Skip to main content

Towards Enabling Uninterrupted Long-Term Operation of Solar Energy Harvesting Embedded Systems

  • Conference paper
Wireless Sensor Networks (EWSN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 8354))

Included in the following conference series:

Abstract

In this work we describe a systematic approach to power subsystem capacity planning for solar energy harvesting embedded systems, such that uninterrupted, long-term (i.e., multiple years) operation at a predefined performance level may be achieved. We propose a power subsystem capacity planning algorithm based on a modified astronomical model to approximate the harvestable energy and compute the required battery capacity for a given load and harvesting setup. The energy availability model takes as input the deployment site’s latitude, the panel orientation and inclination angles, and an indication of expected meteorological and environmental conditions.We validate the model’s ability to predict the harvestable energy with power measurements of a solar panel. Through simulation with 10 years of solar traces from three different geographical locations and four harvesting setups, we demonstrate that our approach achieves 100% availability at up to 53% smaller batteries when compared to the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mini, R.A., Loureiro, A.A.: Energy in wireless sensor networks. In: Middleware for Network Eccentric and Mobile Applications, pp. 3–24. Springer (2009)

    Google Scholar 

  2. Buchli, B., Sutton, F., Beutel, J.: GPS-equipped wireless sensor network node for high-accuracy positioning applications. In: Picco, G.P., Heinzelman, W. (eds.) EWSN 2012. LNCS, vol. 7158, pp. 179–195. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Chalasani, S., Conrad, J.M.: A survey of energy harvesting sources for embedded systems. In: IEEE Southeastcon, pp. 442–447. IEEE (2008)

    Google Scholar 

  4. Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials 13(3), 443–461 (2011)

    Article  Google Scholar 

  5. Hanssen, L., Gakkestad, J.: Solar Cell Size Requirement for Powering of Wireless Sensor Network Used in Northern Europe. In: Proceedings of the International Workshops on PowerMEMS, pp. 17–20 (2010)

    Google Scholar 

  6. Seah, W.K., et al.: Research in Energy Harvesting Wireless Sensor Networks and the Challenges Ahead (2012)

    Google Scholar 

  7. Taneja, J., et al.: Design, Modeling, and Capacity Planning for Micro-solar Power Sensor Networks. In: Proceedings of the 7th International Conference on Information Processing in Sensor Networks, IPSN 2008, pp. 407–418. IEEE Computer Society, Washington, DC (2008)

    Google Scholar 

  8. Le, T.N., et al.: Power Manager with PID controller in Energy Harvesting Wireless Sensor Networks. In: 2012 IEEE International Conference on Green Computing and Communications (GreenCom), pp. 668–670. IEEE (2012)

    Google Scholar 

  9. Vigorito, C.M., et al.: Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In: 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2007, pp. 21–30. IEEE (2007)

    Google Scholar 

  10. Piorno, J.R., et al.: Prediction and management in energy harvested wireless sensor nodes. In: 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Wireless VITAE 2009, pp. 6–10. IEEE (2009)

    Google Scholar 

  11. Dave, J., et al.: Computation of Incident Solar Energy. IBM Journal of Research and Development 19(6), 539–549 (1975)

    Article  Google Scholar 

  12. Kansal, A., et al.: Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS) 6(4), 32 (2007)

    Article  Google Scholar 

  13. Zhang, P., et al.: Hardware design experiences in ZebraNet. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, SenSys 2004, pp. 227–238. ACM, New York (2004)

    Google Scholar 

  14. Raghunathan, V., et al.: Design considerations for solar energy harvesting wireless embedded systems. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, p. 64. IEEE Press (2005)

    Google Scholar 

  15. Park, C., Chou, P.H.: Ambimax: Autonomous energy harvesting platform for multi-supply wireless sensor nodes. In: 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, SECON 2006, vol. 1, pp. 168–177. IEEE (2006)

    Google Scholar 

  16. Sitka, P., et al.: Fleck-a platform for real-world outdoor sensor networks. In: 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, ISSNIP 2007, pp. 709–714. IEEE (2007)

    Google Scholar 

  17. Glatz, P.M., et al.: Designing perpetual energy harvesting systems explained with rivermote: A wireless sensor network platform for river monitoring. Electronic Journal of Structural Engineering, Special Issue: Wireless Sensor Networks and Practical Applications, 55–65 (2010)

    Google Scholar 

  18. Lu, J., Whitehouse, K.: SunCast: fine-grained prediction of natural sunlight levels for improved daylight harvesting. In: Proceedings of the 11th International Conference on Information Processing in Sensor Networks, pp. 245–256. ACM (2012)

    Google Scholar 

  19. Sharma, N., et al.: Predicting solar generation from weather forecasts using machine learning. In: 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 528–533. IEEE (2011)

    Google Scholar 

  20. Bacher, P., et al.: Online short-term solar power forecasting. Solar Energy 83(10), 1772–1783 (2009)

    Article  Google Scholar 

  21. Kooti, H., et al.: Energy Budget Management for Energy Harvesting Embedded Systems. In: 2012 IEEE 18th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pp. 320–329. IEEE (2012)

    Google Scholar 

  22. Jeong, J., Culler, D.: Predicting the Long-Term Behavior of a Micro-Solar Power System. ACM Transactions on Embedded Computing Systems (TECS) 11(2), 35 (2012)

    Article  Google Scholar 

  23. Bohren, C.F., Clothiaux, E.: Atmospheric Optics. Wiley-VCH (2006)

    Google Scholar 

  24. Heinemann, D., et al.: Forecasting of solar radiation. Solar energy resource management for electricity generation from local level to global scale. Nova Science Publishers, New York (2006)

    Google Scholar 

  25. Gubler, S., Gruber, S., Purves, R.: Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation. Atmospheric Chemistry and Physics 12(11), 5077–5098 (2012)

    Article  Google Scholar 

  26. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 39). Progress in Photovoltaics: Research and Applications 20(1), 12–20 (2011)

    Article  Google Scholar 

  27. Pister, K.: Smartdust: Autonomous sensing and communication in a cubic millimeter

    Google Scholar 

  28. Brunelli, D., et al.: An efficient solar energy harvester for wireless sensor nodes. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 104–109. ACM (2008)

    Google Scholar 

  29. Corke, P., et al.: Long-duration solar-powered wireless sensor networks. In: Proceedings of the 4th Workshop on Embedded Networked Sensors, EmNets 2007, pp. 33–37. ACM, New York (2007)

    Google Scholar 

  30. Buchli, B., Aschwanden, D., Beutel, J.: Battery state-of-charge approximation for energy harvesting embedded systems. In: Demeester, P., Moerman, I., Terzis, A. (eds.) EWSN 2013. LNCS, vol. 7772, pp. 179–196. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  31. Bergveld, H.J.: Battery management systems: design by modelling. PhD thesis, Enschede (June 2001)

    Google Scholar 

  32. Kansal, A., Potter, D., Srivastava, M.B.: Performance aware tasking for environmentally powered sensor networks. In: ACM SIGMETRICS Performance Evaluation Review, vol. 32, pp. 223–234. ACM (2004)

    Google Scholar 

  33. Kansal, A., et al.: Harvesting aware power management for sensor networks. In: Proceedings of the 43rd Annual Design Automation Conference, pp. 651–656. ACM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Buchli, B., Sutton, F., Beutel, J., Thiele, L. (2014). Towards Enabling Uninterrupted Long-Term Operation of Solar Energy Harvesting Embedded Systems. In: Krishnamachari, B., Murphy, A.L., Trigoni, N. (eds) Wireless Sensor Networks. EWSN 2014. Lecture Notes in Computer Science, vol 8354. Springer, Cham. https://doi.org/10.1007/978-3-319-04651-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04651-8_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04650-1

  • Online ISBN: 978-3-319-04651-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics