Skip to main content

Efficient Error-Correcting Codes for Sliding Windows

  • Conference paper
SOFSEM 2014: Theory and Practice of Computer Science (SOFSEM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8327))

Abstract

We consider the task of transmitting a data stream in the sliding window model, where communication takes place over an adversarial noisy channel with noise rate up to 1. For any noise level c < 1 we design an efficient encoding scheme, such that for any window in which the noise level does not exceed c, the receiving end decodes at least a (1 − c − ε)-prefix of the window, for any small ε > 0. Decoding more than a (1 − c)-prefix of the window is shown to be impossible in the worst case, which makes our scheme optimal in this sense. Our scheme runs in polylogarithmic time per element in the size of the window, causes constant communication overhead, and succeeds with overwhelming probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Franklin, M., Gelles, R., Ostrovsky, R., Schulman, L.J.: Optimal coding for streaming authentication and interactive communication. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 258–276. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Gelles, R., Moitra, A., Sahai, A.: Efficient and explicit coding for interactive communication. In: FOCS 2011, pp. 768–777 (2011)

    Google Scholar 

  3. Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with near-optimal rate. IEEE Trans.@ on Information Theory 51(10), 3393–3400 (2005)

    Article  MathSciNet  Google Scholar 

  4. Guruswami, V., Smith, A.: Codes for computationally simple channels: Explicit constructions with optimal rate. In: FOCS 2010, pp. 723–732 (2010)

    Google Scholar 

  5. Kienzler, R., Bruggmann, R., Ranganathan, A., Tatbul, N.: Large-scale DNA sequence analysis in the cloud: a stream-based approach. In: Alexander, M., et al. (eds.) Euro-Par 2011, Part II. LNCS, vol. 7156, pp. 467–476. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Langberg, M.: Private codes or succinct random codes that are (almost) perfect. In: FOCS 2004, pp. 325–334. IEEE Computer Society, Washington, DC (2004)

    Google Scholar 

  7. Lipton, R.: A new approach to information theory. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 699–708. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  8. Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal error correction against computationally bounded noise. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 1–16. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Munir, S., Lin, S., Hoque, E., Nirjon, S., Stankovic, J., Whitehouse, K.: Addressing burstiness for reliable communication and latency bound generation in wireless sensor networks. In: IPSN 2010, pp. 303–314 (2010)

    Google Scholar 

  10. Schulman, L.J.: Deterministic coding for interactive communication. In: STOC 1993, pp. 747–756 (1993)

    Google Scholar 

  11. Schulman, L.J.: Coding for interactive communication. IEEE Transactions on Information Theory 42(6), 1745–1756 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review 5(1), 3–55 (2001), originally appeared in Bell System Tech. J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  13. Shannon, C.E.: A note on a partial ordering for communication channels. Information and Control 1(4), 390–397 (1958)

    Article  MathSciNet  Google Scholar 

  14. Smith, A.: Scrambling adversarial errors using few random bits, optimal information reconciliation, and better private codes. In: SODA 2007, pp. 395–404 (2007)

    Google Scholar 

  15. Spielman, D.: Computationally efficient error-correcting codes and holographic proofs. Ph.D. thesis, Massachusetts Institute of Technology (1995)

    Google Scholar 

  16. Spielman, D.: Linear-time encodable and decodable error-correcting codes. IEEE Transactions on Information Theory 42(6), 1723–1731 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gelles, R., Ostrovsky, R., Roytman, A. (2014). Efficient Error-Correcting Codes for Sliding Windows. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds) SOFSEM 2014: Theory and Practice of Computer Science. SOFSEM 2014. Lecture Notes in Computer Science, vol 8327. Springer, Cham. https://doi.org/10.1007/978-3-319-04298-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04298-5_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04297-8

  • Online ISBN: 978-3-319-04298-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics