Skip to main content

Formal Modeling and Analysis of Learning-Based Routing in Mobile Wireless Sensor Networks

  • Chapter
  • First Online:
Book cover Integration of Reusable Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 263))

Abstract

Limited energy supply is a major concern when dealing with wireless sensor networks (WSNs). Therefore, routing protocols for WSNs should be designed to be energy efficient. This chapter considers a learning-based routing protocol for WSNs with mobile nodes, which is capable of handling both centralized and decentralized routing. A priori knowledge of the movement patterns of the nodes is exploited to select the best routing path, using a Bayesian learning algorithm. While simulation tools cannot generally prove that a protocol is correct, formal methods can explore all possible behaviors of network nodes to search for failures. We develop a formal model of the learning-based protocol and use the rewriting logic tool Maude to analyze both the correctness and efficiency of the model. Our experimental results show that the decentralized approach is twice as energy-efficient as the centralized scheme. It also outperforms the power-sensitive AODV (PS-AODV), an efficient but non-learning routing protocol. Our formal model of Bayesian learning integrates a real data-set which forces the model to conform to the real data. This technique seems useful beyond the case study of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)

    Google Scholar 

  2. Mitchell, T.M.: Machine Learning (ISE Editions). McGraw-Hill, Boston (1997)

    Google Scholar 

  3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: Maude: specification and programming in rewriting logic. Theoret. Comput. Sci. 285, 187–243 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96, 73–155 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kazemeyni, F., Owe, O., Johnsen, E.B., Balasingham, I.: Learning-based routing in mobilewireless sensor networks: applying formal modeling and analysis. In: Proceedings of IEEE 14th International Conference on Information Reuse and Integration—Workshop on Formal Methods Integration (FMi’13), pp. 1–8. IEEE (2013)

    Google Scholar 

  6. Olagbegi, B.S., Meghanathan, N.: A review of the energy efficient and secure multicast routing protocols for mobile ad hoc networks. CoRR, abs/1006.3366 (2010)

    Google Scholar 

  7. Liu, M., Cao, J., Chen, G., Wang, X.: An energy-aware routing protocol in wireless sensor networks. IEEE Sens. 9(1), 445–462 (2009)

    Google Scholar 

  8. Wang, J., Cho, J., Lee, S., Chen, K-C., Lee, Y-K.: Hop-based energy aware routing algorithm for wireless sensor networks. IEICE Trans. 93-B(2), 305–316 (2010)

    Google Scholar 

  9. Stojmenovic, I., Lin, X.: Power-aware localized routing in wireless networks. IEEE Trans. Parallel Distrib. Syst. 12(11), 1122–1133 (2001)

    Google Scholar 

  10. Uddin, M.Y.S., Ahmadi, H., Abdelzaher, T., Kravets, R.: A low-energy, multi-copy inter-contact routing protocol for disaster response networks. In: Proceedings of 6th Annual IEEE communications society conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON’09), pp. 637–645. IEEE Press (2009)

    Google Scholar 

  11. Arroyo-Valles, R., Alaiz-Rodriguez, R., Guerrero-Curieses, A., Cid-Sueiro, J.: Q-probabilistic routing in wireless sensor networks. In: Proceedings of 3rd International Conference on Intelligent Sensors, Sensor Networks and Information (ISSNIP’07), pp. 1–6 (2007)

    Google Scholar 

  12. Barrett, C.L., Eidenbenz, S.J., Kroc, L., Marathe, M., Smith, J.P.: Parametric probabilistic routing in sensor networks. Mob. Netw. Appl. J. 10, 529–544 (2005)

    Article  Google Scholar 

  13. Lindgren, A., Doria, A., Schelén, O.: Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 7, 19–20 (2003)

    Google Scholar 

  14. Wang, P., Wang, T.: Adaptive routing for sensor networks using reinforcement learning. In: Proceedings of the Sixth International Conference on Computer and Information Technology (CIT ’06), pp. 219–219. IEEE Computer Society (2006)

    Google Scholar 

  15. Pandana, C., Liu, K.J.R.: Near-optimal reinforcement learning framework for energy-aware sensor communications. IEEE J. Sel. Areas Commun. 23, 209–232 (2002)

    Google Scholar 

  16. Coleri, S., Ergen, M., Koo, T.J.: Lifetime analysis of a sensor network with hybrid automata modelling. In: Proceedings of first ACM International Workshop on Wireless Sensor Networks and Applications (WSNA’02), pp. 98–104. ACM (2002)

    Google Scholar 

  17. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC protocol for wireless sensor networks. In: Proceedings of the 6th International Conference on Integrated Formal Methods (IFM’07). Lecture Notes in Computer Science, vol. 4591, pp. 253–272. Springer (2007)

    Google Scholar 

  18. Tschirner, S., Xuedong, L., Yi, W.: Model-based validation of QoS properties of biomedical sensor networks. In: Proceedings of the 8th ACM & IEEE International conference on Embedded software (EMSOFT’08), pp. 69–78. ACM (2008)

    Google Scholar 

  19. Johnsen, E.B., Owe, O., Bjørk, J., Kyas, M.: An object-oriented component model for heterogeneous nets. In: Proceedings of the 6th International Symposium on Formal Methods for Components and Objects (FMCO 2007). Lecture Notes in Computer Science, vol. 5382, pp. 257–279. Springer (2008)

    Google Scholar 

  20. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and model checking of wireless sensor network algorithms in real-time maude. Theoret. Comput. Sci. 410(2–3), 254–280 (2009)

    Google Scholar 

  21. Katelman, M., Meseguer, J., Hou, J.C.: Redesign of the LMST wireless sensor protocol through formal modeling and statistical model checking. In: Proceedings of the 10th International Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS’08). Lecture Notes in Computer Science, vol. 5051, pp. 150–169. Springer (2008)

    Google Scholar 

  22. Dong, J.S., Sun, J., Sun, J., Taguchi, K., Zhang, X.: Specifying and verifying sensor networks: an experiment of formal methods. In: 10th International Conference on Formal Engineering Methods (ICFEM’08), Lecture Notes in Computer Science, vol. 5256, pp. 318–337. Springer (2008)

    Google Scholar 

  23. Kulkarni, S.A., Rao, G.R.: Formal modeling of reinforcement learning algorithms applied for mobile ad hoc network. Int. J. Recent Trends Eng. (IJRTE) 2, 43–47 (2009)

    Google Scholar 

  24. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artificial Intell. Res. 4, 237–285 (1996)

    Google Scholar 

  25. Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis (Wiley Classics Library). Wiley-Interscience, New York (1992)

    Google Scholar 

  26. Shakya, S., McCall, J., Brown, D.: Using a Markov network model in a univariate EDA: an empirical cost-benefit analysis. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO’05, pp. 727–734. ACM (2005)

    Google Scholar 

  27. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Google Scholar 

  28. Plotkin, G.D.: A structural approach to operational semantics. J. Logic and Algebraic Program. (JLAP) 60–61, 17–139 (2004)

    Google Scholar 

  29. Kalbfleisch, J.G.: Probability and Statistical Inference, Vol. 1: Probability (Springer Texts in Statistics). Springer, Secaucus (1985)

    Google Scholar 

  30. Agha, G., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language for probabilistic object systems. Electron. Notes Theoret. Comput. Sci. 153(2), 213–239 (2006)

    Google Scholar 

  31. Kazemeyni, F., Owe, O., Johnsen, E.B., Balasingham, I.: Learning-based routing in mobile wireless sensor networks: formal modeling and analysis for WSNs. Technical Report ISBN 82-7368-390-7, Department of Informatics, University of Oslo (2013)

    Google Scholar 

  32. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., Chaintreau, A.: CRAWDAD trace: cambridge/haggle/imote/intel (v. 2006–01-31). http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/intel (2006)

  33. Kazemeyni, F., Johnsen, E.B., Owe, O., Balasingham, I.: Formal modeling and validation of a power-efficient grouping protocol for WSNs. J. Logic Algebraic Program. (JLAP) 81(3), 284–297 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Kazemeyni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kazemeyni, F., Owe, O., Johnsen, E.B., Balasingham, I. (2014). Formal Modeling and Analysis of Learning-Based Routing in Mobile Wireless Sensor Networks. In: Bouabana-Tebibel, T., Rubin, S. (eds) Integration of Reusable Systems. Advances in Intelligent Systems and Computing, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-319-04717-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04717-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04716-4

  • Online ISBN: 978-3-319-04717-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics