Practical collision attack on 40-step RIPEMD-128

Gaoli Wang

School of Computer Science and Technology, Donghua University,
Shanghai 201620, China
wanggaoli@dhu.edu.cn

Abstract. RIPEMD-128 is an ISO/IEC standard cryptographic hash function proposed in 1996 by Dobbertin,
Bosselaers and Preneel. There are two different and independent parallel lines called linel operation and line2
operation, and each operation has 64 steps. The results of two line operations are combined at the end of every
application of the compression function. In this paper, we present collision differential characteristics for both linel
operation and /ine2 operation by choosing a proper message difference. By using message modification technique
seriously, we improve the probabilities of the differential characteristics so that we can give a collision attack on
40-step RIPEMD-128 with a complexity of 23 computations.
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1 Introduction

The cryptographic hash function RIPEMD-128 [1] was proposed in 1996 by Hans Dobbertin, Antoon Bosselaers
and Bart Preneel. It was standardized by ISO [2] and was used in HMAC in RFC [3]. The design philosophy of
RIPEMD-128 adopts the experience gained by evaluating MD4 [9], MD5 [10], and RIPEMD [8] etc.. RIPEMD-128
is a double-branch hash function, where the compression function consists of two parallel operations denoted by linel
operation and line2 operation, respectively. The combination of H;_i, linel(H;_;, M;_1) and line2(H;_, M;_|) generates
the output H;, where H;_; is the standard initial value or the output of the message block M;_,.

As far as we know, the published cryptanalysis of RIPEMD-128 includes collision attack [5, 12, 6], (second) preim-
age attack [7, 13], distinguishing attack [11], and the attack in [4]. As for the practical collision attack on step reduced
RIPEMD-128, Wang et al. presented an example of collision on 32-step RIPEMD-128 in 2008 [12], Mendel et al. pre-
sented an example of collision on 38-step RIPEMD-128 in 2012 [5]. In the work [5], finding differential characteristic
and performing message modification in the first round are achieved by an automatic search tool.

It is widely believed that it is difficult to construct a differential characteristic including the first round of linel
operation because the absorption property of the boolean function X® Y ®Z does not hold. Thus, in the collision attack
on 32-step RIPEMD-128 [12], the difference of messages is chosen as Am4 # 0,4m; = 0(0 < i < 15,i # 14) such that
the differential characteristic of linel operation almost keeps away from the boolean function X @ Y @ Z. Inspired by
Mendel’s work [5], we were motivated to find a differential characteristic of linel operation, which takes advantage of
the property of the boolean function X ® Y & Z.

In this paper, we use the bit tracing method to propose a collision attack on 40-step RIPEMD-128 with a complexity
of 2%, The bit tracing method is proposed by Wang and formalized in [15, 16]. It is very powerful to break most of
the dedicated hash functions such as MD4 [15,20], RIPEMD [15], HAVAL [14, 19], MDS5 [16], SHA-O [17] and
SHA-1 [18]. However, in the double-branch hash functions, two state words are updated using a single message word.
Therefore, the application of bit tracing method to RIPEMD-128 is far from being trivial. In this paper, constructing
differential characteristic, deducing the sufficient conditions and performing message modification are all fulfilled by
hand. The previous results and our results are summarized in Table 1.

The rest of the paper is organized as follows: In Section 2, we describe the RIPEMD-128 algorithm. In Section 3,
we introduce some useful properties of the nonlinear functions in RIPEMD-128 and some notations. Section 4 will
show the detailed descriptions of the attack on RIPEMD-128. Finally, we summarize the paper in Section 5.



Table 1. Summary of the Attacks on RIPEMD-128

Attack Steps|Generic|Complexity |Reference
collision 32 | 2% 228 [12]
collision 38 204 214 [5]
collision 40 | 2% 2% Ours

near collision | 44 | 2%38 232 [5]
free-start collision| 48 204 240 [5]
preimage 33 | 212 21245 [71
preimage 354 | 2138 2121 [7]
preimage 36° | 2138 21265 [13]
distinguishing | 48 270 270 [5]
distinguishing | 45 | 2% 2% [11]
distinguishing | 47 | 2% 2% [11]
distinguishing | 48 - 233 [11]
distinguishing | 52 - 2107 [11]
64 [4]

* The attack starts from an intermediate step.

2 Description of RIPEMD-128

The hash function RIPEMD-128 compresses any arbitrary length message into a message with length of 128 bit. Firstly
the algorithm pads any given message into a message with length of 512 bit multiple. For the description of the padding
method we refer to [1]. Then, for each 512-bit message block, RIPEMD-128 compresses it into a 128-bit hash value by
a compression function, which is composed of two parallel operations: linel and line2. Each operation has four rounds,
and each round has 16 steps. The initial value is (a, b, c,d) = (0x67452301, Oxe fcdab89,0x98badc fe,0x10325476).
The nonlinear functions in each round are as follows:

FX,Y,Z)=X®oY®Z
GX.Y,2)=(XAY)V (=X A Z)
HX,Y,Z)=XV-Y)®&Z
IX,Y.2)=(XAZ)V (Y A ~Z)

Here X, Y, Z are 32-bit words. The four boolean functions are all bitwise operations. — represents the bitwise com-
plement of X. A, @ and V are bitwise AND, XOR and OR respectively. In each step of both linel operation and line2
operation, one the four chaining variables a, b, c, d is updated.

dola,b,c,d, x,s) =(a+ F(b,c,d) + x) K s,

¢1(a,b,c,d, x,s) =(a+ G, c,d) + x + 0x5a827999) <« s,
¢o(a,b,c,d, x,s) =(a+ H(b,c,d) + x + 0x6ed9ebal) << s,
¢3(a,b,c,d, x,s) = (a+ I(b,c,d) + x + 0x8 f1bbcdc) < s,
Yola,b,c,d, x,s) = (a+ I(b,c,d) + x + 0x50a28beb) << s,
Yi(a,b,c,d,x,s) = (a+ H(b,c,d) + x + 0x5c¢4dd124) <« s,
Ua(a,b,c,d, x,s) = (a+ G(b,c,d) + x + 0x6d703ef3) « s,
vila,b,c,d, x,s) = (a+ F(b,c,d) + x) < s.

<<< s represents the circular shift s bit positions to the left. + denotes addition modulo 2%2.
linel operation For a 512-bit block M, M = (mgy, my,...,ms), linel operation is as follows:



1.

2.

Let (a,b,c,d) = (ap, by, co,dp) be the input of linel operation for M. If M is the first block to be hashed,
(ao, by, co, dp) is the initial value. Otherwise it is the output of compressing the previous block.

Perform the following 64 steps (four rounds):

For j=0,1,2,3,

Fori=0,1,2,3,

a=d¢ia,b,c,d myqi(ji6j4i+1)s S1j16j44i+1)s

d=¢;(d,a,b,c,morg1(j16j+4i+2)> S116j+4i+2)5

c =¢j(c,d, a,b,myrq1(j,16j+4i+3)» S1,16j+4i+3)5

b=¢ib,c,d,a,myqi(16j+air4) S1j16j+4i+4)-

line2 operation For a 512-bit block M, M = (mg, my, ..., ms), line2 operation is as follows:

1.

2.

Let (aa, bb, cc,dd) = (ag, by, co, dp) be the input of line2 operation for M. If M is the first block to be hashed,
(ao, by, co, dp) is the initial value. Otherwise it is the output of compressing the previous block.

Perform the following 64 steps (four rounds):

For j=0,1,2,3,

Fori=0,1,2,3,

aa = yj(aa,bb, cc,dd, Morn(j16j+4i+1)> S2),16j+4i+1)s

dd =y ;(dd, aa, bb, cc, Mran(j16j+4i+2)s 52j16j+4i+2)s

cc =y i(ce,dd, aa, bb, myran(j16j+4i+3)s $2j16j+4i+3)s

bb = j(bb, cc,dd, aa, myrqo(j 16 j+4ir4)s $2j16j+4i+4)-

The output of compressing the block M is obtained by combining the initial value with the outputs of /inel and

line2 operations: a = bg+cc+ddd, b = cy+dd+aaa, c = dy+aa+bbb,d = ay+bb+ccc. If M is the last message block,
a |l b || c |l dis the hash value, where || denotes the bit concatenation. Otherwise repeat the compression process for
the next 512-bit message. The ordering of message words and the details of the shift positions can be seen in Table 2.

Table 2. Order of the Message Words and Shift Positions in RIPEMD-128

Stepi |1 2 3 45 6 7 8 910111213141516
ord1(0,H|0 1 2 3 4 5 6 7 8 9101112131415
linel| slp; (111415125 8 7 9 111314156 7 9 8
ord2(0,i)|5 147 0 9 2114136158 110 3 12
line2| 52, (8 9 9111315155 7 7 8 11141412 6
Stepi |17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
ord1(1,))|7 413 1106 153 120 9 5 2 1411 8
linel| sl;; |7 6 813119 7 157 12159 11 7 1312
ord2(1,))|6 11 3 7 013 51014158 124 9 1 2
line2| s2,; (913157 128 9117 7127 6 151311
Step i |33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
ord1(2,i)|3 1014 4 9158 1 2 7 0 6 1311 5 12
linel| sl,; (1113 6 7 14 91315148 13 6 5127 5
ord2(2,H|155 1 3 7146 9118122100 4 13
line2| s2,; (9 715118 6 6 141213 5 141313 7 5
Stepi |49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
ord1(3,i)|1 9 1110 0 8 12 4 133 7 15145 6 2
linel| sl;; (1112141514159 8 9145 6 8 6 5 12
ord2(3,))|8 6 4 1 311150 5122139 7 1014
line2| s2;; (155 8 111414 6 14 6 9 12 9125 15 8




