect on the precoding design. Hence, for the sake of simplicity, we assume
thatRM = INM andRE = INE. Meanwhile, correlation at the transmitter side is as-
sumed to be generated by a uniform linear antenna array withGaussian power azimuth
spectrum[27], so that the entries of correlation matricesTM andT E) are obtained by

[T ]a,b =
1

2π∆2

∫ π

−π

e2πdλ(a−b) sin(φ)−
(φ−θ)2

2∆2 dφ, (23)

wheredλ is the relative antenna spacing (in wavelengthsλ), θ is the mean angle and∆2

is the mean-square angle spread.
First, we plot in Fig. 2, the dependence of the ergodic secrecy rate on the SNR. The

transmit side correlation parameters are set as follows. The antenna numbers are set
to M = 6, NM = 6 andNE = 2. The antenna spacing is set to one wavelength, the
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Fig. 3. Ergodic secrecy ratevs.SNR (ρM = ρE = ρ) for a MIMO wiretap channel withM = 2,
NM = 3 andNE = 4 antennas. Transmit side correlation parameters:dλ = 1, θM = 40

◦, θE =

−10
◦, δM = ∆E = 5

◦. Solid curves denote analytic results, while markers denote simulated
values averaged over 10 000 channel realizations.

mean angles are set toθM = 40◦, θE = −10◦ and the root-mean-square angle spread
is chosen for both channels to be∆M = ∆E = 5◦. From the figure, we see that the the
results derived in the LSL (solid lines) match the simulations (markers) quite well even
for relatively small numbers of antennas. Moreover, we alsosee that “statistical” water-
filling over the main channel performs well, approaching theperformance of the GSVD-
based precoding. The isotropic precoder also achieves quite high ergodic secrecy rates,
which can be explained by a small number of antennas at the eavesdropper.

Fig. 3 depicts similar dependence of the ergodic secrecy rate (3) on the SNR with
different network parameters. The transmit side correlation parameters are chosen sim-
ilar to the previous case, while the antenna numbers are set to M = 2, NM = 3 and
NE = 4. From the figure we see that water-filling over the main channel is far from
being optimal in this case. This can be explained by the fact that in this setting Eve has
many antennas and is therefore quite powerful in terms of eavesdropping capabilities.
Hence, maximizing the data rate of the main channel, while ignoring the eavesdrop-
per, is a poor strategy in this case. The same observation applies to isotropic precoding,
which performs even worse. On the other hand, “statistical”GSVD-based beamforming
proves the most efficient among the considered strategies.

To emphasize the advantage of the GSVD we plot the ergodic secrecy rate as a
function of the number of antennas at Eve’s receiver,NE, in Fig. 4. We fixdλ = 1 and
keep the same parameters as in the previous figure. From Fig. 4we see that both the
isotropic precoding and water-filling cannot provide strictly positive ergodic secrecy
rates whenNE grows large. At the same time we observe that GSVD-based precoding
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allows to efficiently allocate the power to achieve strictlypositive ergodic secrecy rates
even whenNE becomes much larger thanM andNM.

In Fig. 5, we plot the ergodic secrecy rateRs against the spacing between the neigh-
boring antennas within the array. The rest of the transmit-side correlation parameters
remain unchanged and the SNR is set toρ = 0 dB. Firstly, we note that the achiev-
able ergodic secrecy rates are non-convex and non-monotonefunctions of the antenna
spacing. Similar behavior was previously observed in [28] and, moreover, the results
obtainedvia the asymptotic approximation (solid lines) are confirmed with the Monte-
Carlo simulation results (markers). Nevertheless, quite interestingly, it can be observed
that at low SNR, the optimized secrecy rates are significantly higher than those obtained
by the isotropic precoding. Moreover, those are even higherthan the secrecy capacity
of an uncorrelated wiretap channel, meaning that it can be advantageous to have cor-
relation at low SNR, provided that the transmit covariance is optimized. Finally, we
point out that again, as expected, the GSVD-based beamforming reveals to be the most
efficient among other choices.
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Fig. 4. Ergodic secrecy ratevs.number of Eve’s antennasNE for a MIMO wiretap channel with
M = NM = 4 antennas in the main channel. Transmit side correlation parameters:dλ = 1,
θM = 40

◦, θE = −10
◦, ∆M = ∆E = 5

◦. SNR is set toρM = ρE = 0 dB. Solid curves
denote analytic results, while markers denote simulated values averaged over 10 000 channel
realizations.
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6 Conclusions

In the present paper, we have studied the ergodic secrecy rate of a multi-antenna wire-
tap channel. Using the theory of deterministic equivalents, we have obtained the large-
system approximation of the achievable ergodic secrecy rate, which holds when the
numbers of antennas at each terminal grow very large at constant ratios. The approxima-
tion proved accurate even for small numbers of antennas, thereby simplifying the com-
putationally demanding problem of transmit covariance optimization. First, not only
the objective function of the corresponding optimization problem has closed-form ex-
pression, but it has interesting properties attributed to log-det expressions. Secondly, the
objective depends only on the correlation matrices of the channels, which can be known
at the transmitter by the widely adopted statistical CSI assumption. Once the approxi-
mation was obtained, we were able to use some existing algorithms for the covariance
optimization. In particular, we have shown that GSVD-basedbeamforming performs
well, compared to,e.g., water-filling over the main channel.
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Fig. 5. Ergodic secrecy ratevs.antenna spacingdλ for a MIMO wiretap channel withM = 4,
NM = 4 andNE = 2 antennas. Transmit side correlation parameters:θM = 40

◦, θE = −10
◦,

∆M = ∆E = 5
◦. SNR is set toρM = ρE = 0 dB. Solid curves denote analytic results, while

markers denote simulated values averaged over 10 000 channel realizations.
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26. A. M. Tulino and S. Verdú,Random matrix theory and wireless communications. Now

Publishers Inc., 2004, vol. 1.
27. C.-K. Wen and K.-K. Wong, “Asymptotic analysis of spatially correlated MIMO multiple-

access channels with arbitrary signaling inputs for joint and separate decoding,”IEEE Trans.
Inf. Theory, vol. 53, no. 1, pp. 252–268, 2007.

28. A. L. Moustakas, S. H. Simon, and A. M. Sengupta, “Statistical mechanics of multi-antenna
communications: Replicas and correlations,”Acta Physica Polonica B, vol. 36, no. 9, 2005.


