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Abstract. Attacks on classical cryptographic protocols are usually modeled by allowing an adversary
to ask queries from an oracle. Security is then defined by requiring that as long as the queries satisfy
some constraint, there is some problem the adversary cannot solve, such as compute a certain piece of
information. In this paper, we introduce a fundamentally new model of quantum attacks on classical
cryptographic protocols, where the adversary is allowed to ask several classical queries in quantum
superposition. This is a strictly stronger attack than the standard one, and we consider the security of
several primitives in this model. We show that a secret-sharing scheme that is secure with threshold
t in the standard model is secure against superposition attacks if and only if the threshold is lowered
to t/2. We use this result to give zero-knowledge proofs for all of NP in the common reference string
model. While our protocol is classical, it is sound against a cheating unbounded quantum prover and
computational zero-knowledge even if the verifier is allowed a superposition attack. Finally, we consider
multiparty computation and show that for the most general type of attack, simulation based security
is not possible. However, putting a natural constraint on the adversary, we show a non-trivial example
of a protocol that can indeed be simulated.

1 Introduction

Attacks on classical cryptographic protocols are usually modeled by allowing an adversary to ask
queries from an oracle, for instance the adversary specifies a subset of parties he wants to corrupt,
and gets back their views of the protocol. Security is then defined by requiring that as long as the
queries satisfy some constraint (for instance, the corrupted subset is not too large), there is some
problem the adversary cannot solve, such as compute a certain piece of information.

Several previous works consider what happens to security if we allow the adversary to be
quantum. The model usually considered is that the adversary is now a quantum machine, but
otherwise plays exactly the same game as in a classical attack, i.e., he still communicates classically
with the protocol he attacks. One example of this is the work of Watrous, showing that a large
class of zero-knowledge protocols are also zero-knowledge against a quantum verifier.

It is natural to ask why we constrain a quantum adversary to communicate classically during the
attack? The standard answer to this is that since honest players are classical, they would (implicitly)
be doing a measurement of anything they receive, thus forcing a collapse of any quantum state they
are given.

An important point, however, is that the assumption about honest players being classical is not
always justified, even if the protocol is supposed to be classical: in the future, honest players may use
quantum computing, just to speed up their local computation, even if they sometimes communicate
classically. Furthermore, future usage of quantum cryptography will imply that players sometimes
communicate quantumly (to do quantum key distribution) and sometimes classically. Finally, one
should consider the case where a classical protocol is used as a subrutine for a protocol that handles
quantum data. This is exactly what happens in the work of Ben-Or et al. [BCG+05], where classical
multiparty computation is used as a tool to obtain quantum multiparty computation.
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Now, if a quantum adversary is attacking honest players that use quantum computing or even
quantum communication themselves, it does not seem justified to assume that he can only com-
municate classically with them. Indeed, as an example, consider a zero-knowledge protocol where
the prover is implemented as a small quantum device sitting inside a mobile unit, say a PDA or
a smart-phone. If an adversary gets hold of the unit, he may not be able to break in and directly
read the prover’s secret. But he can try to subject the device to unusual physical conditions, say
by cooling it down and in this way perhaps be able to communicate quantumly with the prover,
even if the device was not designed for this in the first place.

In this paper, we therefore introduce a new model of quantum attacks on classical cryptographic
protocols, where the adversary is allowed to ask several classical queries in quantum superposition.
In more concrete terms, we ask, for multiparty protocols: what happens if the adversary can be in
superposition of having corrupted several different subsets? or, for zero-knowledge protocols: what
happens if a quantum verifier can be in superposition of having issued several different challenges
to the prover? As we argued above, we believe such superposition attacks to be a valid physical
concern, but they also form a very natural generalization from a theory point of view: in the
literature on black-box quantum computing, quantum black-box access to a function is usually
defined by extending classical black-box access such that queries are allowed to contain several
inputs in superposition. Our superposition attacks extend classical attacks in the same way.

Superposition attacks are strictly stronger than the standard one, and we consider the security
of several primitives in this model: We show that a secret-sharing scheme that is perfectly secure
with threshold t in the standard model is perfectly secure against superposition attacks if and
only if the adversary’s superposition is constrained to contain subsets of size at most t/2. If this
condition is not satisfied, not only does perfect security fail, we show examples where the adversary
may even learn the secret with certainty.

We use the secret-sharing result to construct zero-knowledge proofs for all of NP in the com-
mon reference string (CRS) model. While our protocol is classical, it is sound against a cheating
unbounded quantum prover and computational zero-knowledge even if the verifier is allowed a su-
perposition attack. Since we use the CRS model, the reader may ask why we do not use existing
protocols for non-interactive zero-knowledge (NIZK), where the prover just sends a single message
to the verifier. In this way, the adversary would not get a chance to do a superposition attack.
However, the most general assumption under which NIZK is known to be possible is existence
of one-way permutations. They in turn are only known to be realizable under assumptions that
are easily broken by a quantum adversary, such as factoring or discrete log. Therefore we do not
consider NIZK a satisfactory solution.

Finally, we consider multiparty computation and we define a UC-style model for static and pas-
sive superposition attacks on classical MPC protocols. Given our result on secret-sharing schemes,
it is natural to speculate that classical MPC protocols that are secure against t corruptions, are
secure against superposition attacks corrupting t/2 players. The situation turns out to be more
complicated, however: We show that for the model that gives the adversary the most power (and
hence is the most hostile to the simulator), simulation based security is not possible at all. The
adversary can put its query in a state that prevents the simulator from learning any information
on the inputs and outputs of corrupted players. However, putting a natural constraint on the ad-
versary, we show a non-trivial example of a protocol that can indeed be simulated. By non-trivial,
we mean that although the protocol is secure against a classical attack, we can show that it cannot
be proved secure against a superposition attack by simply running the classical simulator in super-

2



position. We therefore come up with techniques that are “more quantum” to do the simulation.
We give a (in completely classical terms) a characterization of the protocols that can be simulated
using these techniques. The obtained simulators are not necessarily efficient, however.

Whether more general positive results hold in this constrained model remains an open question.
Likewise, the very natural question of security of quantum protocols against superposition attacks
remains open. Note that in existing work on quantum multiparty computation [BCG+05], the
adversary’s choice of subset to corrupt is classical. The negative part of our result on secret sharing
described above shows that the protocol from [BCG+05] is not secure against superpositions attacks
as it stands.

2 Preliminaries

2.1 Notation and terminology

We will model players in protocols in two different ways: when we are not interested in computa-
tional limitations on parties, a player will be specified by a series of unitary transforms where the
i’th transform is done on all qubits available to the party, after the i’th message has been received
(in the form of a quantum register), and then some designated part of the storage is sent as the
next outgoing message. We are limiting ourselves to perfect unitary transformation of the party’s
register because we are exactly considering the situation where an attacker manages to prevent
coupling between the party and the environment.

In cases where we want to bound the computational complexity of a player, we consider a
players to be an infinite family of interactive quantum circuits, as in the model from [FS09], and
then the complexity is circuit size.

2.2 Running functions in superposition

Consider any function, f : X → Y and a register of qubits, |ψ〉 =
∑

x

αx|x〉|0〉 ∈ HX ⊗HY , where

dim(HX) = |X| and dim(HY ) = |Y |. Running f on |ψ〉 means to apply the unitary transforma-

tion, Uf , such that Uf

∑

x

αx|x〉|0〉 =
∑

x

αx|x〉|f(x)〉. In general the register in HY , called the

response register, can contain any superposition of values, not just 0. In this case, we have that,

Uf

∑

x,a

αx,a|x〉|a〉 =
∑

x

αx,a|x〉|f(x)⊕ a〉 where ⊕ is the bitwise xor.

3 Secret sharing

In (classical) secret sharing n parties are sharing some secret value s ∈ S using randomness r ∈ R,
where S and R is the set of possible secrets and randomness. We name the parties P1, . . . , Pn. Let
[n] = {1, . . . , n}. Each party, Pi, receives a share vi(s, r) ∈ {0, 1}k , also called his private view .
That is, vi : S × R → {0, 1}k . For A ⊂ [n], let vA(s, r) = {vi(s, r)}i∈A be the string containing
the concatenation of views for parties Pi with i ∈ A. For convenience in the following we assume
that each such string is padded, so that they have the same length regardless of the size of A.
That is, vA : S ×R → {0, 1}t. An adversary structure G is a family of subsets G ⊂ 2[n]. A secret
sharing scheme is perfectly secure against classical G-attacks if for any A ∈ G, the distribution of
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vA(s, r) does not depend on s. The adversary structure of the secret sharing scheme is the maximal
adversary structure F such that the scheme is perfectly secure against F attacks.

We’ll model any passive attack on the scheme as an one-time query to an corruption oracle. The
corruption oracle for a specific run of a secret sharing scheme O(s, r,A) = vA(s, r) is the function
that on input A returns the private view of those parties. That is, O : S⊗R⊗ F → {0, 1}t.

3.1 Two-party bit sharing example

Before we give the full model for secret sharing we start with a small example. We consider the
case of 2 parties sharing a single bit, b ∈ {0, 1} using a random bit r ∈ {0, 1}. [n] = {1, 2},
F = {(1), (2)}, v1(b, r) = b⊕ r, v2(b, r) = r. This scheme is trivially secure in the classical setting.
In the follow we’ll consider what happens if we allow the adversary to interact with the corruption
oracle in superposition. As this is meant to introduce the concept, we’ll cut a few corners in terms
of technicality and and reserve that for the later sections.
Assuming some specific bit has been shared with some specific randomness, we can write the state
of the parties as |v1(b, r)〉 ∈ H2 and |v2(b, r)〉 ∈ H2. Consider an adversary supplying the following
input to the corruption oracle,

|ω〉 = 1√
2
(|1〉|0〉+ |2〉|0〉).

