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Abstract

It has been pointed out [3] that current protocols for device inde-
pendent quantum key distribution can leak key to the adversary when
devices are used repeatedly and that this issue has not been addressed.
We introduce the notion of an insider-proof channel. This allows us to
propose a means by which devices with memories could be reused from
one run of a device independent quantum key distribution protocol to
the next while bounding the leakage to Eve, under the assumption that
one run of the protocol could be completed securely using devices with
memories.

1 Introduction

Quantum key distribution protocols allow two distant parties who share
some small initial key to grow new shared randomness. Proofs of security
for these protocols make assumptions about the behaviour of the devices
that the two parties, Alice and Bob, use. Device-independent quantum key
distribution (DIQKD) [2, [ 8] is a concept for protocols that makes very
few assumptions about Alice and Bob’s devices for generating their classical
measurement outcomes. They should be able to certify that they have a
secure key from the statistics of their measurement outcomes alone, however,
they still need to assume that there are no side channels that can signal from
their private laboratories to an eavesdropper, Eve. DIQKD protocols have
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the important advantage that even if the measurement devices (or the source
of quantum states, the control of which we give to Eve) do not operate as
intended, the protocols can still certify whether a generated key is secure.

Here we are interested in removing even more assumptions about the
operation of the measurement devices: we allow that they may have an
internal memory which can store arbitrary amounts of quantum or classical
information, and that they may have been built by the eavesdropper (subject
to the usual signalling restrictions). In this very untrusting model, the
question has been raised [3] whether the measurement devices can be reused.
In this paper, we consider this question, but do not consider how DIQKD
might be accomplished in a single round of a protocol using an adversarial
device with memory.

Our main contribution is to describe an encryption scheme which allows
Alice and Bob to exchange data which is determined by the devices across
a public channel without leaking information from the devices to Eve. The
encryption remains secure even if the devices have complete information
about Alice and Bob’s shared secret keys (generated in previous rounds of
the protocol) and even if the devices have complete control over the message
sent. In the context of DIQKD, this allows Alice and Bob to exchange
parameter estimation and error correction data without the devices leaking
information about previously generated keys to Eve. This is accomplished
using locally generated randomness (independent of the devices) and hash
functions to generate encryption keys.

The layout of this paper is as follows. In the next section, we describe
what an ideal private channel consists of and introduce a new cryptographic
concept: the e-insider proof channel. This channel allows the secure trans-
mission of a message, even if the message is chosen adversarially. In part
of this section we give a recipe for implementing this channel and in part [2.3]
demonstrate the channel does allow secure message transmission except with
probability e.

In section we begin to look at applying the e-insider proof channel to
quantum key distribution and we specify and motivate the security model we
are working in. Following that, we outline the modifications to a DIQKD
protocol in section and in section [3.3| it is shown that the DIQKD
protocol is still secure with the modifications that use the new channel.
The composition of repeated DIQKD rounds is considered in section (3.4
Section gives the asymptotic key rate achieved by these bounds. Lastly,
in section we discuss how protocol aborts need to be managed, touch on
the composability implications, and present some conclusions.



2 The private channel

We first describe the scenario and define the ideal insider-proof private chan-
nel. We then give a protocol and prove that it approximates the ideal
channel. The proof relies on 2-universal hashing and the quantum leftover
hashing lemma [12].

2.1 The ideal channel

Let us define a situation where Alice wishes to privately communicate some
information to Bob in the presence of a quantum eavesdropper, Eve, who
wishes to obtain access to some of Alice’s data. Further, there is an insider
A’ who has access to Alice’s private keys and data, and who can choose some
messages to be sent to Bob. That is, there will be some encrypted channel
from Alice to Bob and A’ can choose some inputs to the channel. However,
A’ has no other means of communicating with Eve. Alice and Bob’s task
is to complete their private communication in such a way that Eve cannot
gain any information about Alice’s data or the message.

2.1.1 Definitions

To begin, let us describe the registers we will use. A contains the message
Alice will send, while B is the register which will hold the final message
for Bob. C' is the ciphertext, or otherwise contains all the raw information
leaked to Eve during the protocol. For example, if the channel is imple-
mented using a public channel then C' contains all information sent over the
channel. D contains secret information that Alice does not want to leak.
Finally, F contains Eve’s quantum side information. We assume that the
length of A, B and C' are public.

Definition 1. The ideal private channel between A and B is defined as

U (0) =D (o) (|4 @ [2)(ylp) o (|2) (2] 4 @ [y) (2] ) (1)
x?y
So, the ideal private channel erases B and copies the contents of A into
it.

Definition 2. A channel ® sp¢ is an e-insider-proof private channel from A
to B if there exists a channel Vog such that for all CCCCQ states papcpE,

|@45 @ Ip ® Yep(p) — Pape @ Ipe(p)||, < e (2)



Furthermore, if this is true for e = 0 then we say that ® is an insider-proof
private channel.

This definition essentially says that we consider a channel secure if we
can approximate it with the ideal channel, along with some simulator that
generates a transcript for Eve without referring to the secret data.

Although we have not explicitly stated that the insider can choose the
message, this is built into the fact that we allow any p, and hence this
covers the cases where the insider has deliberately correlated the registers
A, D and its memory A’, possibly using some quantum measurement on
half of an entangled A’E state.

Finally, in the case where we wish to implement such a channel using
some additional resources, such as a shared key or private randomness, we
may extend p with additional registers and add conditions as necessary to
specify the form of the resources. In keeping with the spirit of the definition,
we will only consider resources where the insider has access to any stored
data, including shared private keys.

It is interesting to note that, compared with the usual definition of a
private channel, the only difference is that the private key is allowed to be
correlated with the message.

2.1.2 A naive attempt

To construct an insider-proof private channel is non-trivial. Consider a naive
application of the one-time pad where Alice simply XORs her message with
a shared private key and sends it to Bob over a public channel. This can
be decrypted by Bob and uses a key unknown to Eve. Let d be some of
Alice’s data, and k be the key. The insider can choose to send the message
m = d & k to Bob. Alice then encrypts the message as m & k = d, which
is broadcast to Bob and Eve. Hence Eve can trivially recover d. Note that
Eve could not build her final state by herself since it is correlated with the
register D, to which she has no access.

Clearly if Alice uses an encryption scheme which depends only on her
stored data (which the insider has access to), the insider can, at least in-
formation theoretically, reverse the encryption and choose a message which
results in a ciphertext that directly reveals data to Eve. Hence we introduce
some randomness in the form of a true random number generator. Then
Alice encrypts her message by using some function which depends on a ran-
dom string which is chosen after the message is chosen. In this case the
insider cannot predict what the encryption function will be. It is thus our
task to find a suitable function.



2.2 The channel

In order to achieve our goal, we must use some additional resources in the
form of a shared private key and a true random number generator on Alice’s
side. The shared key is in register K while Alice’s private random string is
held in R. The initial state must satisfy pxrpopE = UI(?) ® U]({n) ® PBCDE
and prABCDE = Ugb)@)pABCDE, where U™ is the completely mixed state on
n qubits. Note that the message can be correlated with the shared key, but
the rest of the state cannot. As well, the private randomness is uncorrelated
with all other registers. Our protocol is summarized as follows.

Protocol 1. Input for Alice: strings a, k. Input for Bob: string k.
1. Alice chooses a string r uniformly at random.
2. Alice calculates c = a & [(k -r) mod 26] and discards k.
3. Alice broadcasts (c,r) and then discards them.

4. Bob reconstructs a = c @ [(k: -r) mod 26] and then discards k, r and
c.

In order to prove that protocol [I] produces an e-insider-proof private
channel we first introduce 2-universal hash functions.

2.3 Security of the channel

We first sketch the proof, then provide the technical details. The insider A’
chooses some message A with full knowledge of the shared key K. Hence
the message can be correlated with K. However, we will use a K of length
more than twice that of |A| (|K| > 2|A|) so that there are still > |A]| bits
of randomness in K, even conditioned on A. Now when we produce the
encryption key K’ by combining K with R, we produce a K’ of length
|A|. The leftover hashing lemma (stated below) then says that K’ is almost
completely random, even conditioned on A and R. The ciphertext is then
also completely random, even conditioned on A and R and Eve will not be
able to figure out anything about A from R and the ciphertext.

2.3.1 2-universal hash functions

2-universal hash functions are in fact families of functions which, given a
random seed, produce a very uniform output.



Definition 3. A 2-universal family of functions F is a family of functions
f X — Y such that, when f is drawn uniformly at random from F, for

every x1,x2 € X
1

[

Protocol [I] uses the following 2-universal family of hash functions intro-
duced in [5].

P(f(z1) = f(x2)) = (3)

Lemma 1. The family of functions given by f.(k) = k-r mod 2¢ is 2-
unversal.

Proof. Let z1 # x2 be given. We wish to count the r for which
(r-x1) = (r-z3) mod 2. (4)

Taking the expression mod 2¢, i.e. taking the ¢ least significant bits of the
string, can be expressed as taking the expression mod b for some elementﬂ
b in GF(2"). Hence we can rewrite this as

r-(x;1 ®x2) =0 mod b. (5)

Since the multiplication is over a field, r = 0 mod b and there is one solution
for every member of the equivalence class of 0, of which there are 27~¢
members. Hence the fraction of strings r that are solutions is 2"~¢/2" = 2°
and the family of functions is 2-universal. O

Note that the family is symmetric in the roles of r and k, so we can
use k as the seed instead of r and the family is still 2-universal. The dis-
tinction becomes important in the following lemma, which gives a useful
approximation of how uniform the output of the hash function is.

Lemma 2 (Quantum leftover hashing lemma). [1Z] Let X and E be random
variables. Let F be a family of 2-universal hash functions, indexed by a seed
R such that fr € F, that take an input X € {0,1}", and output Z € {0, 1}~
Then averaged over fr, the distribution on Z has the property:

1 o
A(Z‘ER) S 6/ + 5 2Z_Hmin(X|E) , (6)
where the distance from uniform, A, is given by

.1
A(A[B), = min g |lpap —wa® o] - (7)

n particular, the element 2 in the usual polynomial representation.



2.3.2 Proof of security

Theorem 1. Let ¢ and n > 2¢ be given. Then protocol [1] implements an
e-insider-proof secure channel where

e = V220n (8)

Proof. We begin by reducing to an equivalent protocol by noting that, so
long as Bob completes the protocol before interacting with outside parties,
his operations commute with Eve’s. Hence we may assume that Eve receives
her copy of (¢, r) after Bob has completed the protocol. This solves certain
notational problems where we need to trace out registers in the proper se-
quence in order to obtain valid bounds. Also, in this version of the protocol,
we make explicit the movement of registers between different parties.

Protocol 2. Input for Alice: Registers A and K. Input for Bob: Register
J.

1. Alice uses her random number generator to initialize R with a uni-
formly random string.

2. Alice calculates K' = (K - R) mod 2¢, then discards K and sends R
to Bob.

Bob calculates J' = (J - R) mod 2¢, then discards J.
Alice calculates C = K'® A and then discards K' and sends C to Bob.

Bob calculates B = C & J' and then discards J.

S & L

Bob passes C and R to Eve.

Here K contains the private shared key, of which J is Bob’s copy.

Next we make a further reduction. At the end of step 5, Bob’s state
consists solely of B, which is a copy of A. Hence we can instead simply
apply @QPBC at the end of the protocol and remove all of Bob’s operations,
as well as J. Then Alice can simply send C' and R directly to Eve. Hence

we arrive at the following protocol

Protocol 3. Input for Alice: Registers A and K.
1. Alice uses her random number generator to initialize R

2. Alice calculates K' = (K - R) mod 2° and discards K.



3. Alice calculates C = A @ K' and discards K'.

4. Alice sends C' and R to Fve.

5. Alice and Bob apply ®1H¢
Now we proceed with the security proof. Let £ = |A| and n = |K| = |R|.
For notational convenience we assume that C' is created in step 3, and B
is created in step 5, so we need not keep track of them beforehand. Let
the quantum state just after step t be p{¥ and the e-smooth min-entropy be
rin- We suppose for the moment that the key in register K is perfectly
independent from Eve.
After step 1, since K is secret from Eve, Hglm(K|DE)p<1) = n. By the
chain rule for smooth entropies [I1], we also have

0
H min

(K|ADE) o) >n — 1. (9)

In step 2 we apply the 2-universal hash given in lemma |1} tracing out K and
producing encryption key K’ of length ¢. Using the leftover hashing lemma
we find

1
A(K/‘ADER)p(z) < 5 V220-n — €hash (10)
and hence there exists a o 4prgr such that

2
HPEK?ADER - Uk ® UADER‘ ‘1 < €hash- (11)

Since for Ux» ® capgr A is independent of K/, we can XOR them to-
gether in step 3 to obtain the ciphertext C which is again independent. We
trace out K’ and then C' and R are sent to Eve in step 4. We find

4
HP(CI)LXDER —Uc® UADER) ‘1 < €hash- (12)

Next we want to approximate c4pggr. Tracing out the C register, the

above inequality becomes HPES%ER —JADERH < €hash- Since p(:l))ER =

PS)DER = papr ® Ur we then obtain

HUC®UADER_UC®P£?1))E®URH < €hash - (13)

Now Uc ® papr ® Ug is a state that Eve can create by herself by operating
only on her registers by simply appending C' and R distributed uniformly.



Let us call this operation ¥. Using the triangle inequality to combine ([12)

and ,
HP&%DER —Iap ® ‘I’CER(P(O))H1 < 2€p05n = € . (14)

We now introduce register B and after step 5, this becomes

5
HPELU)BCDER —oif ®lp ‘I"CER(P(O))Hl <e. (15)
Hence the protocol implements a 2¢p,5p-insider-proof private channel. OJ

3 Application to DIQKD

We now consider the application of the e-insider proof channel to DIQKD
in the context of reused devices with memory.

3.1 The model

Alice and Bob share some private randomness and would like to grow more
key from it using a shared quantum state. However, they do not trust their
measuring devices or the state; in fact, they assume that Eve has built the
devices and distributes the quantum state. Let us assume that it is pos-
sible for them to complete a device-independent quantum key distribution
(DIQKD) protocol securely in this setting. There is some recent work that
supports this assumption [4], O [10]. They successfully grow some new key
on which Eve’s knowledge is bounded to be less than e, quantified using
standard trace distance metrics [I1]. After this, they would like to reuse
their devices to grow more key in another round, but the malicious devices
are allowed to have memories. As well, all shared randomness used in the
protocol will be taken from the previously generated keys, and hence is also
shared with the devicesB] We would like to know whether Alice and Bob
can grow new key in this situation.

We make the standard assumptions of DIQKD. We are working in the
limit of long keys for each run of the protocol. We assume that the untrusted
devices can be isolated within Alice and Bob’s laboratories, such that they
can receive arbitrary quantum signals from Eve, but can signal only to
Alice and Bob and not directly to Eve. We also assume that Alice and
Bob can both generate trusted randomness locally. Additionally, we assume

2 At the very least, the devices can know the raw keys from previous rounds, and hence
are strongly correlated with the final keys.



Alice and Bob can perform classical processing privately from the untrusted
measuring devices in their labs.

This model was first introduced in [3], where the authors argue that
in standard protocols Alice and Bob cannot grow further key using the
same devices. Particularly, they highlight the issue of whether the protocols
are composable. We show how to modify standard DIQKD protocols to
eliminate side channels related to Alice and Bob’s public discussion and
show that they can still grow new secret key. We comment on the issue of
composability in section [3.6

3.2 The protocol

The modifications we propose are restricted to the classical post-processing
portions of the protocol. The goal of the changes is to prevent the device
from having a communication channel back to Eve within the protocol itself.
To this end, we make use of an e-insider-proof channel to send all information
between Alice and Bob that the untrusted devices may have influenced. (We
assume no other side channels.)

Our modification applies to DIQKD protocols with standard classical
post-processing [11]. Importantly, with standard post-processing the only
information communicated between Alice and Bob which depends on the
quantum devices are the parameter estimation data, the error correction
data, and the abort flag.

1. Eve distributes an entangled state papp to the devices in Alice and
Bob’s labs. Alice and Bob supply random (and independent) lists of
basis choices to the devices for the series of measurements and the
devices output the results.

2. Alice announces her basis selections publicly to Bob. Where they have
chosen the same basis, the measurement result bit should be correlated
for Alice and Bob and can become part of the key. When they have
chosen different bases, they can check for CHSH violation or perform
other parameter estimations.

3. Alice must send to Bob a subset of her outcomes of size £. To do this,
they use protocol [I] to implement an e-insider-proof private channel,
which must not leak information about previously grown keys (or other
private data), d. The message string a = a(k, d) is passed from Alice to
Bob, encrypted. To do this, she generates a random string r (|r| = n)
and chooses a string k (|k| = n) from her store of previously generated

10



keys. She uses the type of 2-universal hash function introduced in
lemma [1| to create ciphertext ¢ = a @ (k-r) mod 2°. She sends this
to Bob along with r. Bob uses r and k to recover a.

4. Bob performs parameter estimation. He sends a similarly encrypted
message to Alice containing a flag bit indicating abort or not, and if
not, a second encrypted message containing the detected bit error rate
Q, the observed parameters, and an appropriate error correction func-
tion, along with his parity check bits. Bob pads this communication
with randomness, so it is always of fixed length. If they instead will
abort, Bob sends the abort flag and a random message instead of the
error correction information.

5. Alice uses the information to correct her string to Bob’s.

6. Using a publicly chosen hash function they perform privacy amplifica-
tion to reduce Eve’s knowledge of the final key below a chosen bound.
They discard the session encryption key k used in the protocol.

We now show the security of this protocol.

3.3 Security of QKD using an insider-proof channel

In order to complete a QKD protocol Alice and Bob will require a series
of communication channels back and forth which they have authenticated.
When the devices in Alice and Bob’s labs may have some sensitive informa-
tion in their memories, then some of these channels must be private channels,
in order to show security.

Again, let the quantum state just after step ¢ be p®). At first, let us
analyze the protocol assuming we start with a perfect key so that p(® =
U}(gm) ®op®TE. After step 1, Alice and Bob share with Eve the state papg.
They pick measurements and get outcomes in registers A’ and B’, so that
their shared state becomes p!), where

3
PV = v gop > POmas Oy 10ma) ar (Ol
OmA>04nB

[0y ) g (Ol | ® ™5 (16)

Now in step 2, Alice uses a public channel to send Bob her measurement
choices m 4 and Bob can also use a public channel to send Alice his choices
mp. Alice will prepare a private message for Bob that includes a subset

11



€ -Insider-Proof Channel in a DIQKD Protocol

Alice Bob Eve Distance from actual state
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0
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A & B measure, A sends outcomes:

€-Insider-Proof Channel

Al > : B €+ €
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E
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Figure 1: Use of the insider-proof channel in a device independent quantum
key distribution protocol.

a of her outcomes oy, ,. She then implements (in step 3) an insider-proof
quantum channel to Bob, according to protocol

We can alter ® 4p¢c to take the string in register K as part of the input
state rather than a parameter that defines ® 4pc. In all other respects, the
channel is unchanged. Let the new channel be ®/,,~. Then from defini-

tion [2]

||Trx @45 © Ip @ Vop(Uk ® p) — Tr ®upe @ Inp(Uk @ p)||, <e.
(17)
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Let the register A contain the subset of outcomes (so a is a function of
0m .- Then after an ideal private channel the state will be p(® such that:

I -] <. (18
where
€ = UM gope S P(Omas ) |a) 4 (al @ 0m) 41 (O]
omA,o’mB
(m 7m )
®a) g (al ® [0, ) g (O] @ pp "8 @Ic R - (19)

Bob will also have to reply in step 4, again using an insider-proof channel
twice. First he sends a one-bit message about whether to abort and second
he sends the error correction information. For an ideal private channel:

-], <3 2

€9 = op® Y poma:0hny) 19)4 (0 @ 0ms) 4 (0,
Om 4 0

®16) g (b] @ |0y ) g (O | @

OmA? 'mB)

® (Ic,r)®? (21)

At this point, they arrive at identical raw keys with probability 1 — egc,
where Alice and Bob can choose egc arbitrarily small. Then,

Hp(S)—f(E))HI§36+6Ec+6PE , (22)
defining
(m ) m )
€0 =00 3 pomaslny) ).y (| lhra) s (o 5™ 2"
Om 4,0 mB
(23)

where we dropped the C' and R registers for convenience, and Ky still
depends on o,,, and O;nB. They then implement a privacy amplification
hash in step 6 and let us define eqq = €gc + €pg + epa. So now we are left

with a state pf,)B,CDER such that:

6
HP(A')B'CDER —Uyp ®0op @ Té’ER‘ ‘1 < 3€ + €qkd - (24)
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where Uy g is the normalized uniform distribution over all strings of a
given length and we have followed the standard analysis (see eg. [11]) for
the overheads of a single round of QKD. We can write this instead as

H(I)prot(UK X op ®TE) — (I)ideal(UK X op ®TE)H1 < 3e+ €gkd - (25)

where @, is the action of the entire modified QKD protocol and ®jgeal
is an ideal protocol that shares key between Alice and Bob while leaking
nothing to Eve.

Now let us relax the assumption of a perfect key. Instead, assume that
Alice and Bob have already successfully grown some key using a DIQKD
protocol, secure against malicious devices with memory. Before step 1, we
assume that Eve has bounded correlations with these keys:

\|pkpE — Uk ® 0p @ TE||; < €0 - (26)

We can apply ®prot to both states in the above bound. Then using the data
processing inequality, we have

[ ®prot (PEDE) — Pprot(Uk ® op @ TE)||; < €0 - (27)

We can use the triangle inequality on equations and , to finally
obtain

Hq)prot(pKDE) - q’ideal(UK Kop & TE)Hl < e+ 3e+ €qkd - (28)

Now, let us back up a minute and consider what happens if Alice and
Bob need to abort in step 4. Implementing the insider-proof channel uses up
their store of private key. Asymptotically, the largest amount of key will be
used to send the error correction information. However, if they abort, there
is no need to send this. By using separate applications of the channel, after
sending the signal to abort, Bob is free to not use the insider-proof channel
and instead send a random string. This is fine, since referring to protocol
the contents of R are uniformly random, and, looking at equation ,
the contents of C' cannot be distinguished from a uniform string by the
adversary, except with probability €. Therefore, in the case of an abort,
the largest share of the cost of establishing a insider-proof channel can be
avoided by breaking up Bob’s messages in this way.

3.4 Composing rounds of the new protocol

In the previous section, we saw that reusing untrusted devices in a new round
of QKD using the new protocol caused an increase in the security parameter

14



of the new and old keys by 3€ + €qkq. For comparison, if the devices were
trusted, and the original DIQKD protocol was used, this parameter would
only have grown by €qxq.

Then composing s rounds of successful key growth together,

Hq);iot(UK ®op RTE) — (I)?dseal(UK Xop ®TE)H1 < 3€ + €qkd - (29)

where ®°° means the channel ® applied s times. Again using the data
processing inequality for s applications of ®p.; on equation and then
the triangle inequality with equation (29) gives

H‘Df)fot(PKDE) — 00Uk ®0op ® TE)Hl < €+ 35€ + S€qkd - (30)

This shows that each additional round can add at most 3e + €qq to Eve’s
information on the previously grown keys.

Notice that if an abort occurs in round ¢, the new key is not obtained for
that round, so the length of the final key string will depend on the number
of aborts as well as the error rates. However, Alice and Bob still sent two
encrypted messages to each other in an aborted round, in order to learn that
their error rate was above threshold. Therefore, they still must add 3e for
that round, though not €gq. This means that the security parameter will
grow even on aborted rounds.

In practice, Alice and Bob should choose a maximum tolerated security
loss of all of their keys €ge.. This will determine the number of rounds they
would be able to grow key in. They should agree to this number of rounds
when they begin to use their devices, then stop using and securely destroy
the devices after that many rounds. They do not wish to leak information
to Eve about the number of rounds that have aborted. (See section for
further discussion.)

Note that this growth of the security parameter with the number of
rounds is also seen in the standard trusted-device QKD models when some
of the grown key is used for authentication in subsequent rounds.

3.5 Asymptotic secret key rate

The application key rates achievable with this protocol modification will
depend on the key rate of the underlying DIQKD protocol used, and n the
number of bits of the generated key that need to be used as the session keys
for Alice and Bob’s encrypted messages in the next round, and therefore
cannot be used in other applications.
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Since we do not know the details of which DIQKD protocol can be used
when the devices have memories, we remain agnostic about the exact rate,
however, we can assume it would take a form:

r > f(Sobs) — H(A|B) (31)

for some function f with Syps an observed parameter (eg. a Bell-inequality
violation) which is what is achieved by current protocols against memoryless
devices [7, [6].

In this new protocol, we do not need to remove the amount of com-
munication H(A|B) required for error correction, since this is encrypted.
However, we will remove the amount of key required to encrypt the next
round’s communication. We now consider how much key this requires. From

theorem [1] we have:

1
_ (—n —
€=V = (32)

Then n — 2¢ = O(—loge), so for a constant security parameter ¢, the key
length, n, needs only exceed twice the message length, 2/, by a constant
number of bits.

Now we must determine how large the total amount of encrypted infor-
mation sent between Alice and Bob must be asymptotically. Suppose the
sifted key length in one round is N. The parameter estimation message from
Alice to Bob must contain the bit values of an O(log N)-size subset of this
string in order to achieve an estimation error approaching zero. As N — oo
the fraction of signals this represents goes to zero. Bob must send to Alice
his error correction function results, the size of which will depend on the
error rate. The amount of communication required will be H(A|B)+ f(erc)
bits, where f(egc) is a function of the security parameter for the error cor-
rection that does not depend on NNV, so that as N — oo it also is negligible.
Finally, Bob’s abort flag requires a constant sized key.

In total, asymptotically, the amount of key needed to implement the
insider-proof channels in the protocol depends only on the size of the error
correction information to be shared. Since we have n > 2¢ + ¢ where c is a
constant, the amount of key required is just twice the error rate: 2H(A|B).

Then we can see how the asymptotic key rate will change as compared
with the original version of the protocol,

r > f(Sobs) — 2H(A|B). (33)

Notice that asymptotically the key rate does not fall as aborts occur, since
in an abort, Bob will send the encoded abort flag, but will not encode
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the H(A|B) bits of error correction information and rather save his key by
sending a string output by his random number generator instead. In the
finite key regime however, it is clear that aborts will reduce the amount of
generated key that can be used in other applications.

3.6 Aborts

It may happen that on some rounds Alice and Bob must abort the protocol.
However, since the devices that Alice and Bob use can cause an abort even
on a “good” state pa/p'p, they can use this as a pretext to signal to Eve,
as was observed in [3]. Therefore, Alice and Bob must hide aborts when
they occur. As explained in section they can do this since they have
encrypted the parameter estimation bits and will also encrypt Bob’s signal
as to whether or not to abort. If they abort, they pretend to continue the
protocol, but instead of exchanging encrypted information to perform error
correction, they send random strings. In this round they do not gain any
additional key, but also Eve does not learn that they aborted.

Another concern is that it is possible for the boxes to conduct a denial-
of-service attack until Alice and Bob run out of key. If this should occur
before the number of rounds that Alice and Bob had agreed to use the
devices for, this would also constitute a signal to Eve. They must hide
this also, so should it occur, Alice and Bob should simulate the remaining
rounds of key growth (sending each other random strings) and then destroy
the adversarial boxes securely. This is not a foolproof solution however,
since in the meantime Alice and Bob may need to communicate privately.
Thus at some point they will be forced to re-key and there is no reason to
assume Eve will not notice this. Therefore, it is conceivable that she may
gain some information from the fact that this has happened and it seems
there is no way to completely avoid that, though Alice and Bob could keep
a piece of their initial authentication key from before the first round against
this eventuality. (This is similar to the case in trusted-device QKD when
Eve executes repeated denial-of-service attacks on Alice and Bob until they
run out of key.)

It appears that in this model we cannot think about each run of the
device independent protocol as a stand-alone element in a universal com-
posability scheme, in which it is public information how much key they have
at any given time. Alice and Bob certainly do not want to output on each
round whether they succeeded or failed in obtaining key. This may lead to
additional considerations. For example, the adversary may expect Alice and
Bob to send a one-time-pad encoded message at a particular time during
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the multi-round life of the devices when they do not have key available to
devote to the purpose. If this occurs they can still avoid leaking informa-
tion to the adversary by sending a random string of the appropriate length
instead. (However, this does not accomplish the communication task Alice
and Bob presumably wished to accomplish.) Note that in this case, Alice
and Bob have to consider their quantum key distribution in the wider setting
in which it is employed to avoid leaking information. Nevertheless, when
key is generated in the DIQKD scheme, the resulting key is secure under
the trace distance definition given in [11].

4 Conclusions

We have introduced the concept of an insider-proof channel. We hope that
it will have applications, particularly in device-independent schemes where
untrusted devices can be assumed not to have direct communication to the
adversary, but may be malicious. We construct an explicit example of such
a channel that will allow trusted parties to communicate, even about infor-
mation that the untrusted devices may have generated. We also show how
this can be used to reuse untrusted devices for many rounds of QKD.

The model of DIQKD assumed here gives a lot of power to the eaves-
dropper, since Eve is allowed to prepare Alice and Bob’s measuring devices.
It is more restrictive to Alice and Bob than other models currently used
to describe untrusted device scenarios, where their devices may have manu-
facturing flaws, but are assumed not to be outright malicious. Those mod-
els more realistically represent most cryptographic scenarios today, wherein
perhaps a user does not understand the cryptography implemented by his
web browser, but he downloaded an authenticated copy from a legitimate
business. The business may not have correctly implemented the security,
and this is what DIQKD would try to protect against, but it also does not
benefit from gaining a reputation for selling users’ credit card information
to Eve.

However, this less-trusting model is interesting, first, because it provides
bounds for what is possible in other more-trusting DI scenarios, and second,
because despite its restrictions, QKD can still be performed without much
loss of performance. We have introduced a small modification to a DIQKD
protocol that allows untrusted and malicious devices to be used in repeated
round of secure key growth. It is interesting to note that the only part of
the protocol that requires modification is the classical post-processing. This
suggests that perhaps existing QKD protocols could be adapted to other
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new models readily, simply by considering this portion carefully.

There remain some open questions. Are there other applications for
insider-proof channels? More specfically, are there other contexts where
messages may be chosen maliciously and with knowledge of private data? It
also may be possible to improve the bounds presented here in order to get a
higher asymptotic key rate. It would also be nice to fit this type of protocol
into a composability framework, although it is not clear how to do that in
existing frameworks. Additionally, there may be other modifications that
could be made to existing protocols that accomplish this same task more
efficiently.
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