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Abstract

Let B be a finite collection of geometric (not necessarily convex) bodies in the plane.

Clearly, this class of geometric objects naturally generalizes the class of disks, lines,

ellipsoids, and even convex polygons. We consider geometric intersection graphs

GB where each body of the collection B is represented by a vertex, and two vertices

of GB are adjacent if the intersection of the corresponding bodies is non-empty.

For such graph classes and under natural restrictions on their maximum degree

or subgraph exclusion, we prove that the relation between their treewidth and the

maximum size of a grid minor is linear. These combinatorial results vastly extend

the applicability of all the meta-algorithmic results of the bidimensionality theory

to geometrically defined graph classes.

Keywords: Geometric intersection graphs, Grid exlusion theorem, Bidimensionality

1 Introduction

Parameterized complexity treats problems as subsets of Σ∗ × N, for some alphabet Σ.

An instance of a parameterized problem is a pair (I, k) where I is the main part of

the problem description and k is a, typically small, parameter. An FPT algorithm for

a parameterized problem Π is one that runs in f(k) · nO(1) time. A central issue in

parameterized complexity is to find which parameterized problems admit FPT algo-

rithms and, when this is the case, to reduce as much as possible the contribution of the

function f(·), i.e., their parametric dependance. FPT algorithms where f(k) = 2o(k) are
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called sub-exponential parameterized algorithms. It is known that such an algorithm

where f(k) = 2o(
√
k) is unlikely to exist for several problems on graphs, even when

restricted to sparse graph classes such as planar graphs [2]. Therefore, a parametric

dependance f(k) = 2O(
√
k) is the best we may expect and this is what we may aim for.

A kernelization algorithm for a parameterized problem Π is one that, in polynomial

time, can replace any instance (I, k) with a new equivalent one whose size depends

exclusively on the parameter k. If such an algorithm exists and the size of the new

instance is linear in k, then we say that Π admits a linear kernel. While the existence

of an FTP algorithm implies the existence of a kernel it is a challenge to find for which

problems such a kernel can be polynomial [1].

Bidimensionality theory. This theory was initially introduced in [4] as a general

framework for designing parameterized algorithms with sub-exponential parametric

dependance. Moreover, it also provided meta-algorithmic results in approximation

algorithms [5, 8] and kernelization [10] (for a survey on bidimensionality, see [3]). To

present the consequences and the motivation of our results let us first give some brief

description of the meta-algorithmic consequences of Bidimensionality theory. For this,

we need first some definitions.

A graph invariant is a function p mapping graphs to non-negative integers. The

parameterized problem associated to an invariant p has as input a pair (G, k) whereG is

a graph and k is a non-negative integer, and asks whether p(G) ≤ k (or, alternatively

whether p(G) ≥ k). Let G be the set of all graphs. The parameterized problem

corresponding to p is denoted by Πp ⊆ G×N and is defined as Πp = {(G, k) | p(G) ≤ k}
or, alternatively, as Πp = {(G, k) | p(G) ≥ k}. We also define the graph invariant bg

such that given a graph G,

bg(G) = max{k | G contains the (k × k)-grid as a minor}.

Definition 1. Given a graph invariant p we say that Πp is minor-bidimensional if the

following conditions hold:

• p is closed under taking of subgraphs, i.e., for every G ∈ G, if H is a minor of

G, then p(H) ≤ p(G).

• If Lk is the (k × k)-grid, then p(Lk) = Ω(k2).

The main consequences of bidimensionality theory for minor closed invariants are sum-

marized by the following: Suppose that p is a graph invariant such that Πp is a minor

bidimensional problem. Let also G be a graph class such that it satisfies the following

property:

∀G∈G tw(G) = O(bg(G)) (1)

and let ΠGp be the restriction of Πp to the graphs in G, i.e. the problem occurring if

we alter all YES-instance of ΠGp whose graph is not in G to NO-instances. Then the

following hold
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1. if p(G) can be computed in 2O(tw(G)) · nO(1) steps, then ΠGp can be solved by a

sub-exponential parameterized algorithm that runs in 2O(
√
k) · nO(1) steps.

2. if p satisfies some separability property (see [8, 5, 10] for the precise definition)

and Πp = {(G, k) | ∃S ⊆ V (G) : |S| ≥ k and (G,S) |= ψ} where ψ is a sentence

in Counting Monadic Second Order logic, then Πp admits a linear kernel, i.e.

there exists a polynomial algorithm reducing each instance (G, k) of Πp to an

equivalence instance (G′, k′) where |V (G′)| = O(k) and k′ ≤ k.

3. If p satisfies some separability property and is reducible (in the sense this is

defined in [8]), then there is an EPTAS for computing p(G) on the graphs in G.

According the the current state of the art all above meta-algorithmic results hold when

G excludes graphs with some fixed graph H as a minor. This is due to the combinatorial

result of Demaine and Hajiaghayi in [6], who proved (1) for every graph G excluding

some fixed graph H as a minor. While such graphs are of a topological nature it

remained an interesting question whether the applicability of the above theory can be

extended for geometrically (rather than topologically) restricted graphs classes.

Our results. Clearly, any extension of the applicability of bidimensionality theory on

some class G requires a proof that it satisfies property (1). Recently, a first step to ex-

tend meta-algorithmic results for graph classes that are not topologically restricted was

done in [9], where the bidimensionality condition was used to derive sub-exponential

algorithms for H-free unit-disk intersection graphs and H-free map graphs, where a

graph class is H-free if none of its graphs contains H as a subgraph. However, no

meta-algorithmic results were known so far for more generic classes of geometric inter-

section graphs, like e.g. intersection graphs of polygonal objects in the plane. In this

paper we vastly extend the combinatorial results of [9] to more general families of geo-

metric intersection graphs. In particular, we prove that property (1) holds for several

classes of geometric intersection graphs and open a new direction of the applicability

of bidimensionality theory. In particular our results are the following.

1. Let B be a set of (not necessarily straight) lines in the plane such that for each

C1, C2 ∈ B with C1 6= C2, the set C1 ∩ C2 is a finite set of points and at most

two lines intersect in the same point. Assume also that each line is intersected

at most ξ times. Then tw(GB) = O(ξ · bg(GB)).

2. Let B be a set of ρ-convex bodies (bodies where any two of their points can be

joined by a polysegment of at most ρ− 1 bends that is entirely inside the body)

such that for each B1, B2 ∈ B with B1 6= B2, the set B1 ∩ B2 has a non-empty

interior. Let GB be the intersection graph of B and let ∆ be the maximum degree

of GB. Then tw(GB) = O(ρ2∆3 · bg(GB)).
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3. Let H be a graph on h vertices, and let B be a collection of convex bodies in the

plane such that for each B1, B2 ∈ B with B1 6= B2, the set B1 ∩ B2 has a non-

empty interior. If the intersection graph GB of B is α-fat and does not contain

H as a subgraph, then tw(GB) = O(α6h3 · bg(GB)). (Given a real number α,

we call the intersection graph of a collection of convex bodies α-fat if the ratio

between the maximum and the minimum radius of a circle where all bodies of

the collection can be circumscribed, and inscribed respectively, is upper bounded

by α.)

Notice that the case of H-subgraph free unit-disk intersection graphs treated in [9] is

just a very special case of the fourth result (unit-disk graphs are 1-convex and 1-fat).

The paper is organized as follows: In Section 2, we give some basic definitions and

results. In Section 3 we prove the main technical results that are used in Section 4

for the derivation of its implications in a variety of geometric graph classes. Section 5

discusses extensions and conclusions of this work. Al proofs have been moved to the

appendix except from those of Lemmata 6, 7 and Theorem 1.

2 Definitions and preliminaries

All graphs in this paper are undirected and may have loops or multiple edges. If a

graph has no multiple edges or loops we call it simple. Given a graph G, we denote

by V (G) its vertex set and by E(G) its edge set. Let x be a vertex or an edge of a

graph G and likewise for y; their distance in G, denoted by distG(x, y) is the smallest

length of a path in G that contains them both. We call part of a path any sequence of

adjacent edges in a given path. For any set of vertices S ⊆ V (G), we denote by G[S]

the subgraph of G induced by the vertices from S.

Graph embeddings. We use the term graph embedding to denote a drawing of a

graph G in the plane, where each vertex is associated to a distinct point of the plane

and each edge to a simple open Jordan curve, such that its endpoints are the two points

of the plane associated with the endvertices of this edge. To simplify the presentation,

when not necessary, we do not distinguish between a vertex of G and the point in the

plane representing the vertex; likewise for an edge of G. Roughly speaking, we often do

not distinguish between G and its embedding. Two edges of an embedding of a graph

in the plane cross, if they share a non-vertex point of the plane. We use the term plane

graph for an embedding of a graph without crossings. A graph is planar if it admits a

plane embedding.

Geometric bodies, lines and polysegments. We call a set of points in the plane

a 2-dimensional geometric body, or simply a 2-dimensional body, if it is homeomorphic

to the closed disk {(x, y)| x2 + y2 ≤ 1}. Also a line is a subset of the plane that is

homeomorphic to the interval [0, 1]. A polysegment C is a line that is the union of
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a sequence of straight lines p1p2, p2p3, · · · , pk−1pk in the plane, where p1 and pk are

the endpoints of C. We say that a polysegment C contains a point pi and joins the

endpoints p1, pk, and we refer to the rest points p2, p3, · · · , pk−1 as bend points of

C. The length of a polysegment is defined as equal to the number of straight lines it

contains (i.e. one more than the number of its bend points). Throughout the paper

we assume that a polysegment is not self-crossing.

Minors and distance minors. Given two graphs H and G, we write H 4 G and

call H a minor of G, if H can be obtained from a subgraph of G by edge contractions

(the contraction of an edge e = {x, y} in a graph G is the operation of replacing x and

y by a new vertex xe that is made adjacent with all the neighbors of x and y in G that

are different from x and y). Moreover, we say that H is a contraction of G, if H can

be obtained from G by contracting edges.

Let G be a simple graph. We denote as G` the graph obtained from G by adding a

loop on each of its vertices. We also say that a subset F of E(G`) is solid, if for every

v1, v2 ∈
⋃
e∈F e there is a walk in G` from v1 to v2 consisting of edges in F and where

each second edge is a loop. We define the relation 4φ between two graphs as follows.

Let H and G be simple graphs. Then we write H 4φ G, if there is a function

φ : E(G`)→ V (H) ∪ E(H) ∪ {?}, such that

1. for every vertex v ∈ V (H), φ−1(v) is a non-empty solid set,

2. for every two distinct vertices v1, v2 ∈ V (H), an edge in φ−1(v1) does not share

a common endpoint with an edge in φ−1(v2).

3. for every edge e = {v1, v2} ∈ E(H) and every edge e′ in φ−1(e), e′ is not a loop

and shares its one endpoint with an edge in φ−1(v1) and the other with an edge

in φ−1(v2).

4. for every e ∈ E(H), |φ−1(e)| = 1.

The following lemma reveals the equivalence between the relation defined previously

and the minor relation (for the proofs see Appendix).

Lemma 1. If G and H are graphs, then H 4φ G if and only if H is a minor of G.

Proof. Let H 4φ G. First notice, that by the definition of the function φ any loop

of G` will be either discarded or mapped to a vertex of H. Conditions (1) and (2)

guarantee that any two vertices x, y of H are corresponding to vertex-disjoint connected

subgraphs Gx, Gy of G. Moreover by (3), if xy ∈ E(H) there is an edge in G joining

Gx and Gy. Hence, H can be obtained from a subgraph of G by contracting the edges

of the subgraphs Gz (z ∈ V (H)) and thus is a minor of G.

Let now H be a minor of G. This means that there exists a subgraph of G consisting

of disjoint trees {Tv | v ∈ V (H)} plus a set of edges E = E(H), such that contracting

all the edges of the trees yields the graph H. Then, we choose φ as a function that

maps the edges of a tree Tx as well as the loops on the vertices of Tx to x, the edges of

E to E(H) and all other edges of G` to ?.
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Given the existence of a function φ as in the definition above, we say H is a φ-

generated minor of G. Moreover, H is a distance minor of G if H is a φ-generated

minor of G and the following additional condition holds:

5. for every e1, e2 ∈ E(G) \ φ−1(?), distH(φ(e1), φ(e2)) ≤ distG(e1, e2).

Contractions and c-contractions. If the definition of the relation 4φ is modified

by omitting condition (4) and demanding that φ−1(?) = ∅, then we deal with the

contraction relation and we say that H is a φ-generated contraction of G. (Note, that

condition (4) is not a requirement of the equivalence to the minor relation – see also the

proof of Lemma 1.) Let c be a non negative integer. We say that H is a c-contraction

of G if H is a φ-generated contraction of G and for all v ∈ V (H), G[φ−1(v)] is a graph

of at most c edges.

In this paper we we use the alternative, more complicated, definitions of minors

and contractions as they are necessary for the proofs or our results.

Tree-decompositions and treewidth. A tree-decomposition of a graph G, is a pair

(T,X ), where T is a tree and X = {Xt : t ∈ V (T )} is a family of subsets of V (G),

called bags, such that the following three properties are satisfied:

(1)
⋃
t∈V (T )Xt = V (G),

(2) for every edge e ∈ E(G) there exists t ∈ V (T ) such that Xt contains both ends

of e, and

(3) ∀v ∈ V (G), the set Tv = {t ∈ V (T ) | v ∈ Xt} induces a tree in T .

The width of a tree-decomposition is the cardinality of the maximum size bag minus

1 and the treewidth of a graphG is the minimum width of a tree-decomposition ofG. We

denote the treewidth of G by tw(G). We say that a graph H is a partial triangulation

of a plane graph G if G is a spanning subgraph of H and H is plane. The following

result follows from [11].

Proposition 1. Let r be an integer. Then, any planar graph with treewidth at least

4.5 · r contains a partial triangulation of the (r × r)-grid as a contraction.

Lemma 2. Let G be a planar graph and k an integer. If tw(G) ≥ 18 · k then G

contains a (k × k)-grid as a distance minor.

Proof. By Proposition 1, the graph G contains a partial triangulation P of a (4k× 4k)

grid as a contraction. We claim that the (k×k)-grid Lk is a φ-generated distance minor

of P , where the function φ : E(P `) → V (Lk) ∪ E(Lk) ∪ {?} is defined as follows. For

any vertex vi,j of Lk, with i, j ∈ {1, . . . , k}, the set φ−1(v) contains the three loops on

the vertices of P with coordinates (k+2i, k+2j), (k+2i−1, k+2j), (k+2i, k+2j−1)

and the two edges joining these three vertices. The set φ−1(E(Lk)) contains all possible

candidates from the edges of the underlying grid of P , while anything else is mapped

to ?.
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One can easily verify that Lk is indeed the (k × k)-grid, and that the function φ

satisfies the first four conditions. It remains to show that condition (5) also holds.

It suffices to show it for the case of the distance of vertices and the rest follows.

Consider, for this purpose, any two vertices v1, v2 in Lk and let their distance be

distLk
(v1, v2) = ρ ≤ 2k − 2. Since any vertex in P that corresponds to a vertex of Lk

has a distance of at least k from a boundary vertex, the shortest path in P containing

φ−1(v1) and φ−1(v2) has length at least the half of the length of the shortest path in

the underlying grid, i.e. 1
2 · 2ρ ≥ ρ.

3 Bidimensionality of line intersection graphs

Let B = {B1, . . . , Bk} be a collection of lines in the plane. The intersection graph GB

of B, is a graph whose vertex set is B, and that has an edge {Bi, Bj} (for i 6= j) if and

only if Bi and Bj touch, namely Bi ∩Bj 6= ∅.

The following theorem states our main technical result.

Theorem 1. Let B be a set of lines in the plane such that for each C1, C2 ∈ B with C1 6=
C2, the set C1 ∩C2 is a finite set of points and at most two lines intersect in the same

point. Let also GB be the intersection graph of B and let ξ = maxC∈B |C∩
⋃
C′∈B\C C

′|.
Then tw(GB) = O(ξ · bg(GB)).

To prove Theorem 1 we will need a series of lemmata.

Lemma 3. Let G be a graph and let H be a c-contraction of G. Then tw(G) ≤
(c+ 1) · (tw(H) + 1)− 1.

Proof. By definition, since H is a c-contraction of G, there is a mapping between each

vertex of H and a connected set of at most c edges in G, so that by contracting these

edgesets we obtain H from G. The endpoints of these edges form disjoint connected

sets in G, implying a partition of the vertices of G into connected sets {Vx | x ∈ V (H)},
where |Vx| ≤ c+ 1 for any vertex x ∈ V (H).

Consider now a tree decomposition (T,W) of H. We claim that the pair (T,W ′),
where W ′t :=

⋃
x∈Wt

Vx for t ∈ T is a tree decomposition of G. Clearly all vertices of

G are included in some bag, since all vertices of H did. Every edge of G with both

endpoints in the same part of the partition is in a bag, as each of these vertex sets is

placed as a whole in the same bag. If e is an edge of G with endpoints in different

parts of the partition, say Vx and Vy, then this implies that xy ∈ E(H). Thus, there

is a node t of T for which x, y ∈ Wt and therefore e ∈ W ′t . Moreover, the continuity

property remains unaffected, since for any vertex x ∈ V (H) all vertices in Vx induce

the same subtree in T that x did.

Lemma 4. Let G be a graph and let V1, . . . , Vr be a partition of the vertices of G, such

that for each i ∈ {1, . . . , r}, G[Vi] is a connected graph, and for each i ∈ {1, . . . , r− 1}
there exist an edge of G with one endpoint in Vi and one endpoint in Vi+1. Let also
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s ∈ V1 and t ∈ Vr. Then G has a path from s to t with a part P of length at least

β − α + 2, where 1 ≤ α < β ≤ r, so that P does not contain any edge in G[Vi] for

i ∈ {1, . . . , α− 1} ∪ {β + 1, . . . , r}.

Proof. For each i ∈ {1, . . . , r − 1} let ei = tisi+1 be an edge of G with one endpoint ti

in Vi and the other si+1 in Vi+1 and set s1 = s and tr = t. For any i ∈ {1, . . . , r}, since

G[Vi] is a connected graph, there is a path Pi from si to ti that lies entirely in G[Vi]

(possibly the trivial path of no edges). Then the path P1e1 . . . Pr−1er−1Pr from s to t,

with its part eaPa+1 . . . eβ−1Pβeβ satisfies the requirements of the Lemma.

Lemma 5. Let A, B, and C be graphs such that B is a ψ1-generated contraction of

A and C is a ψ2-generated minor of A for some functions ψ1 : E(A`)→ V (B)∪E(B)

and ψ2 : E(A`)→ V (C) ∪ E(C) ∪ {?}. If

∀e∈E(C) |ψ−12 (e) ∩ ψ−11 (E(B))| = 1 (2)

then C is also a minor of B.

Proof. We will define a function φ : E(B`) → V (C) ∪ E(C) ∪ {?}, which in turn

guaranties that C is a minor of B. First of all notice that by (2) there is a subset

FE ⊆ E(B) and a bijection η between FE and E(C). In fact, for any edge e of C it

holds that η−1(e) = ψ1(ψ
−1
2 (e)). We set φ|FE

= η and we observe that φ is obliged to

map any edge in F ′ = E(B`) \ FE either to a vertex of C or to ?.

Let now v be a vertex of V (C). Recall that ψ−12 (v) is a non-empty solid set of edges

in A`, and thus it induces a connected subgraph, say Av, in A. Notice also that each

edge ev of C incident to v has a unique pre-image in A, which has exactly one endpoint

in Av. Furthermore, the graph Bv = B[ψ1(ψ
−1
2 (v))] is isomorphic to the graph taken if

we contract in Av all its edges that belong in ψ−11 (V (B)). As the contraction of edges

does not harm the connectivity of an edgeset, it follows that ψ1(ψ
−1
2 (v)) is a connected

set of edges in B and that again Bv is connected and each edge ψ1(ψ
−1
2 (ev)) has an

endpoint in Bv. We set φ(f) = v, if f ∈ E(B`) is an edge of Bv or a loop on a vertex

of Bv. Let FV ⊆ E(B`) be the union of all edgesets φ−1(v), for each v ∈ V (C) and

observe that FE ∩ FV = ∅. Finally, we set φ(E(B`) \ (FE ∪ FV )) = ?. It remains to

prove that the four conditions of the minor definition are satisfied.

The first and fourth conditions follow straightforwardly from the definition of

φ. For the second, assume that v1, v2 are two distinct vertices of V (C). We set

NA = ψ−12 (v1) ∪ ψ−12 (v2) and NB = ψ1(ψ
−1
2 (v1)) ∪ ψ1(ψ

−1
2 (v2)). Notice that B[NB] is

isomorphic to the graph taken from A[NA] after we contract all its edges that belong in

ψ−11 (V (B)). As A[NA] is a disconnected graph, the same holds for B[NB]. Therefore

NB is disconnected.

For the third, let e = (v1, v2) ∈ E(C). Clearly φ−1(e) is not a loop since it belongs

in FE . Moreover, in A, one endpoint of e′ = ψ−12 (e) is in A[ψ−12 (v1)] and the other

is in A[ψ−12 (v2)]. Thus, MA = ψ−12 (v1) ∪ {e′} ∪ ψ−12 (v2) is a connected set of A while

MA \ {e′} is not. We set MB = ψ1(ψ
−1
2 (v1)) ∪ {e′′} ∪ ψ1(ψ

−1
2 (v2)), where e′′ = φ−1(e)

8



and we observe that B[MB] is isomorphic to the graph taken from A[MA] after we

contract all its edges that belong in ψ−11 (V (B)) in a way that, in this isomorphism,

e′ corresponds to the edge e′′. This means that MB is a connected set of B while

MB \ {e′′} is not. We conclude that the one endpoint of e′′ belongs in φ−1(v1) and the

other belongs in φ−1(v2), as required.

Lemma 6. Let G be a connected graph and let H be a c-contraction of G. If G contains

a (k × k)-grid as a distance minor, then H contains a (k′, k′)-grid as a minor, where

k′ = b k−1
2(c+1)c+ 1.

Proof. We assume that c is an odd number and equivalently prove the lemma for

k′ = bk−12c c+ 1.

Let H be a σ-generated contraction of G for some σ : E(G`) → V (H) ∪ E(H)

such that G[σ−1(v)] is a graph of at most c edges for all v ∈ V (H). Suppose also

that G contains a (k × k)-grid Lk as a distance minor via a function φ : E(G`) →
V (Lk) ∪ E(Lk) ∪ {?}.

We assume that V (Lk) = {1, . . . , k}2 where each (i, j) corresponds to its grid

coordinates. Our target is to prove that the (k′ × k′) grid Lk′ is a minor of H. We

define α : {1, . . . , k′} → {1, . . . , k} such that α(i) = 2(i − 1)c + 1. Notice that this

definition is possible as 2(k′ − 1)c + 1 ≤ k. For each (i, j) ∈ {1, . . . , k′}2, we define a

horizontal and a vertical set of vertices in V (Lk),

Uhor
i,j =

⋃
r∈{α(i)+(c+1)/2,...,α(i+1)−(c+1)/2}

(r, α(j)), (3)

Uver
i,j =

⋃
r∈{α(j)+(c+1)/2,...,α(j+1)−(c+1)/2}

(α(i), r) (4)

and let U be the collection of all sets Uhor
i,j or Uver

i,j defined in (3) and (4). For every

horizontal (resp. vertical) U ∈ U , we denote by E(U) ⊆ E(Lk) the set containing

all horizontal (resp. vertical) edges of Lk with an endpoint in U . We will prove the

following claim:

(∗) Let U1 and U2 be two different sets of U and let e1, e2 be two edges of G such that

φ(ei) ∈ E(Ui) ∪ Ui, for i = {1, 2}. Then, there are no disjoint paths of length at

most c from the endpoints of e1 to the endpoints of e2 in G.

Since Lk is a distance minor of G, it suffices to show that there is no cycle in Lk,

that contains φ(e1) and φ(e2) together with two paths between them of length at most

c. Let us suppose that such a cycle exists. Notice that by the definition of U , if two

vertices x, y of V (Lk) belong to two different sets of U , then distLk
(x, y) ≥ c+ 1. This

implies that φ(ei) must be an edge viui of Lk with only one endpoint, say ui, in Ui, for

i = {1, 2}, or else we are done. Likewise, it holds that distLk
(u1, u2) ≥ c+ 1 and hence

one path of length at most c of the cycle must be from v1 to u2, the other from v2 to

u1. It follows, that the edges v1u1 and v2u2 cannot be both vertical nor horizontal,
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Uver
i,j

φ(V (Ghor
i,j ))

(α(1), α(2))

Uhor
i,j

Figure 1: An example of the proof of Lemma 6 for c = 5, k = 21, and k′ = 3.

and all vertices of the two disjoint paths lie inside the square part of the grid these two

edges define. This contradicts the planarity of the grid, which completes the proof of

the claim.

For every i, j ∈ {1, . . . , k′}2 we choose arbitrarily a vertex vi,j from the graph

G[φ−1(α(i), α(j))]. This selection creates a collection of k′ × k′ vertices of G.

For each pair {(i, j), (i+1, j)} where (i, j) ∈ {1, . . . , k′−1}×{1, . . . , k′}, we observe

that the graph

Ghor
i,j = G[

⋃
i′∈{α(i),...,α(i+1)}

φ−1(i′, α(j))]

is connected, and for every i′ ∈ {α(i), . . . , α(i+1)} the sets φ−1(i′, α(j)) form a partition

of V (Ghor
i,j ) and there is an edge of G between φ−1(i′, α(j)) and φ−1(i′+ 1, α(j)). From

Lemma 4, Ghor
i,j contains a path P hor

i,j from vi,j to vi+1,j with a part of length at least

c + 1 in φ−1(E(Uhor
i,j )) ∪ φ−1(Uhor

i,j ). Clearly, one of the edges in this part of the path,

say ehori,j , is an edge of σ−1(E(H)). We denote by
→
P i,j (resp.

←
P i+1,y) the part of P hor

i,j
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starting from vi,y (resp. vi+1,y) and containing only one endpoint of ehori,j .

Working in the same way as before but following the “vertical” instead of “horizon-

tal” direction, for each pair {(i, j), (i, j+ 1)} where (i, j) ∈ {1, . . . , k′}×{1, . . . , k′−1},
we define the graph

Gver
i,j = G[

⋃
j′∈{α(j),...,α(j+1)}

φ−1(α(i), j′)]

and we find the path P ver
i,j in it starting from vi,j finishing in vi,j+1 and containing

an edge everi,j of σ−1(E(H)) that belongs in φ−1(E(Uver
i,j )) ∪ φ−1(Uver

i,j ). As before, P ver
i,j

is decomposed to a path ↓Pi,j (containing vi,j), the edge everi,j , and the path ↑Pi,j+1

(containing vi,j+1). Let, finally, E∗ be the set containing each ehorx,y and each everx,y.

From Lemma 5, to prove that Lk′ is a minor of H, it is enough to define a function

τ : E(G`) → V (Lk′) ∪ E(Lk′) ∪ {?} certifying that Lk′ is a minor of G in a way that

∀f ∈ E(Lk′) |τ−1(f)∩σ−1(E(H)| = 1. For this, for every (x, y) ∈ {1, . . . , k′} we define

Ex,y as the union of the edges and the loops of the vertices of every path that exists

in the set {
←
P x,y,

→
P x,y, ↓Px,y, ↑Px,y} and for each e ∈ Ex,y we set τ(e) = (x, y). Notice

that for every (x, y) ∈ {1, . . . , k′}2, G[τ−1(x, y)] is the union of a set of paths of G

having a vertex in common, thus it induces a connected subgraph of G. Let now e be

an edge of Lk′ . In case e = {(x, y), (x+ 1, y)} (resp. e = {(x, y), (x, y + 1)}), then, by

its definition, the edge ehorx,y (reps. everx,y) connects an endpoint v1 of an edge in τ−1(x, y)

(resp. τ−1(x, y)) with an endpoint v2 of an edge in τ−1(x+ 1, y) (resp. τ−1(x, y + 1)).

In any case, we set τ(v1v2) = e. It follows that τ(E∗) = E(Lk′). For all edges of G`

whose image has not been defined so far, we set τ(e) = ?. It is now easy to verify that

τ is a well-defined function and that Lk′ is a τ -generated minor of G.

Next we prove that ∀f ∈ E(Lk′) |τ−1(f)∩σ−1(E(H)| = 1. For this, first of all notice

that, by the definition of τ , all edges in τ−1(E(Lk′)) = E∗ are edges of σ−1(E(H)).

Therefore, it suffices to prove that for each e ∈ E(H), σ−1(e) contains no more than

one edge from E∗. Suppose in contrary that e1, e2 ∈ σ−1(e) ∩ E∗ and e1 6= e2. As

σ(e1) = σ(e2) = e, it follows that each ei has an endpoint wi in σ−1(w) and an

endpoint zi in σ−1(z), where wz = e. Since each subgraph G[σ−1(w)] and G[σ−1(z)]

is connected, has at most c edges and both are disjoint, there are two disjoint paths

of length at most c in G from w1 to w2 and from z1 to z2, a contradiction to (∗) as

e1, e2 ∈ E∗.

Lemma 7. Let H1 and H2 be two graphs. Consider a graph G such that H1 is a

c1-contraction of G and H2 is a c2-contraction of G. If H1 is planar then tw(H2) =

O(c1 · c2 · bg(H2)) = 36 · (c1 + 1) · (c2 + 1) · [bg(H2)− 1] +O(c1).

Proof. Let H1, H2 be two contractions of G generated by some σi : E(G`)→ V (Hi) ∪
E(Hi), i = 1, 2 respectively. Let r = tw(H2). As G contains H2 as a contraction, it

follows that tw(G) ≥ r. By Lemma 3, tw(H1) ≥ (r + 1)/(c1 + 1) − 1. Since H1 is

planar, by Lemma 2, H1 contains Lr′ as a distance minor, where r′ = b 1
18 · (

r+1
c1+1 − 1)c.
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As H1 is a contraction of G, then also G contains Lr′ as a distance minor. By Lemma 6,

H2 contains as a minor an (r′′, r′′)-grid, where r′′ = b r′−1
2(c2+1)c+ 1, as claimed.

Proof of Theorem 1. Given a planar drawing of the lines of B, consider any crossing p,

that is a point of the plane that belongs to more than one line. By the assumptions,

p belongs to exactly two lines, say L1, L2 and there is an open disc D of the plane

containing p, but no lines other than L1 and L2 and no other point that belongs to

more than one line. In addition, w.l.o.g. we can always assume that p is not an

endpoint of L1 or L2; or else we can stretch inside D the line that ends in p without

further altering the setting.

Then, let G1 be the simple graph with an embedding in the plane, in which all

endpoints of lines in B are vertices of G1 and every line L ∈ B is an edge of G1 joining

the two vertices, which are endpoints of L. Note that the graph G1 is not necessarily

planar – in fact, any crossing of two lines in B is as well a crossing of the corresponding

edges of G1 in this embedding.

For every crossing p of two lines L1, L2 in B and hence of the corresponding edges

e1, e2 of G1, we can consider as above an open disc D of the plane in a way, so that

D ∩ e = ∅ for any edge e ∈ E(G1) \ {e1, e2}, the only point in D that belongs to both

edges is p, no vertex of G1 lies in D and all considered discs are pairwise disjoint. Then,

we subdivide e1 and e2 by adding two new vertices x, y in D \ {p} and we join x and

y with a new edge f that lies entirely in the disc D and meets L1 and L2 only at its

endpoints. We denote as M the set of these new edges. Notice that we can contract

the edge f inside the disc D so that the resulting vertex is the point p, leaving the

embedding of the graph outside D untouched. By doing so for every edge in M , we

obtain a planar embedding of a graph. Let H be this graph and let G be the graph

before contracting the edges in M , i.e. G/M = H. Clearly, H is an 1-contraction of G.

Moreover, if we contract all edges of G that are not in M , we obtain the intersection

graph GB. Since every edge of G1 was subdivided into at most ξ + 1 edges of G, the

graph GB is a (ξ + 1)-contraction of G and the result follows from Lemma 7.

4 Modeling body intersections by intersection of polyseg-

ments

Let B = {B1, . . . , Bk} be a collection of 2-dimensional geometric bodies in the plane.

We assume that if two bodies do intersect each other, then every connected component

of the intersection has a non-empty interior. Our goal is to associate each geometric

body B ∈ B with a polysegment C such that the resulting set B′ of polysegments

conveys all necessary information regarding the disposition of the bodies in the plane

and their intersections.

For every body Bi let us pick a point of the sphere pi that lies in Bi and for every

body Bj touching Bi (i 6= j) in B, a point pij that lies in Bi ∩ Bj . We can assume

without loss of generality, that these points are pairwise distinct and that any three of
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them are not co-linear. We stress that since B is finite this assumption is safe, because

we can always consider an open disc Dp of small radius around any given point p of

the sphere, such that if p lies in a body B then we can replace B with the possibly

expanded body B′ = B ∪Dp without altering the intersection graph of B. Let now Pi
be the set of all points that contain the index i in the assigned subscript.

A geometric body B of the sphere is ρ-convex, if for any two points of B there

exists a polysegment of length ρ that lies entirely inside B and its endpoints are the

given two points. Notice, that the definition of a ρ-convex body naturally extends the

standard definition of a convex body, which under this new perspective is also called

1-convex.

Lemma 8. For any collection of ρ-convex bodies B on the sphere, there exists a col-

lection of polysegments B′ and a bijection φ : B → B′, such that two bodies in B touch

if and only if the corresponding polysegments in B′ touch. Moreover, each polysegment

C ∈ B′ is crossed by the polysegments from B′ \ C at most ξ = O(ρ2∆3) times, where

∆ is the maximum degree in the intersection graph GB of B.

Proof. Let us then consider such a collection B of ρ-convex bodies {B1, . . . , Bk} where

any body in B touches at most ∆ other bodies, for some positive integers ρ and ∆.

Clearly |Pi| ≤ ∆ + 1, for 1 ≤ i ≤ k. Notice that as a body Bi of B is ρ-convex, for any

two points in Pi there is a polysegment of length at most ρ that joins them. We create

the following drawing of a polysegment.

Pick two points in Pi and join them with a polysegment that lies in Bi. As long as

there are still points in Pi we did not join, pick one and join it to a Pi point or bend

point of the so far drawing, so that the new polysegment does not cross the drawing.

To see this is possible, consider that if the polysegment crosses a straight line segment

of the drawing so far, we can simply replace it by one that joins the new point of Pi
to a bend point that lies on the border of the straight line segment in question. In the

end we obtain the drawing of a tree on the sphere containing all points in Pi. At each

step we joined at least one new point in Pi, and in doing so we introduced at most

ρ− 1 new bend points. It follows that the drawing has in total at most ρ ·∆ + 1 bend

and Pi points.

Finally, we circumscribe around the drawing of this tree a polysegment Ci which

contains all points in Pi, so that to every straight line segment of the tree correspond

two straight line segments of Ci, and any bend point of Ci lies in an open disc of small

radius around the corresponding bend point of the drawing of the tree. Clearly the

polysegment Ci has length at most 2ρ ·∆.

We have thus showed, that for any ρ-convex bodyBi ∈ B, there exists a polysegment

Ci of length O(ρ · ∆), that lies entirely inside Bi and contains all points in Pi. The

mapping of a body Bi to a polysegment Ci defines a bijection φ between the elements

of the collection B and the collection of polysegments B′ = {Ci : 1 ≤ i ≤ k}. By

construction, two distinct polysegments Ci, Cj both contain the point pij and hence

they do share a point, if the corresponding bodies Bi, Bj touch. On the other hand,
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as the polysegments lie inside the geometrical bodies, the polysegments Ci, Cj share

a point of the sphere only if the associated bodies touch. This also implies that a

polysegment Ci shares at most O((ρ ·∆)2 ·∆) = O(ρ2 ·∆3) points of the sphere with

other polysegments in B′, concluding the proof.

Straightforwardly applying Theorem 1 to the sets of polysegments constructed in

Lemma 8, results to the following theorem for ρ-convex geometric bodies.

Theorem 2. Let B be a set of ρ-convex bodies such that for each B1, B2 ∈ B with

B1 ∩B2 6= ∅, the set B1 ∩B2 has non-empty interior. Let GB be the intersection graph

of B and let ∆ be the maximum degree of GB. Then tw(GB) = O(ρ2∆3 · bg(GB)).

Given a positive real number α, we define the class of α-fat convex intersection

graphs as the class containing an intersection graph GB of a collection B of convex

bodies, if the ratio between the maximum and the minimum radius of a circle where

all objects in B can be circumscribed, and inscribed respectivelly, is upper bounded by

α. The following lemma describes the manner in which the convex bodies of such a

collection are being modeled by polysegments.

Lemma 9. Let H be a graph on h vertices and let B be a collection of convex bodies

on the sphere. If the intersection graph of B is α-fat and does not contain graph H as

a subgraph, then there exists a collection of polysegments B′ and a bijection φ : B → B′

such that two bodies in B touch if and only if the corresponding polysegments in B′

touch. Moreover, each polysegment C ∈ B′ is crossed by the polysegments from B′ \ C
at most ξ = O(α6 · h3) times.

Proof. Let us then consider such a collection B of convex bodies {B1, . . . , Bk} where

the intersection graph GB is α-fat and has maximum degree ∆, for a positive integer

∆ and a positive real α. It follows that for a set of points Pi corresponding to a

body Bi of B, it holds that |Pi| ≤ ∆ + 1. As the body Bi is convex, there exists a

polysegment Ci of length |Pi| − 1 containing all points in Pi, that lies entirely in Bi.

Let B′ be the collection of the polysegments {Ci : 1 ≤ i ≤ k}. Clearly, two distinct

polysegments of B′ share a point of the sphere if and only if the corresponding bodies

touch. Furthermore, a polysegment has at most O(∆3) common points with other

polsegments in B′.
We claim that ∆ ≤ 16α2 · h, which directly implies the bound of the lemma. To

contradiction, assume that GB has a vertex with degree more than 16hα2. Then, for

the corresponding body B of the collection B, pick an arbitrary point x ∈ B. Since

each object in B can be inscribed in a circle of radius R, all bodies intersecting B

belong to the ball C of radius 4R with the center in x. This ball has area 16πR2.

Since each object in B contains a circle of radius r, the sum of the areas of the bodies

intersecting B exceeds 16hα2 × πr2 = 16πhR2. Therefore, there is a point in the ball

C belonging to at least h+ 1 bodies from B. Thus, GB contains a clique of size h+ 1

that contradicts to the assumption that it is H-free.

14



Again, by straightforwardly applying Theorem 1 to the sets of polysegments con-

structed in Lemma 9, we derive an improved theorem for H-free α-fat convex intersec-

tion graphs of geometric bodies.

Theorem 3. Let H be a graph on h vertices, and let B be a collection of convex bodies

on the sphere such that for each B1, B2 ∈ B with B1 ∩ B2 6= ∅, the set B1 ∩ B2 has a

non-empty interior. If the intersection graph GB of B is α-fat and does not contain H

as a subgraph, then tw(GB) = O(α6h3 · bg(GB)).

5 Conclusions and further research

We believe that the applicability of our combinatorial results is even wider than what

is explained in the previous section. The main combinatorial engine of this paper

is Lemma 7 that essentially induces an edit-distance notion between graphs under

contractibility. This is materialized by the following definition.

Definition 2. Let G1 and G2 be graphs. We define the contraction-edit distance

between G1 and G2, denoted by cdist(G1, G2), as the minimum c for which there

exists a graph that contains both G1 and G2 as c-contractions. Given a graph G we

define Bc(G) = {H | cdist(G,H) ≤ c}. Finally, given a graph class G, we define

Bc(G) =
⋃
G∈G Bc(G). We refer to the class Bc(G) as the c-contraction extension of the

class G.

A direct consequence of Lemma 7 is the following:

Corollary 1. Let P be the class of planar graphs, then for every fixed constant c,

Bc(P) satisfies (1).

Actually, Corollary 1 can be extended much further than planar graphs. For this,

the only we need analogues of Lemma 2 for more general graph classes. Using the main

result of [7], it follows that Lemma 2 is qualitatively correct for every graph class that

excludes an apex graph as a minor (an apex graph is a graph that can become planar

after the removal of a vertex). By plugging this more general version of Lemma 2 to

the proofs of the previous section we obtain the following.

Theorem 4. Let H be an apex-minor free graph and let GH be the class of graphs

excluding H as a minor. Then, for every fixed constant c, the class Bc(GH) satisfies (1).

All the algorithmic applications of this paper follow by the fact that all geomet-

ric intersection graph classes considered in this paper are subsets of Bc(P) for some

choice of c. Clearly, Theorem 4 offers a much more wide framework for this, includ-

ing graphs of bounded genus (including intersection graphs of lines or polygons on

surfaces), graphs excluding a single-crossing graph, and K3,r-minor free graphs. We

believe that Theorem 4, that is the most general combinatorial extension of our results

may have applications to more general combinatorial objects than just intersection

graph classes. We leave this question open for further research.
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