The oracle will run on both of these input in superposition. The state the adversary receives will
be a mixed state over different choices of randomness and secrets. We’ll assume both of these are
uniformly chosen and he’ll hence receive,

ρadv =
∑

b∈{0,1},r∈{0,1}

1

4

∣

∣

∣
ψadv
b,r

〉〈

ψadv
b,r

∣

∣

∣

where |ψadv
b,r 〉 = 1√

2
(|1〉|v1(b, r)〉+ |2〉|v2(b, r)〉) = 1√

2
(|1〉|b⊕ r〉+ |2〉|r〉). Define the state the adver-

sary sees for a specific secret, b, as ρadvb =
∑

r∈{0,1}

1

2
|ψadv

b,r 〉〈ψadv
b,r |. We would consider our bit sharing

scheme secure iff for all possible queries, ρadv0 = ρadv1 . However, note that,

ρadvb =
∑

r∈{0,1}

1

2

∣

∣

∣
ψadv
b,r

〉〈

ψadv
b,r

∣

∣

∣
=

1

2

∑

A,A′∈{1,2}
|A〉
〈

A′∣
∣⊗





∑

r∈{0,1}
|vA(b, r)〉〈vA′(b, r)|



 .

For A = 1, A′ = 2, consider the submatrix,
∑

r∈{0,1}
|v1(b, r)〉〈v2(b, r)| =

∑

r∈{0,1}
|b⊕ r〉〈b|. It should be

clear that
∑

r∈{0,1}
|0⊕ r〉〈0| 6=

∑

r∈{0,1}
|1⊕ r〉〈1| and hence ρadv0 6= ρadv1 , which means the scheme is not

secure if we allow the adversary to run the corruption oracle in superposition. This is not surprising
since we know that using the Deutch-Josza algorithm you can actually distinguish between two such
shares perfectly. Note that to do it perfectly it would require the use of a superposition of values
for the response registers.
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3.2 Model for secret sharing

We’ll now give the full technical description of the model for superposition attacks on general secret
sharing. To do this we first consider the state spaces needed to run the protocol and the attack on
the protocol. First is the space that contains the shares for all the parties, Hparties. The state in
the register for this space is unchanged throughout the attack and is,

|parties〉p =
∑

s∈S,r∈R

√
ps
√
pr
∣

∣s, r, v[n](s, r)
〉

p
=

∑

s∈S,r∈R

√
ps
√
pr|s, r〉

⊗

i

|vi(s, r)〉 ∈ Hparties

where |s, r〉 is the purification of the secret and randomness choice. This is purely for technical
reasons and does not matter for the adversary as he never sees it (and hence they might as well be
considered measured). Next is the space for the environment, Henv, which the adversary can use
to choose his query and use as potential auxiliary register. The initial state for the environment is
a general (pure) state,

|ψ〉e =
∑

x

αx|x〉e ∈ Henv.

Finally is the space holding the adversary’s query to the corruption oracle, Hquery. This is initially
a ’blank’ state,

|ω〉q = |0, 0〉q ∈ Hquery.

The space for the entire model is hence, Htotal = Hparties ⊗Henv ⊗Hquery and the intial state is,

|init〉t =
∑

s∈S,r∈R

√
ps
√
pr
∣

∣s, r, v[n](s, r)
〉

p
⊗
∑

x

αx|x〉e ⊗ |0, 0〉q ∈ Htotal.

The attack will be defined by two operations and an adversary structure F . First the adversary
needs to construct his query for the oracle. This includes choosing the superposition of subsets he’ll
corrupt and associated values for the response registers. This is an arbitrary unitary operation.
We’ll denote it, Uadv,F

query ,
Uadv,F
query : Henv ⊗Hquery → Henv ⊗Hquery.

After this unitary operation the state is,

|query〉t = Uadv,F
query |init〉t =

∑

s∈S,r∈R

√
ps
√
pr
∣

∣s, r, v[n](s, r)
〉

p
⊗

∑

x,A∈F,a∈{0,1}t
αx,A,a|x〉e⊗|A, a〉q ∈ Htotal

where we assume it is the identity on Hparties Next the oracle, O(s, r,A), is run. Let UO denote the
unitary applying this function. The state afterwards is,

|final〉t = UO|query〉t =
∑

s∈S,r∈R

√
ps
√
pr
∣

∣s, r, v[n](s, r)
〉

p
⊗

∑

x,A∈F,a∈{0,1}t
αx,A,a|x〉e ⊗ |A, a+ vA(s, r)〉q ∈ Htotal

were we, again, assume UO is padded with appropriate identities. Consider the final state the
adversary sees for a specific secret, s,

ρadv,Fs =
∑

r∈R

∣

∣

∣ψadv,F
r

〉〈

ψadv,F
r

∣

∣

∣

where |ψadv,F
r 〉 =

∑

x,A∈F,a∈{0,1}t
αx,A,a|x〉e ⊗ |A, a+ vA(s, r)〉q.
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Definition 1. A secret sharing scheme S is perfectly secure against superposition F -attacks if,
and only if, for all unitary matrices, Uadv,F

query : Henv ⊗Hquery → Henv ⊗Hquery and all possible pairs
of inputs, s, s′ ∈ S,

ρadv,Fs = ρadv,Fs′

For an adversary structure F , we define F 2 = {A| A = B ∪ C where B,C ∈ F}.

Theorem 1. Let G be the classical adversary structure for S. S is perfectly secure against super-
position F -attacks if and only if F 2 ⊆ G.

Proof. For the forward direction, consider the adversary’s final state,

ρadvs =
∑

r∈R
pr

∣

∣

∣
ψadv
r

〉〈

ψadv
r

∣

∣

∣

=
∑

r∈R,x,x′,A,A∈F,a,a′∈{0,1}t
prαx,A,aα

∗
x′,A′,a′ |x〉e〈x|e ⊗ |A, a+ vA(s, r)〉q

〈

A′, a′ + vA′(s, r)
∣

∣

q

Now, for any fixed A, A′, a, a′ and s, consider the matrix
∑

r∈R
pr|A, a+ vA(s, r)〉q〈A′, a′ + vA′(s, r)|q.

The crucial observation now is that this matrix is in 1-1 correspondence with the joint distribution
of vA(s, r) and vA′(s, r). Namely, its entries are indexed by pairs of strings (α, β), where α, β are
strings of the same length. And furthermore the (α, β)’th entry is the probability that the events
vA(s, r) = α + a and vA′(s, r) = β + a′ occur simultaneously. Now, if F 2 ⊆ G, we have that
S is perfectly secure against classical F 2-attacks. Therefore the joint distribution of vA(s, r) and

vA′(s, r) does not depend on s, consequently each matrix
∑

r∈R
pr|A, a+ vA(r, s)〉q〈A′, a′ + vA′(s, r)|q

is independent of s as well. Hence ∀s, s′ ∈ S : ρadv,Fs = ρadv,Fs′ as required.
For the only-if part, assume for contradiction that F 2 6⊆ G, i.e., there exist A0, A1 such that

A0 ∪A1 6∈ G. It follows that a secret shared using S is uniquely determined from shares in A0 ∪A1.
Then consider the query |ωα〉 = (|A〉|0〉 + |A′〉|0〉)/

√
2. By the same computation as above, we see

that ρadvs contains a submatrix of form
∑

r∈R
|aA + vA(s, r)〉〈aA′ + vA′(s, r)|, that corresponds to the

joint distribution of shares in A and A′. But since the secret is uniquely determined from these
shares, it follows that this submatrix is different for different secrets, and hence we get that there
exists a measurement with non-zero bias towards the secret, and so S is not perfectly secure against
quantum F -attacks. This is exactly the result we saw in the small example in Section 3.1.

3.3 Simplified models for secret sharing

When formalizing superposition attacks on secret sharing we need to consider if we allow the
adversary to use different values for the response register. The choice provably make a difference
for the strength of the model, and both options can be justified from a physical perspective. We
therefore cover both models. When the adversary runs a classical component in superposition, then
the reply will in general be a superposition. This opens the question of how the reply is delivered. In
quantum information processing, it is customary that the result is xor’ed onto a response register
a supplied along with the input. I.e., for a function f on is given a box which on classical input
|x〉|a〉, the output is |x〉|a⊕ f(x)〉. This is convenient, as it is invertible, so the action of the box

6



on a superposition is given by its actions on the classical inputs. This approach is reasonable in
quantum information processing, as one is typically designing the boxes one self. If f is a database
one can simply design the quantum version to supply the output by xor’ing it onto a response
register. Consider, however, the prover in a zero-knowledge proof, which is sent a challenge e and
then sends back z(e). Even though the prover might be tricked into running on a superposition
without noticing it, it does not seem reasonable that the prover would not notice it if we sent
along a response register and asked her to xor her resply onto this register. In such a setting it
seems more reasonable that the box/prover creates the response registers and returns them to the
attacker/verifier. We model the setting of created response registers by restricting the more general
setting of supplied response registers by allowing only a = 0. In that case the response from the
box would be |x〉|f(x)〉.

3.4 Attacks on Secret Sharing

Even if a secret sharing scheme is not perfectly secure according the Theorem 1 it does not tell us
anything about how much information the adversary can actually gain on the secret. One might
even hope this could become negligible by increasing the amount of randomness used to create the
shares. However, in this section we show that, for any two-party Shamir secret sharing scheme, an
attack can distinguish between to possible secrets with considerable bias. The attack works even in
the restricted setting of supplied response registers.

Lemma 1. Consider a two-party Shamir secret sharing scheme S. For any two secrets s, s′ ∈ S :
s 6= s′, there exists a query with a = 0 that will allow an adversary to distinguish between the two
with probability at least pguess, where

pguess ≥
3

4

Proof. The adversary will need no auxiliary register, so let his state simply be the query register.
He constructs the following (pure state) query

|ω〉 = 1√
2
(|A0, 0〉+ |A1, 0〉)

where |ω〉 ∈ Hquery. The final state the adversary sees for different secrets is then,

ρadvs =
∑

r∈R
pr

∣

∣

∣ψadv
r

〉〈

ψadv
r

∣

∣

∣

where |ψadv
r 〉 =

∑

A∈{A0,A1}

1√
2
|A, vA(s, r)〉q and r ∈ R.

It is well-known that the adversary’s probability of distinguishing between two such states, ρsadv
and ρs

′

adv , is pguess = 1
2 + 1

4 × |ρsadv − ρs
′

adv |Tr, where | . . . |Tr denotes the trace norm. Define the
difference between the two states as the matrix ∆.

∆ = ρsadv − ρs
′

adv

=
1

2

∑

A,A′∈{A0,A1},r∈R
pr|A, vA(s, r)〉q

〈

A′, vA′(s, r)
∣

∣

q
− 1

2

∑

A,A′∈{A0,A1},r
pr
∣

∣A, vA(s
′, r)
〉

q

〈

A′, vA′(s′, r)
∣

∣

q

=
1

2

∑

A,A′∈{A0,A1}
|A〉
〈

A′∣
∣

(

∑

r∈R
pr|vA(s, r)〉q〈vA′(s, r)|q −

1

2

∑

r∈R
pr
∣

∣vA(s
′, r)
〉

q

〈

vA′(s′, r)
∣

∣

q

)
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Since the state for any party individually is independent of the secret we have that for all s, s′ ∈ S

∑

r∈R
|vA(s, r)〉〈vA(s, r)| =

∑

r∈R

∣

∣vA(s
′, r)
〉〈

vA(s
′, r)
∣

∣

which means we only need to consider A,A′ ∈ {A0, A1}|A 6= A′.

∆ =
1

2
|A0〉〈A1| ⊗

(

∑

r∈R
pr|vA0(s, r)〉q〈vA1(s, r)|q −

1

2

∑

r∈R
pr
∣

∣vA0(s
′, r)
〉

q

〈

vA1(s
′, r)
∣

∣

q

)

+
1

2
|A1〉〈A0| ⊗

(

∑

r∈R
pr|vA1(s, r)〉q〈vA0(s, r)|q −

1

2

∑

r∈R
pr
∣

∣vA1(s
′, r)
〉

q

〈

vA0(s
′, r)
∣

∣

q

)

Define the two submatrices:

S =
∑

r∈R
pr|vA0(s, r)〉q〈vA1(s, r)|q −

1

2

∑

r∈R
pr
∣

∣vA0(s
′, r)
〉

q

〈

vA1(s
′, r)
∣

∣

q
(1)

S† =
∑

r∈R
pr|vA1(s, r)〉q〈vA0(s, r)|q −

1

2

∑

r∈R
pr
∣

∣vA1(s
′, r)
〉

q

〈

vA0(s
′, r)
∣

∣

q

such that ∆ is the 2× 2t by 2× 2t matrix

∆ =
1

2

(

0 S
S† 0

)

(2)

It is well-known that if ∆ is of the form (2) and 1
2S has singular values s1 ≥ ... ≥ sp then ∆ has

eigenvalues ±s1, ...,±sp. Since∆ is Hermitian, the trace norm is the sum of the absolute eigenvalues.
From this we conclude that |∆|Tr = |S|Tr and we can reduce our problem to that of finding the
trace norm of S. Let

S =Ms −Ms′

Ms =
∑

r∈R
pr|vA0(s, r)〉〈vA1(s, r)|

Note that for the state to be normalized it must be that

∑

i,j∈{0,1}t
[Ms]i,j =

∑

i,j∈{0,1}t,r
prδvA0

(s,r),iδvA1
(s,r),j = 1

Now, define the matrix, M̃s

M̃s =
∑

r∈R
|vA0(s, r)〉〈vA1(s, r)|+

t2−1
∑

i=|R|
|i〉〈i|

8



It’s straight forward to see that M̃sM̃
T
s = I,





∑

r∈R
|vA0(s, r)〉〈vA1(s, r)|+

t2−1
∑

i=|R|
|i〉〈i|



×





∑

r′∈R

∣

∣vA1(s, r
′)
〉〈

vA0(s, r
′)
∣

∣+

t2−1
∑

i=|R|
|i〉〈i|





=
∑

r,r′∈R
|vA0(s, r)〉

〈

vA0(s, r
′)
∣

∣〈vA1(s, r)|
∣

∣vA1(s, r
′)
〉

+

t2−1
∑

i=|R|
|i〉〈i|

=
∑

r∈R
|vA0(s, r)〉〈vA0(s, r)|+

t2−1
∑

i=|R|
|i〉〈i| = I

Note that

t2−1
∑

i=|R|
|i〉〈i| is simply used to pad the subspace to ensure that the matrix is unitary. It will

not be of any importance in the following calculations and can simply be ignored. It is well-known
that

|S|Tr = maxU{|Tr(SU)|}

where U is any unitary matrix. In other words, any specific matrix U is going to give a lower bound
on the trace norm. Both M̃s and M̃T

s are such unitary matrices,

|S|Tr = maxU{|Tr(SU)|} ≥ |Tr(SM̃T
s )|

= |Tr((Ms −Ms′)M̃
T
s )|

= |
∑

i,j∈{0,1}t
[Ms]i,j[M̃s]i,j −

∑

i,j∈{0,1}t
[Ms′ ]i,j[M̃s]i,j|

= |1−
∑

i,j∈{0,1}t
[Ms′ ]i,j [M̃s]i,j|

Now note that

∑

i,j∈{0,1}t
[Ms′ ]i,j[M̃s]i,j =

∑

i,j∈{0,1}t,r,r′
prδvA0

(s,r),iδvA1
(s,r),jδvA0

(s′,r′),iδvA1
(s′,r′),j

However the pair (vA0(s, r), vA1(s, r)), uniquely defines s and hence the sum is 0 unless s = s′.
Therefore for s 6= s′ : |S|Tr ≥ 1.

pguess =
1

2
+

1

4
|∆|Tr =

1

2
+

1

4
|S|Tr ≥

1

2
+

1

4
× 1 =

3

4

which completes the proof. ⊓⊔

4 Zero-Knowledge

In this section, we present a zero-knowledge proof for any NP problem in the common reference
string model. The proof is sound for an unbounded prover (quantum or not) and is computationally

9



zero-knowledge for a polynomially bounded quantum verifier, even if superposition attacks are
allowed.

For the protocol, we need a commitment scheme with special properties: we require a keyed
commitment scheme Commitpk, where the corresponding public key pk is generated by one of two
possible key-generation algorithms: GH or GB. For a key pkH generated by GH, the commitment
scheme CommitpkH is unconditionally hiding, whereas the other generator, GB, actually produces a
key pair (pkB, sk), so that the secret key sk allows to efficiently extract m from CommitpkB(m, r),
and as such CommitpkB is unconditionally binding. Furthermore, we require that keys pkH and pkB

produced by the two generators are computationally indistinguishable, for any family of polynomial
size quantum circuits. We call such a commitment scheme a dual-mode commitment scheme. 1 As
a candidate for implementing such a system, we propose the public-key encryption scheme of
Regev [Reg05], which is based on a worst-case lattice assumption and is not known to be breakable
even by (efficient) quantum algorithms. Regev does not explicitly state that the scheme has the
property we need, but this is implicit in his proof that the underlying computational assumption
implies semantic security. 2

4.1 The Model

We now describe the framework for our protocol: the proof system is specified w.r.t. a language
L, and we have a prover P and a verifier V , both are assumed classical (when playing honestly).
They get as input a common reference string CRS chosen with a prescribed distribution σ and a
string x. P and V interact and at the end V outputs accept or reject. The first two properties we
require are standard: Completeness: if x ∈ L and P, V follow the protocol, V outputs accept with
probability 1. Soundness: if x 6∈ L (but CRS is chosen according to σ) then for any prover P ∗, V
outputs accept with probability negligible (in the length of x) when interacting with P ∗ on input
x and CRS.

For zero-knowledge, we extend the capabilities of a cheating verifier V ∗ so it may do a superpo-
sition attack For simplicity, we give our definition of superposition zero-knowledge only for 3-move
public coin protocols, i.e., conversations are assumed to have the form (a, e, z), where e is a random
challenge issued by the verifier. It is not hard to extend the definition but the notation becomes
more cumbersome. First, V ∗ is assumed to be a quantum machine, and the protocol is executed as
follows: V ∗ receives x,CRS and P ’s first message a. Now, in stead of sending a classical challenge
e, V ∗ is allowed to send a query

∑

e,y

αe,y|e〉|y〉.

We assume the the prover will process the query following his normal algorithm in superposition,
so the verifier will get the same two registers back, in state

∑

e,y

αe,y|e〉|y + z(x, e, ρ)〉,

1 The notions of dual-mode cryptosystems and of meaningful/meaningless encryptions, as introduced in [PVW08]
and [KN08], are similar in spirit but differ slightly technically.

2 The proof compares the case where the public key is generated normally to a case where it is chosen with no
relation to any secret key. It is then argued that the assumption implies that the two cases are computationally
indistinguishable, and that in the second case, a ciphertext carries essentially no information about the message.
This argument implies what we need.
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where z(x, e, ρ) is P ’s response to challenge e on input x and internal randomness ρ. Finally, V ∗

outputs 0 or 1. Let preal(x) be the probability that 1 is output. We say that the proof system is
superposition zero-knowledge if there exists an polynomial time quantum machine, the simulator S,
such that the following holds for any cheating verifier V ∗ and x ∈ L: S interacts with V ∗ on input
x, and we let psim(x) be the probability that V ∗ outputs 1. Then |preal(x) − psim(x)| is negligible
(in the length of x).

Note that, as usual in the CRS model, S only gets x as input and may therefore generate the
reference string itself.

4.2 The Protocol

We now describe the basic ideas behind our protocol: we will let the CRS contain the following:
pkB, c = CommitpkB(0), pkB

′, where the public keys are both generated by GB. Then, using a standard
trick, we will let P show that either x ∈ L or c contains a 1. Since of course the latter statement is
false, P still needs to convince us that x ∈ L. The simulator, on the other hand, can construct a
reference string where c does contain 1 and simulate by following the protocol. The CRS will look
the same to the verifier so we just need that the change of witness used is not visible in the proof,
i.e., the proof should be witness indistinguishable. In this way, we can simulate without rewinding,
and this allows V ∗ to be quantum.

However, standard techniques for witness indistinguishability are not sufficient to handle a
superposition attack. For this, we need to be more specific about the protocol: a first attempt (which
does not give us soundness) is that P will secret-share his witness w (where for the honest prover,
w will be a witness for x ∈ L), to create shares s1, ..., sn where we assume the scheme has t-privacy.
Then P ’s first message is a set of commitments a = (CommitpkB′(s1, r1), ..., CommitpkB′(sn, rn)). The
verifier’s challenge e will point out a random subset of the commitments, of size t/2, and the prover
opens the commitments requested. Intuitively, this is zero-knowledge by Theorem 1: since we limit
the number of shares the verifier can ask for to half the threshold of the secret sharing scheme, the
state V ∗ gets back contains no information on the secret w.

On the other hand, this protocol is of course not sound, the verifier cannot check that the
prover commits to meaningful shares of anything. To solve this, we make use of the “MPC in the
head” technique from [IKOS09]: Here, we make use of an n-party protocol in which the witness
w is secret-shared among the player, and a multiparty computation is done to check whether w is
correct with respect to claim on the the public input, namely in our case x ∈ L and the c from
the CRS contains 1. Finally all players output accept or reject accordingly. It is assumed that the
protocol is secure against active corruption of t players where t is Θ(n). We will call this protocol
πL,CRS in the following. Several examples of suitable protocols can be found in [IKOS09]. In their
construction, the prover emulates an execution of π in his head, and we let vπL,CRS

(i, ρ) denote he
view of virtual player i, where ρ is the randomness used. The prover then commits to vπL,CRS

(i, ρ),
for i = 1...n and the verifier ask the prover to open t randomly chosen views that are checked for
consistency and adherence to πL,CRS . It is shown in [IKOS09] that if no valid witness exists for the
public input, then the verifier will detect an error with overwhelming probability.

Now, observe that the process of emulating π can be thought of as a secret sharing scheme,
where the prover’s witness w is shared and each vπ(i, ρ) is a share: indeed any t shares contain no
information on w by t-privacy of the protocol. Therefore combining this with our rudimentary idea
from before gives us the solution.

Superposition-secure zero-knowledge proof for any NP -language L.
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The public input is x, of length k bits. The distribution σ generates the common reference string
as pkB, c = CommitpkB(0), pkB

′, where the public keys are both generated by GB on input 1k.

1. The prover P emulates πL,CRS to generate vπL,CRS
(i, ρ) and sends CommitpkB′(vπL,CRS

(i, ρ), ri),
for i = 1...n, to the verifier V .

2. V sends a challenge e designating a random subset of the commitments of size t/2.
3. P opens the commitments designated by e, V checks the opened views according to the algorithm

described in [IKOS09], and accepts or rejects according to the result.

Theorem 2. If (GB,GH, Commit) form a secure dual-mode commitment scheme, then the above
protocol is complete, sound and superposition zero-knowledge.

Proof. Completeness is trivial by inspection of the protocol. Soundness follows immediately from
the soundness proof in [IKOS09], we just have to observe that the fact that the prover opens t/2
and not t views makes no difference, in fact the proof holds as long as Θ(n) views are opened.
For zero-knowledge, we describe a simulator S: It will generate a common reference string as
pkH, c = CommitpkH(1), pkH

′ where both public keys are generated by GH on inout 1k. It then plays
the protocol with V ∗, answering its quantum queries by following the protocol. This is possible since
c now contains a 1, so S knows a valid witness. To show that V ∗ cannot distinguish simulation
from protocol, we define series of games

Game 0 The protocol as described above, but where P talks to V ∗ doing a superposition attack.
Game 1 As Game 0, but the CRS is generated as pkH, c = CommitpkH(0), pkB

′ where pkH is gener-
ated by GH and pkB′ is generated by GB.

Game 2 As Game 1, but the CRS is generated as pkH, c = CommitpkH(1), pkH
′ where both public

keys are generated by GH.
Game 3 As Game 3, but the P uses as witness the fact that c contains a 1.

Now, Game 0 and Game 1 are computationally indistinguishable by assumption on the dual-mode
commitment scheme, and the same is true for Game 1 and Game 2. Game 2 and Game 3 are
statistically indistinguishable by Theorem 1 and the fact that commitments done using pkH′ are
statistically hiding. Finally, note that Game 3 is exactly the same game as the simulation.

5 Multiparty computation

In this section we consider the models for MPC protocols. A classical passive attack on a multiparty
computation protocol looks a lot like the attacks on secret sharing: you query for a subset and get
back the party’s entire view of the protocol. Of course, you can generalize this to a quantum attack
in the same way. And you can ask if there is some adversary structure for which the protocol would
be secure against such an attack, assuming classical security.

Security for MPC protocols is usually defined as an adversary’s ability to distinguish between an
attack in the real world where he’s allowed access to a corruption oracle of some subset of the parties
and an ideal world where the attack is simulated towards the adversary using the ideal functionality
of the protocol. We hence need to describe both models for the real and for the ideal world. They’ll
need different spaces and different operations to execute. As before, we have n parties running the
protocol. We name the parties P1, . . . , Pn. Let [n] = {1, . . . , n}. An adversary structure is F ⊂ 2[n].
Each party, Pi, has local input, si ∈ Si with is supplied by the adversary and chooses randomness,
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ri ∈ Ri. s ∈ S and r ∈ R denotes the concatenation of each of these. vi(s, r) and oi(s, r) is the
private view and output for the party Pi, when the protocol has been run on inputs s and using
randomness r. Note these are functions and not general quantum operations as the parties, even the
corrupted ones, are expected to run the protocol honestly. For A ⊂ [n], let vA(s, r) = {vi(s, r)}i∈A,
sA = {si}i∈A oA(s, r) = {oi(s, r)}i∈A and be strings containing the concatenation of views, input
and output for parties Pi with i ∈ A. For convenience in the following we assume that each such
string is padded, so that they have the same length (t bits) regardless of the size of A.

5.1 MPC model in the ’Real world’

First we will consider the case of running and attacking the protocol in the real world. As earlier,
all actions taken by the parties and the adversary will be considered purified so the overall state
remains pure throughout. Consider the following space,

Htotal = Hparties ⊗Hin ⊗Hout ⊗Henv ⊗Hquery

Hparties contains the private views and purification of the randomness for the parties.
Hin contains the input the parties will use to run the protocol.
Hout is where the output will be stored after running the protocol.
Henv is the environment and is used to store auxiliary input and any auxiliary register needed by
the adversary. The dimension is therefore arbitrary, though finite.
Hquery is where the query to, and response from, the oracle will be stored.
Each of these subspaces are, of course, of appropriate (and finite) dimension.

We will break the superposition run, and attack, of a MPC protocol in the real world down
into four unitaries. After each unitary we will consider the change to the description of the state.
In the beginning all the registers are blank (ie. have value 0), except the environment, which might
contain some (purified) auxiliary input for the adversary. The initial state is hence,

|init〉rwt =
∑

x

αx|0〉p|0〉i|0〉o|x〉e|0〉q

where |init〉rwt ∈ Htotal, |0〉p ∈ Hparties, |0〉i ∈ Hin, |0〉o ∈ Hout, |0〉e ∈ Henv and |0〉q ∈ Hquery, as
should be expected from the notation. The superscript, rw, specifies that it’s in the real world.
The first unitary is applied by the adversary and supplies the inputs to the parties. This is an
arbitrary unitary operation. We’ll denote it, Uadv

in ,

Uadv
in : Hin ⊗Henv → Hin ⊗Henv.

The result of this is that the input registers are now filled. These are in superposition over all
possible inputs. The state after the first unitary is therefore,

|1〉rwt =
∑

x,s

αx,s|0〉p|s〉i|0〉o|x〉e|0〉q

The protocol is now run honestly without intervention from the adversary. This is a classical function
run in superposition of the possible inputs and produces a corresponding superposition of private
views and outputs for the parties. We’ll denote this unitary, Upro

run,

Upro
run : Hparties ⊗Hin ⊗Hout → Hparties ⊗Hin ⊗Hout
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Recall that we are purifying all actions, hence also the choice of randomness when the protocol is
run. The state after the second unitary is therefore,

|2〉rwt =
∑

x,s,r

αx,s
√
pr
∣

∣v[n](s, r)
〉

p
|s〉i
∣

∣o[n](s, r)
〉

o
|x〉e|0〉q (3)

Next the adversary needs to construct his query to the oracle. This includes choosing the superpo-
sition of subsets he’ll corrupt and associated values for the response registers for input, output and
view. For simplicity we’ll sometimes refer to these three values by a. That is, a = (ai, ao, av). This

is an arbitrary unitary operation. We’ll denote it, Uadv,F
query ,

Uadv,F
query : Henv ⊗Hquery → Henv ⊗Hquery

The state is now,

|3〉rwt =
∑

x,s,r,A,a

αx,s,A,a
√
pr
∣

∣v[n](s, r)
〉

p
|s〉i
∣

∣o[n](s, r)
〉

o
|x〉e|A, a〉q

Next unitary is applied by the oracle, that, for each corrupted subset in the query, fills the input,
output and view into the response register supplied by the adversary. This is a classical function
on each corrupted subset and view in the superposition which fills in the input, output and view
into the response register. We’ll denote this unitary, Uoracle

res ,

Uoracle
res : Hparties ⊗Hin ⊗Hout ⊗Hquery → Hparties ⊗Hin ⊗Hout ⊗Hquery

and the state after the fourth unitary is therefore

|4〉rwt =
∑

x,s,r,A,a

αx,s,A,a
√
pr
∣

∣v[n](s, r)
〉

p
|s〉i
∣

∣o[n](s, r)
〉

o
|x〉e|A, ai + sA, ao + oA(s, r), av + vA(s, r)〉q

The adversary receives the response register and must now guess if he’s in the real or ideal world.
He can do this using the input register, his auxiliary register and the query register. To see the
adversary’s final state we need to trace out the register holding the view of all the parties,

ρrwadv = Trp(|4〉〈4|rwt ) =
∑

r,r′,s,s′

√
pr
√
pr′
∣

∣

∣ψadv
r,s

〉〈

ψadv
r′,s′

∣

∣

∣Tr(
∣

∣v[n](s, r)
〉

p

〈

v[n](s
′, r′)

∣

∣

p
⊗
∣

∣o[n](s, r)
〉

o

〈

o[n](s
′, r′)

∣

∣

o
)(4)

=
∑

r,r′,s,s′

√
pr
√
pr′
∣

∣

∣
ψadv
r,s

〉〈

ψadv
r′,s′

∣

∣

∣

〈

v[n](s, r)
∣

∣

p

∣

∣v[n](s
′, r′)

〉

p
×
〈

o[n](s, r)
∣

∣

o

∣

∣o[n](s
′, r′)

〉

o
)(5)

=
∑

r,s

pr

∣

∣

∣ψadv
r,s

〉〈

ψadv
r,s

∣

∣

∣ (6)

where |ψadv
r,s 〉 =

∑

x,A,a

αx,s,A,a|s〉i|x〉e|A, ai + sA, ao + oA(s, r), av + vA(s, r)〉q. It is interesting to note

that even though the input register was supplied by the adversary, as the parties run the protocol
their private state becomes entangled with the input register. This is a register the adversary does
not have access to and as a consequence he now sees a mixed state over possible inputs.

We’ll sum up these steps below in Figure 1.
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Inital state:
|init〉rw

t
=

∑

x

αx|0〉p|0〉i|0〉o|x〉e|0〉q

1.
Uadv

in : Hin ⊗Henv → Hin ⊗Henv

|1〉rw
t

=
∑

x,s

αx,s|0〉p|s〉i|0〉o|x〉e|0〉q

2.
Upro

run : Hparties ⊗Hin ⊗Hout → Hparties ⊗Hin ⊗Hout

|2〉rw
t

=
∑

x,s,r

αx,s

√
pr
∣

∣v[n](s, r)
〉

p
|s〉

i

∣

∣o[n](s, r)
〉

o
|x〉

e
|0〉

q

3.
Uadv,F

query : Henv ⊗Hquery → Henv ⊗Hquery

|3〉rw
t

=
∑

x,s,r,A,a

αx,s,A,a

√
pr
∣

∣v[n](s, r)
〉

p
|s〉

i

∣

∣o[n](s, r)
〉

o
|x〉

e
|A, a〉

q

4.
Uoracle

res : Hparties ⊗Hin ⊗Hout ⊗Hquery → Hparties ⊗Hin ⊗Hout ⊗Hquery

|4〉rw
t

=
∑

x,s,r,A,a

αx,s,A,a

√
pr
∣

∣v[n](s, r)
〉

p
|s〉

i

∣

∣o[n](s, r)
〉

o
|x〉

e
|A, ai + sA, ao + oA(s, r), av + vA(s, r)〉q

Fig. 1. Purified run of multiparty computation in the real world with superposition attacks
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5.2 MPC model in the ’Ideal world’

Secondly we consider the ideal world, where a simulator is to simulate a real attack for the adversary
using only the ideal functionality. The space for this model is,

Htotal = HidealF ⊗Hin ⊗Hout ⊗Hsim ⊗Henv ⊗Hquery

Hin,Hout and Henv serve the same purpose as in the real world.
Hsim denotes the subspace in which the simulator operates.
Hquery is still the register where the adversary constructs his query, but the simulator will be allowed
to change this before using it to query the ideal functionality. Finally, we have a space for the ideal
functionality, HidealF . This is necessary as we want to purify the random choices made and we need
the state of the ideal functionality to be entangled with the input register as the parties would be in
the real world. We’ll describe the unitaries that differ and refer to the earlier description for those
that don’t. There will be six unitaries in total. The initial state is,

|init〉iwt =
∑

x

αx|0〉if |0〉i|0〉o|0〉s|x〉e|0〉q

where |init〉t ∈ Htotal, |0〉if ∈ HidealF , |0〉i ∈ Hin, |0〉o ∈ Hout, |0〉s ∈ Hsim, |0〉e ∈ Henv and
|0〉q ∈ Hquery, as should be expected from the notation. The superscript, iw, denotes that it’s in
the ideal world. The first unitary is exactly as in the real world and hence,

Uadv
in : Hin ⊗Henv → Hin ⊗Henv

|1〉iwt =
∑

x,s

αx,s|0〉if |s〉i|0〉o|0〉s|x〉e|0〉q

The ideal functionality now entangles itself with the input register and produces the correct outputs
in the output register. This is a classical function of each view in superposition. We’ll denote this
unitary, U ideal

out ,

U ideal
out : HidealF ⊗Hin ⊗Hout → HidealF ⊗Hin ⊗Hout

Recall that any random choices are purified onto HidealF . The resulting state is therefore,

|2〉iwt =
∑

x,s,r

αx,s
√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|0〉s|x〉e|0〉q

The adversary constructs his query exactly as earlier,

Uadv,F
query : Henv ⊗Hquery → Henv ⊗Hquery

|3〉iwt =
∑

x,s,r,A,a

αx,s,A,a
√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|0〉s|x〉e|A, a〉q

Now the simulator gets the query and must construct an appropriate response to the adversary, only
using the ideal functionality. First the simulator is allowed to change the adversary’s query using
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an auxiliary register. Only requirement is that it is corruption preserving 3. This is an arbitrary
unitary operation. We’ll denote it, U sim

query,

U sim
query : Hsim ⊗Hquery → Hsim ⊗Hquery

|4〉iwt =
∑

x,z,s,r,A,a

αx,z,s,A,a
√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|z〉s|x〉e|A, a〉q

Now the ideal functionality is run on the query from the simulator. This is a classical function that
each corrupted subset and each view in the superposition which fills in the input and output into
the response register. We’ll denote this unitary, U ideal

res ,

U ideal
res : Hin ⊗Hout ⊗Hquery → Hin ⊗Hout ⊗Hquery

and the response register now contains input and output from the corrupted parties, but, of course,
not their views.

|5〉iwt =
∑

x,z,s,r,A,a

αx,z,s,A,a
√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|z〉s|x〉e|A, ai + sA, ao + oA(s, r), av〉q

Next the simulator must try to simulate the response the adversary got in the real world. We’ll
denote this unitary, U sim

res ,

U sim
res : Hsim ⊗Hquery → Hsim ⊗Hquery.

The resulting state is

|6〉iwt =
∑

x,z,s,r,A,a

α′
x,z,s,A,a

√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|z〉s|x〉e|A,ψz,s,A,a〉q.

Finally, to see what state the adversary sees we must trace out the ideal functionality, the output
and the simulator registers,

ρiwadv = Trif,o,s(|6〉〈6|iwt ) =
∑

r,r′,s,s′,z,z′

pr

∣

∣

∣ψadv
r,s,z

〉〈

ψadv
r′,s′,z′

∣

∣

∣tr
(

|s, r〉if
〈

s′, r′
∣

∣

if
⊗
∣

∣o[n](s, r)
〉

o

〈

o[n](s
′, r′)

∣

∣

o
⊗ |z〉s

〈

z′
∣

∣

s

)

=
∑

r,r′,s,s′,z,z′

pr

∣

∣

∣
ψadv
r,s,z

〉〈

ψadv
r′,s′,z′

∣

∣

∣

(

〈s, r|if
∣

∣s′, r′
〉

if
×
〈

o[n](s, r)
∣

∣

o

∣

∣o[n](s
′, r′)

〉

o
× 〈z|s

∣

∣z′
〉

s

)

=
∑

r,s,z

pr

∣

∣

∣ψadv
r,s,z

〉〈

ψadv
r,s,z

∣

∣

∣

where |ψadv
r,s,z〉 =

∑

x,A,a

αx,z,s,A,a|s〉i|x〉e|A,ψz,s,A,a〉q. Again, we will sum up the steps below in Figure

2.
A MPC protocol is defined by the operator Upro

run (which in turn also defines U ideal
out ). A specific

adversay is defined by the initial state
∑

x

αa|x〉 and the two unitary operators, Uadv
in , Uadv,F

query . Finally,

a simulator is defined by the two unitary operators, {U sim
query, U

sim
res }. This allows for the following

definition.
3 That is, the probability of measuring a specific A is unchanged
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Inital state:
|init〉iw

t
=

∑

x

αx|0〉if |0〉i|0〉o|0〉s|x〉e|0〉q

1.
Uadv

in : Hin ⊗Henv → Hin ⊗Henv

|1〉iw
t

=
∑

x,s

αx,s|0〉if |s〉i|0〉o|0〉s|x〉e|0〉q

2.
U ideal

out : HidealF ⊗Hin ⊗Hout → HidealF ⊗Hin ⊗Hout

|2〉iw
t

=
∑

x,s,r

αx,s

√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|0〉

s
|x〉

e
|0〉

q

3.
Uadv,F

query : Henv ⊗Hquery → Henv ⊗Hquery

|3〉iw
t

=
∑

x,s,r,A,a

αx,s,A,a

√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|0〉

s
|x〉

e
|A, a〉

q

4.
Usim

query : Hsim ⊗Hquery → Hsim ⊗Hquery

|4〉iw
t

=
∑

x,z,s,r,A,a

αx,z,s,A,a

√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|z〉

s
|x〉

e
|A, a〉

q

5.
U ideal

res : Hin ⊗Hout ⊗Hquery → Hin ⊗Hout ⊗Hquery

|5〉iw
t

=
∑

x,z,s,r,A,a

αx,z,s,A,a

√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|z〉

s
|x〉

e
|A, ai + sA, ao + oA(s, r), av〉q

6.
Usim

res : Hsim ⊗Hquery → Hsim ⊗Hquery

|6〉iw
t

=
∑

x,z,s,r,A,a

α′

x,z,s,A,a

√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|z〉

s
|x〉

e
|A,ψz,s,A,a〉q

Fig. 2. Purified run of multiparty computation in the ideal world with superposition attacks
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Definition 2. A pair of unitary operators, {U sim
query, U

sim
res }, are a perfect black-box simulator for the

MPC protocol defined by Upro
run with adversary structure, F, if, and only if, for all auxiliary inputs,

∑

x

αx|x〉, and all operators Uadv
in , Uadv,F

query ,

ρrwadv = Trp,o(|4〉〈4|rwt ) = ρiwadv = Trif,o,s(|6〉〈6|iwt )

where

|4〉rwt = Uoracle
res Uadv,F

query U
pro
runU

adv
in |init〉rwt

|6〉iwt = U sim
res U

ideal
res U sim

queryU
adv,F
query U

ideal
out Uadv

in |init〉iwt
where we for readability assume that the operators are padded with appropriate identities on the

subspaces they don’t operate.

5.3 No simulator for general MPC if Usim
query is unitary

Consider a simple MPC protocol with a single dealer that deals a secret s ∈ {0, 1} to a number of
parties. Denote this dealer as the party, P1. The adversary will not need an auxiliary register in the
following and will therefore be left out of the equations. Let the adversary make a query, defined
by Uadv,F

query : Hquery → Hquery, that is only of the dealer and one more party where he puts the

response register for the input in perfect superposition. The complete state after applying Uadv,F
query

on the query register is,

|3〉rwt =
∑

r,ai

1
√

|S|
√
pr
∣

∣v[n](s, r)
〉

p
|s〉i
∣

∣o[n](s, r)
〉

o
|A, ai, 0, 0〉q

where A = {1, 2} The state after applying the oracle is

|4〉rwt =
∑

r,ai

1
√

|S|
√
pr
∣

∣v[n](s, r)
〉

p
|s〉i
∣

∣o[n](s, r)
〉

o
|A, ai + sA, 0, vA(s, r)〉q

If we look at the final part of the query register (vA(s, r)) we can see that it is in a classical state
and contains the view of the dealer and one other party, that is, the randomness and one secret
share. This uniquely defines the secret and hence the query register must be orthogonal for two
different secrets.
In the ideal world assume, for the time being, that U sim

query is the identity. The state after the oracle
for the ideal functionality is applied is then,

|5〉iwt =
∑

r,ai

1
√

|S|
√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|0〉s|A, ai + sA, 0, 0〉q

Since this is in perfect superposition over all values of ai we can conclude that,

|5〉iwt =
∑

r,ai

1
√

|S|
√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|0〉s|A, ai + sA, 0, 0〉q

=
∑

r,ai

1
√

|S|
√
pr|s, r〉if |s〉i

∣

∣o[n](s, r)
〉

o
|0〉s|A, ai, 0, 0〉q
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and the state the simulator sees is therefore independent of the secret. There’s hence no way it
can produce two orthogonal states depending on the secret and hence no way to simulate. For the
case of a different simulator where U sim

query is not the identity, but some unitary operation on Hquery,

there exists a different adversary that applies the unitary, Ũadv
query = Uadv,F

query (U sim
query)

−1 instead. The
register the simulator sends to the oracle of the ideal functionality is now exactly the same as
above, and the same argumentation can now be repeated. It follows that for any such simulator
there exists an adversary that cannot be simulated.

5.4 No simulator for quantum attacks by running classical simulator in superposition

Unfortunately, it is not completely clear how to design a good quantum simulator, even assuming
restrictions on F as in Theorem 1 for secret sharing and in the setting with created response
registers. A natural first attempt would be to use a classical simulator (which we can assume
exists) and produce a superposition of what it produces on those corrupted subsets that occur in
the query. We can show, however, that this cannot work in general.

Let us first make clear what we mean by running a classical simulator in superposition: con-
sider a classical machine S which gets as input parties subset A, the inputs and outputs of
those parties (sA, oA(s)) and a random string c. It then outputs S(A, sA, oA(s), c). Running S

in superposition now means that on input |ψsim
x,s 〉 =

∑

A∈F,c
αx,s,A|0〉s|A, sA, oA(s), 0〉q, we output

∑

A∈F
αx,s,A

√
pc|c〉s|A, sA, oA(s), S(A, sA, oA(s), c)〉q. This means that the state returned to the ad-

versary will be

∑

A,A′∈F
αAα

∗
A′ |A〉

〈

A′∣
∣⊗ |sA, oA(s)〉〈sA′ , oA′(s)| ⊗

∑

c

pc|S(A, sA, oA(s), c)〉
〈

S(A′, sA′ , oA′(s), c)
∣

∣

Now consider the following simple example protocol: we have 4 parties P0, P1, P2, P3. Player P0

gets as input a bit s. He will then secret share it additively among the other parties: he chooses bits
r1, r2 at random and sends r1 to P1, r2 to P2 and s⊕ r1 ⊕ r2 to P4. There is no output defined for
anyone. Clearly, this protocol is perfectly secure against a classical attack where at most 2 parties
are corrupted. One might therefore hope that it would be perfectly secure against quantum attacks
using superpositions of sets containing only 1 party.

However, we now argue that such security cannot be shown by running any classical simulator
S in superposition. To this end, consider the case where we corrupt all parties in equally weighted
superposition. This will mean that the simulator has to start from the input state.

1

2
(|P0〉|s〉|0〉+

3
∑

i=1

|Pi〉|⊥〉|0〉)

The state has this form since the input and output for P0 is just s and the other parties have no
input or output. The state returned will be

ρsim,s =
∑

A,A′∈{{P0},{P1},{P2},{P3}}

1

2
|A〉
〈

A′∣
∣⊗ |sA〉〈sA′ | ⊗

∑

c

pc|S(A, sA, c)〉
〈

S(A′, sA′ , c)
∣

∣
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If we define s{Pi} = si is some secret s if i = 0 and ⊥ otherwise, and index with Pi, Pi′ instead of
A,A′, we can write the state a bit more conveniently as:

ρsim,s =
∑

i,i′

1

2
|Pi〉〈Pi′ | ⊗ |si〉〈si′ | ⊗

∑

c

pc|S(i, si, c)〉
〈

S(i′, si′ , c)
∣

∣

On the other hand, we can compute the state ρreal,s that would be returned from a real attack.
Define vi(s, r1, r2) to be the view of the protocol for Pi, defined as a 2-bit register. Thus

v0(s, r1, r2) = (r1, r2), v1(s, r1, r2) = (r1, 0), v2(s, r1, r2) = (r2, 0), v3(s, r1, r2) = (r1 ⊕ r2 ⊕ s, 0).

This means that the state returned for a particular choice of s, r1, r2 is

|Ψs,r1,r2〉 =
1

2

3
∑

i=0

|Pi〉|si〉|vi(s, r1, r2)〉

For fixed s, each choice of r1, r2 occurs with probability 1/4, so

ρreal,s =
∑

r1,r2

1

4
|Ψs,r1,r2〉〈Ψs,r1,r2 | =

1

16

∑

i,i′

|Pi〉〈Pi′ ||si〉〈si′ |
∑

r1,r2

|vi(s, r1, r2)〉〈vi′(s, r1, r2)|

Consider the part of ρsim,s that corresponds to Pi = P0 and Pi′ = P1. Then, since we assume perfect
simulation, i.e., ρsim,s = ρreal,s, for any c, we must have S(P0, sA, oA(s), c) = S(0, s, c) = (r1, r2)
and S(Pi′ , sA′ , oA′(s), c) = S(1,⊥, c) = (r1, 0), where the same r1 occurs in both strings, since in
a real execution, P1 would of course receive the same bit that P0 sent. We get an exactly similar
conclusion for Pi′ = P2, and for Pi′ = P3, we can conclude that S(3,⊥, c) = (s ⊕ r1 ⊕ r2, 0).

But now note that, we can simply compute S(i,⊥, c) for i = 1, 2, 3 and some fixed c. Then
the above shows that if running S in superposition was a perfect quantum simulator, we could
compute (s, 0) = S(1,⊥, c) ⊕ S(2,⊥, c) ⊕ S(3,⊥, c), without any information on s, which is of
course a contradiction.

5.5 Limited simulators

The result in 5.3 strongly suggests that it’s impossible to construct a simulator for general MPC
protocols in the setting with supplied response registers. In this section we will discuss the prob-
lem of constructing a simulator for the model with created response registers and protocols for
deterministic functions. That is, the output does not depend on the chosen randomness. While
simulators in general consists of two operators, {U sim

query, U
sim
res }, we will restrict U query

sim to be the
identity. That is, the query from the adversary is sent directly to the oracle. We can do this wlog
because there’s no values in the response register and U query

sim must be corruption preserving.

Assume all randomness is uniformly chosen. This can be done wlog and helps to unclutter the
notation. For a specific protocol, define the matrix (or vector of states) M(A, s) as

M(A, s) = (|A, vA(s, 0)〉, . . . , |A, vA(s, r)〉, . . . , |A, vA(s, |R| − 1)〉)

We can now express the security of the protocol in the following way
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Lemma 2. A multiparty computation protocol for a deterministic function is perfectly secure against
quantum F -attacks w, and only if, there exists a set of |R| × |R| unitary matrices {Us}s∈S such
that for all s, s′ ∈ S, r ∈ R, A ∈ Fs,s′ where Fs,s′ = {A ∈ F |sA = s′A ∧ oA(s) = oA(s

′)}

M(A, s)Us =M(A, s′)Us′

Proof. Consider the final state the adversary sees (using the output is independent of randomness
and only 0 in the response registers),

ρrwadv = Trp(|4〉〈4|rwt ) =
∑

r∈R

1

|R|
∣

∣

∣ψadv
r

〉〈

ψadv
r

∣

∣

∣

where |ψadv
r 〉 =

∑

x,s,A

αx,s,A|s〉i|x〉e|A, sA, oA(s), vA(s, r)〉q and the state the simulator sees after the

oracle has been applied in the ideal world,

ρiwsim = Trif,e,i(|5〉〈5|rwt ) =
∑

x,s

∣

∣ψsim
x,s

〉〈

ψsim
x,s

∣

∣

where |ψsim
x,s 〉 =

∑

A

αx,s,A|0〉s|A, sA, oA(s), 0〉q. The state the simulator must sent back is,

∑

x,r,s

1

|R| |ψx,r,s〉〈ψx,r,s|

where

|ψr,s〉 =
∑

A

αx,s,A|A, sA, oA(s), vA(s, r)〉q

To continue we need a claim that is almost equivalent to Theorem 4 in [CJW04], but changed
slightly for our specific purposes. For this reason we’ll also provide a separate proof. The reader
is encouraged to read [CJW04] for additional information on the existence of transformations
between sets of quantum states.

Claim. There exists a perfect simulator, i.e. ρrwadv = ρiwadv, iff there exist unitary operator, U sim
res such

that for all x, s ∈ S

U sim
res

∣

∣ψsim
x,s

〉

= U sim
res

∑

A

αx,s,A|0〉s|A, sA, oA(s), 0〉q =
1

√

|R|
∑

A

αx,s,A

∑

i,k

[Us]i,k|k〉s|A, sA, oA(s), vA(s, i)〉q

(7)
where [Us]i,k is the i, k index of a unitary matrix in some set of unitary matrices, {Us}s∈S.

Proof. For the forward direction, consider the final state the adversary sees

ρiwadv = Trif,s(|6〉〈6|iwt ) =
∑

k,s

∣

∣

∣
ψadv
k,s

〉〈

ψadv
k,s

∣

∣

∣

22



where |ψadv
k,s 〉 =

∑

x,A

αx,s,A|s〉i|x〉e

(

∑

i

[Us]i,k
1

√

|R|
|A, sA, oA(s), vA(s, i)〉q

)

. Note that ∀s,A,A′, x, x′,

1

|R|
∑

i,j,k′

[U∗
s ]i,k[Us]j,k|A, sA, oA(s), vA(s, i)〉

〈

A′, sA′ , oA′(s), vA′(s, j)
∣

∣ (8)

=
1

|R|
∑

i,k

[U∗
s ]i,k[Us]i,k|A, sA, oA(s), vA(s, i)〉

〈

A′, sA′ , oA′(s), vA′(s, i)
∣

∣

=
1

|R|
∑

i

pi|A, sA, oA(s), vA(s, i)〉
〈

A′, sA′ , oA′(s), vA′(s, i)
∣

∣

where we used that [Us]i,k is unitary and only depends on s. This means the adversary sees the
state he expects (except for labels) and we’ve completed the proof for the forward direction.
Conversely, assume for contradiction that there is a simulator that can constructs the correct
mixed state for the adversary, but none that can construct one of the form of equation (7). If
∑

x,k,s

pk|φx,k,s〉〈φx,k,s| is the state the simulator sents back, then it must be that ∀x, s :

∑

k

pk|φx,k,s〉〈φx,k,s| =
∑

r∈R

1

|R| |ψx,r,s〉〈ψx,r,s|

where

|ψr,s〉 =
∑

A

αx,s,A|A, sA, oA(s), vA(s, r)〉q

This is true if, and only if, there exists unitary matrices, {Ux,s}x,s, such that,

∀k :
√
pk|φx,k,s〉 =

1
√

|R|
∑

i

[Ux,s]i,k|ψx,i,s〉.

By purifying the state we see we get,

∑

k

√
pk|k〉|φx,k,s〉 =

1
√

|R|
∑

i,k

[Ux,s]i,k|k〉|ψx,i,s〉 =
1

√

|R|
∑

A

αx,s,A

∑

i,k

[Ux,s]i,k|k〉s|A, sA, oA(s), vA(s, i)〉q.

Note that we can choose the purification because all purifications are unitarily equivalent. And since
the value of x only effects the amplitude we can, by linearity, assume that Ux,s does not depend
on x. This shows that the state produced by any perfect simulator must be of that form. This is a
contradiction and completes the proof. ⊓⊔

U sim
res exists (and is unitary) if it preserves inner product between all possible states, hence we

can conclude that there exists a perfect simulator if there exists a set of unitary matrices, {Us}s∈S
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such that for all x, x′, s, s′ ∈ S and all queries {αx,s,A}, {α′
x′,s′,A}

(
∑

A

α∗
x,s,A〈0|s〈A, sA, oA(s), 0|q)(

∑

A′

α′
x′,s′,A′ |0〉s

∣

∣A′, s′A′ , oA′(s′), 0
〉

q
)

=
1

|R|





∑

A

α∗
x,s,A

∑

i,k

[U∗
s ]i,k〈k|s〈A, sA, oA(s), vA(s, i)|q









∑

A′

α′
x′,s′,A′

∑

j,k′

[Us′ ]j,k′
∣

∣k′
〉

s

∣

∣A′, s′A′ , oA′(s′), vA′(s′, j)
〉

q





For the LHS we have that,

(
∑

A

α∗
x,s,A〈0|s〈A, sA, oA(s), 0|q)(

∑

A′

α′
x′,s′,A′ |0〉s

∣

∣A′, s′A′ , oA′(s′), 0
〉

q
)

=
∑

A

α∗
x,s,Aα

′
x′,s′,A〈sA, oA(s)|

∣

∣s′A, oA(s
′)
〉

=
∑

A∈Fs,s′

α∗
x,s,Aα

′
x′,s′,A

For the RHS we get that,

1

|R|





∑

A

α∗
x,s,A

∑

i,k

[U∗
s ]i,k〈k|s〈A, sA, oA(s), vA(s, i)|q









∑

A′

α′
x′,s′,A′

∑

j,k′

[Us′ ]j,k′
∣

∣k′
〉

s

∣

∣A′, s′A′ , oA′(s′), vA′(s′, j)
〉

q





=
1

|R|
∑

A,k,i,j

α∗
x,s,Aα

′
x′,s′,A[U

∗
s ]i,k[Us′ ]j,k〈sA, oA(s), vA(s, i)|

∣

∣s′A, oA(s
′), vA(s

′, j)
〉

=
1

|R|
∑

s,s′,A,k

α∗
x,s,Aα

′
x′,s′,A〈sA, oA(s)|

∣

∣s′A, oA(s
′)
〉

×
(

∑

i

[U∗
s ]i,k〈A, vA(s, i)|

)





∑

j

[Us′ ]j,k
∣

∣A, vA(s
′, j)
〉





As the state in equation (7) must be normalized it follows that the maximum value of

1

|R|

(

∑

i

[U∗
s ]i,k〈A, vA(s, i)|

)





∑

j

[Us′ ]j,k
∣

∣A, vA(s
′, j)
〉





is 1
|R| , so for the entire sum is only one if, and only if,

∑

i

[Us]i,k|A, vA(s, i)〉 =
∑

j

[Us′ ]j,k
∣

∣A, vA(s
′, j)
〉

.

Hence we see that, there exists a simulator iff there exist |R| × |R| unitary matrices Us such that
for all s, s′ ∈ S, k ∈ R, A ∈ Fs,s′

∑

i

[Us]i,k|A, vA(s, i)〉 =
∑

j

[Us′ ]j,k
∣

∣A, vA(s
′, j)
〉

(9)
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Using the definition of M(A, s) we can now write the requirement in the more convenient way:
There exists a simulator for the MPC protocol if, and only if, there exist a set of unitary matrices,
{Us}s∈S, such that for all s, s′ ∈ S, A ∈ Fs,s′ :

M(A, s)Us =M(A, s′)Us′

which completes the proof of Lemma 2. ⊓⊔
We’d like to warn the reader that it is important not to confuse the unitary matrices, {Us}s∈S, with
the simulator itself. They are merely a tool to show the existence of one. Also, at this point the
reader would be excused for lacking any intuition on why the lemma is reasonable. We therefore
find it instructive to consider two examples. First we’ll reconsider secret sharing in this framework
and secondly a simple MPC protocol.

5.6 Secret sharing example

For this example we’ll show that all secret sharing schemes secure against superposition F-attacks
in fact satisfies the requirement in Lemma 2 (as they should). This does not add to what we already
knew and is only meant to illustrate the principles. We’ll allow each choice of randomness to be
non-uniform as it adds only very little clutter. We note that since no parties have any input or
output we have that for all s, s′ ∈ S : Fs,s′ = F . The result follows as a Corollary of Theorem 1.

Corollary 1. If a secret sharing scheme S is perfectly secure against quantum F -attacks then there
exists a set of |R| × |R| unitary matrices {Us}s∈S such that for all s, s′ ∈ S, r ∈ R, A ∈ F

∑

i∈R

√
pi[Us]i,r|vA(i, s)〉 =

∑

j∈R

√
pj[Us′ ]j,r

∣

∣vA(j, s
′)
〉

Proof. Since the secret sharing scheme is secure we know from Theorem 1 that the joint distribution
of the view for any A,A′ ∈ F is independent of s and hence, for all s, s′ ∈ S;

σs =
∑

r∈R
pr|ψs,r〉〈ψs,r| = σs′ =

∑

r∈R
pr
∣

∣ψs′,r

〉〈

ψs′,r

∣

∣

where
|ψs,r〉 =

∑

A∈F
αA|A〉|vA(r, s)〉

This is equivalent to saying that the fidelity of two such states is 1. According to Uhlmann’s
Theorem this implies that there exists purifications of σs and σs′ such that their inner product is
1. Unitary equivalence of purifications implies you can write any such purification in H⊗R, where
dim(R) = |R|, as

∑

k∈R

√

p′k
∣

∣ψ′
s,k

〉

|k〉R =
∑

i,k∈R

√
pi[Us]i,k|ψs,i〉|k〉R

where {Us}s∈S is a set of |R| × |R| unitary matrices. As the fidelity must be 1, it must be that for
all s, s′ ∈ S




∑

i,k∈R

√
pi[U

∗
s ]i,k〈ψs,i|〈k|R









∑

j,k′∈R

√
pj[Us′ ]j,k′

∣

∣ψs′,j

〉∣

∣k′
〉

R



 =
∑

i,j,k∈R

√
pi
√
pj [U

∗
s ]i,k[Us′ ]j,k〈ψs,i|

∣

∣ψs′,j

〉

=
∑

A∈F,k∈R
|αA|2

(

∑

i∈R

√
pi[U

∗
s ]i,k〈vA(i, s)|

)





∑

j∈R

√
pj[Us′ ]j,k

∣

∣vA(j, s
′)
〉



 = 1
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Because
∑

A∈F
|αA|2 = 1 and noting the states are normalized, we can conclude that

∀s, s′ ∈ S, k ∈ R, A ∈ F :

(

∑

i∈R

√
pi[U

∗
s ]i,k〈vA(i, s)|

)





∑

j∈R

√
pj [Us′ ]j,k

∣

∣vA(j, s
′)
〉



 = 1

From which the result follows. ⊓⊔

5.7 Simple MPC simulator example

For this example we return to the simple four-party (P0, P1, P2, P3) bit-sharing scheme consid-
ered in section 5.4. There we showed that we could not simulate an attack by simply running a
classical simulator for the protocol in superposition. We are now in position to show that a simu-
lator nonetheless exists. Recall that |v0(s, r0, r1)〉 = |r0, r1〉, |v1(s, r0, r1)〉 = |r0, 0〉, |v2(s, r1, r2)〉 =
|r1, 0〉, |v3(s, r0, r1)〉 = |r0 ⊕ r1 ⊕ s, 0〉. We have two possible inputs s ∈ {0, 1} so we need to find
two unitary matrices, U0, U1 in order to apply Lemma 2. These have been found manually.

U0 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









U1 =









1
2

1
2

1
2 −1

2
1
2

1
2 −1

2
1
2

1
2 −1

2
1
2

1
2

−1
2

1
2

1
2

1
2









It is a tedious, but straight forward, calculation to show that4,

M(P1, 0) =M(P1, 1)U1

M(P2, 0) =M(P2, 1)U1

M(P3, 0) =M(P3, 1)U1

and since P0 /∈ F0,1 we do not require that M(P0, 0) =M(P0, 1)U1. To get a better feeling for what
is going on we’ll consider equation (9) for two specific choices for A and r. First let A = P2 and
r = (1, 0). The following must be true for the unitary matrices to be correct choices,

|P2, vP2(0, (1, 0))〉 =
∑

(i0,i1)∈R
[U1](i0,i1),(1,0)|P2, vP2(1, (i0, i1))〉

Since U0 is just the identity, the LHS is easy to calculate, |P2, vP2(0, (1, 0))〉 = |0, 0〉 For the RHS
we see that

∑

(i0,i1)∈R
[U1](i0,i1),(1,0)|P2, vP2(1, (i0, i1))〉

=
1

2
|P2, vP2(1, (0, 0))〉 −

1

2
|P2, vP2(1, (0, 1))〉 +

1

2
|P2, vP2(1, (1, 0))〉 +

1

2
|P2, vP2(1, (1, 1))〉

=
1

2
|0, 0〉 − 1

2
|1, 0〉 + 1

2
|0, 0〉 + 1

2
|1, 0〉 = |0, 0〉

4 Note that we encode the randomness as (0, 0) = 0, (0, 1) = 1, (1, 0) = 2, (1, 1) = 3
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Of particular interest is A = P3 as the view depends on the secret (for fixed randomness). Choose
r = (0, 0):

|P3, vP3(0, (0, 0))〉 =
∑

(i0,i1)∈R
[U1](i0,i1),(0,0)|P3, vP3(1, (i0, i1))〉

For LHS, |P3, vP3(0, (0, 0))〉 = |0, 0〉. For RHS,
∑

(i0,i1)∈R
[U1](i0,i1),(0,0)|P3, vP3(1, (i0, i1))〉

=
1

2
|P3, vP3(1, (0, 0))〉 +

1

2
|P3, vP3(1, (0, 1))〉 +

1

2
|P3, vP3(1, (1, 0))〉 −

1

2
|P3, vP3(1, (1, 1))〉

=
1

2
|1, 0〉 + 1

2
|0, 0〉 + 1

2
|0, 0〉 − 1

2
|1, 0〉 = |0, 0〉

5.8 General MPC

In this section we’ll give a restatement of Lemma 2, expressing the requirement for the existence
of a simulator as an explicit property of the multiparty computation protocol. This will allow for a
straight-forward, albeit extremely inefficient, method for checking the security of any deterministic
MPC protocol in this model. For all ordered pairs of inputs, s, s′ ∈ S, and all sets A ∈ Fs,s′ we’ll
associate a permutation of the randomness, {πs,s′,A}s,s′,A∈Fs,s′

∈ S(R). By ordered pairs we mean
that πs,s′,A may differ from πs′,s,A.

Theorem 3. A multiparty computation protocol for a deterministic function is perfectly secure
against quantum F -attacks with created response registers if, and only if, there exist permutations,
{πs,s′,A}s,s′,A∈Fs,s′

with the following two properties,

1.

∀s, s′ ∈ S,∀A ∈ Fs,s′ ,∀r ∈ R :
∣

∣vA(s, πs,s′,A(r))
〉

=
∣

∣vA(s
′, πs′,s,A(r))

〉

2.

∀s, s′, s′′ ∈ S,∀A ∈ Fs,s′ , A
′ ∈ Fs,s′′ :

∑

r∈R
|vA(s, r)〉〈vA′(s, r)| =

∑

r∈R

∣

∣vA(s, πs,s′,A(r))
〉〈

vA′(s, πs,s′′,A′(r))
∣

∣

Note that property (1) is exactly the statement that a (not necessarily efficient) simulator exists in
the classical model.

Proof. Before we begin we’ll need the following claim,

Claim. We can without loss of generality assume that all the rows (and columns) of Us sum to 1.

Proof. First recall that according to Lemma 2 we have that there is a simulator iff

∃U0, · · · , U|S|−1 st.

∀s, s′ ∈ S,∀A ∈ Fs,s′ :M(A, s)Us =M(A, s′)Us′
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For any solution we can always multiply with U−1
0 on the right side of all equations and we can

hence wlog assume that U0 = I. Now consider ∀s ∈ S the equation,

∀A ∈ F0,s :M(A, 0) =M(A, s)Us

That is,

∀r ∈ R :
∑

k∈R
[Us]r,k|AvA(s, k)〉 = |vA(0, r)〉

Hence all rows (and columns) of Us must sum to 1. ⊓⊔

We can, in other words, view M(A0,s, s)Us simply as M(A0,s, 0) under some permutation of the
columns. In fact, since Us must always preserve the length of the columns, anyM(A, s)Us is always
just a permutation of the columns in M(A, s). Although the permutation is defined by the same
unitary it is not necessarily the same permutation. But they’re clearly related. We will make this
relationship explicit by separating the requirement for a simulator into two parts. LetMπs,s′,A(A, s)
denote the permutation of the columns in M(A, s) that corresponds to applying the permutation
function to the randomness for the view in each column, that is,

Mπs,s′,A(A, s) =
(∣

∣A, vA(s, πs,s′,A(0))
〉

, . . . ,
∣

∣A, vA(s, πs,s′,A(r))
〉

, . . .
)

The first requirement is simply the statement that for A ∈ Fs,s′ some permutation of the random-
ness exist to allow their views to be equal for s and s′. The second is the statement that, when
the input to the parties are the same, these permutations must be performed by the same unitary
matrix. That is, there exists a simulator if, and only if, there exist permutations, {πs,s′,A}s,s′,A∈Fs,s′

with the following two properties,

1.

∀s, s′ ∈ S,∀A ∈ Fs,s′ :

Mπs,s′,A(A, s) =Mπs′,A(A, s′)

2. There exist unitary matrices, {Us}s∈S, such that ∀s, s′, A ∈ Fs,s′ :M(A, s)Us =Mπs,s′,A(A, s).

For a specific choice of permutations such unitary matrices exist iff they preserve the inner product.
That is, iff

∀s, s′, s′′ ∈ S,∀A ∈ Fs,s′ , A
′ ∈ Fs,s′′ :

M(A, s)M(A′, s)† =Mπs,s′,A(A, s)Mπs,s′′,A′ (A′, s)†

Writing out the equations using the definition of M(A, s) we conclude the proof. ⊓⊔

Had the choice of corrupted parties been classical we could have let the unitary matrices depend
on both the input and which party was corrupted. Specifically, in equation (8), the reason the

unitaries cannot depend on A is that
∑

i,j,k∈R
[U∗

s,A]i,k[Us,A′ ]j,k does not cancel out correctly if they

differ and the adversary would not see the correct state. If the choice of A was classical we would
see no such cross-terms 5 and no such relationship would be required.

5 Recall that there are no cross-terms for s because the input register is perfectly entangled with the parties/ideal
functionality
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