3 Some basic conclusions and notations

In this section we will recall some properties of the four nonlinear functions in our attack.
Proposition 1. For the nonlinear function F (X, Y,Z) = X ® Y @ Z, there are the following properties:

1. F(O,y,2) =0and F(1,y,2) =1 = y=1z
FQO,y,z)=1and F(1,y,2) =0 =y # z
F(x,0,z)=0and F(x,1,7) =1 &= x =1z
F(x,0,z)=1land F(x,1,2) =0 <= x # z.
F(x,y,0)=0and F(x,y,1) =1 x=y.
F(x,y,0)=1and F(x,y,1) =0 x # y.

2. F(x,y,2) = F(=x,-y,2) = F(x, -y, —z) = F(=x,y, =2).

Proposition 2. For the nonlinear function G(x,y,z) = (x A y) V (—x A 2) , there are the following properties:

1. G(x,y,2) = G(—x,y,2) =y =2
G0,y,z) =0and G(1,y,z7) =1 e y=1andz=0.
G(0,y,z2)=1and G(1,y,z7) =0 y=0andz = 1.

2. G(x,y,2) = G(x,~y,z2) = x=0.
G(x,0,z) =0and G(x,1,2) =1 = x = 1.

3. G()C,y,Z) = G(X,y, _‘Z) — x=1.
G(x,y,O) = Oand G(-x’y7 1) = 1 — X = O

Proposition 3. For the nonlinear function H(x,y,z) = (x V =y) @ z , there are the following properties:

1. H(x,y,2) = H(=x,y,2) &=y = 0.
H,y,z) =0and H(1,y,z) =1 & y=1and z = 0.
H@O,y,z)=1and H(l,y,z) =0 <= y=1landz = 1.

2. H(x,y,2) = H(x,~y,z) &= x = 1.
H(x,0,z) =0and H(x,1,7) =1 x=0andz = 1.
H(x,0,z) =1land H(x,1,7) =0 &= x=0and z = 0.

3. Hx,y,0)=0and H(x,y,1) =1 < x=0andy = 1.
H(x,y,0)=1and H(x,y,1) =0 x=1ory=0.

Proposition 4. For the nonlinear function /(x,y,z) = (x A 2) V (y A =7) , there are the following properties:
L I(x,y,2) = I(=x,y,2) &= z=0.
100,y,2) =0and I(1,y,2) =1 e z=1.

2. I(x,y,2) =I(x,—~y,2) = z=1.
I(x,0,z) =0and I(x,1,27) =1 < z=0.

3. I(x,y,2) = I(x,y,~7) &= x = y.

I(x,y,0)=0and I(x,y,1) =1 & x=1andy = 0.
I(x,y,0)=1and I(x,y,1) =0 e x=0andy = 1.

Notations In order to describe our attack conveniently, we define some notations in the following.



1. M = (mg,my,....,ms) and M’ = (m;),m’l,...,m’ls) represent two 512-bit messages.

2. a;, d;, c;, b; respectively denote the outputs of the (4i — 3)-th, (4i — 2)-th, (4i — 1)-th and 4i-th steps for compressing
M in linel operation, where 1 < i < 16.

3. aa;, dd;, cc;, bb; respectively denote the outputs of the (4i — 3)-th, (4i — 2)-th, (4i — 1)-th and 4i-th steps for
compressing M in line2 operation, where 1 <i < 16.

4. a, d], ¢}, b; respectively denote the outputs of the (4i —3)-th, (4i —2)-th, (4i — 1)-th and 4i-th steps for compressing
M’ in linel operation.

5. aa;, dd}, cc;, bb; respectively denote the outputs of the (4i — 3)-th, (4i — 2)-th, (4i — 1)-th and 4i-th steps for
compressing M’ in line2 operation.

6. Am; = m; — m; denotes the difference of two words m; and m. It is noted that Am; is a modular difference and not
a XOR difference.

7. x;jrepresent the j — th bit of x;, where the least significant bit is the 1-st bit, and the most significant bit is 32-nd
bit.

8. x;[j1, x;,[—j] are the resulting values by only changing the j — th bit of the word x;. x;[j] is obtained by changing
the j-th bit of x; from O to 1. x;[—j] is obtained by changing the j-th bit of x; from 1 to 0.

9. x;[£j1, )2, ..., 2 j] is the value by change j, — th, j, — th, ..., j; — th bits of x;. The ”+” sign means that the bit is
changed from O to 1, and the - sign means that the bit is changed from 1 to 0.

4 The Collision Attack against 40-step RIPEMD-128

The collision consists of a pair of two 512-bit blocks (N || M,N || M’). As stated below, in order to implement the
message modification, we have to add some conditions on by, which leads to the hash value of the first block N satisfies
bo;=11=1,2,3,27),bp; =0 =17,..., 10,13, ...,24). We search the second block in the following three parts:

1. Choose proper differences of message words and find two concrete differential characteristics for linel and line2
operations respectively in which M and M’ produces a collision. The differential characteristics without round 1
must hold with high probability.

2. Derive two sets of sufficient conditions which ensure the two differential characteristics hold, respectively.

3. Modify the message to fulfill most of the chaining variable conditions.

4.1 Differential Characteristics for 40-step RIPEMD-128

Choosing proper differences of message words plays an important role in constructing differential characteristic-
s which contain as many steps as possible and hold with high probabilities after message modification. Let M =
(mg,my,...,ms), we select AM = M’ — M as follows: Am; = 00 < i < 15,i # 2,12), Am, = 28 and dm, = -2.
It forms a local collision from step 25 to step 29 in linel operation. Although in the same round, there are the same
circular shift values corresponding to the same message words between linel operation and line2 operation, e.g. in step
25 (29) of linel operation, the shift value is 7 (11) corresponding to the message word m, (i), and in step 28 (32)
of line2 operation, the shift value is also 7 (11) corresponding to the message word m, (m5), it can not form a local
collision from step 28 to step 32 in line2 operation. The reason is that the property of the boolean function (X VvV -Y)®Z
make it need at least three message words to form a local collision. Therefore, the differential characteristic of line2
operation consists of one long local collision between step 6 to step 32. In round 3, the message differences first ap-
pear at step 41 of linel operation and at step 43 of line2 operation. Thus, we can get a collision attack on 40-step
RIPEMD-128 by using this message differences.

The boolean function X @ Y & Z make it more difficult to construct a differential characteristic in linel operation.
Hence, the differential characteristic of linel operation we presented in Table 8 is dense. The differential characteristic
for line2 operations is presented in Table 9, which makes the probability after round 1 hold as high as possible.



4.2 Deriving Conditions on Chaining Variables of linel and line2 Operations

In this section, we derive two sets of sufficient conditions presented in Table 10 and Table 11, which ensure the
differential characteristics in Table 8 and Table 9 hold, respectively. We describe how to derive a set of sufficient
conditions that guarantee the difference in steps 3-7 of table 8 hold. Other conditions can be derived similarly.

1. In step 3, the message difference Am, = 28 produces ci[-1,-2,3, =24, ..., -32].
2. In step 4, (b, ay,dy,c1[-1,-2,3,-24,...,-32)])
= (aj,d,ci1[-1,-2,3,-24, ...,-32],b1[4, ...,10,-11,12,-13, ..., =22, 23]).

According to Proposition 1, the conditions d;; = a1;(i = 1,2,3,31) ensure that the change of ¢;,;(i = 1,2,3,31)
resultin Ab; = —212-213 4214210 ‘meanwhile, the conditions d; ; # ay (i = 24, ..., 30, 32) ensure that the change
of ¢y ;(i = 24, ...,30,32) resultin 4b; = 23 +...42%+2!1 Combined with the conditions b1, =0(=4,..10,12,23)
and b; = 1(i = 11,13,...,22), we can get b| = by[4,...,10,-11,12,-13, ..., -22,23].

3. Instep 5, (a;,d;, c1[-1,-2,3,-24, ..., -32],b[4, ..., 10, -11, 12, -13, ..., —22,23])
= (dy,c1[-1,-2,3,-24,...,-32], b[4,...,10,-11,12,-13, ..., -22,23], a5[1, -2, ...,—11, 12, ..., 21, =22, ..., =32]).
From Proposition 1, the conditions b,; = d;;(i = 1,2,24,...,27,29,...,32) and by; # d;;(i = 3,28) ensure

that the change of ¢; result in 4a; = 1 -2 —2%— ... —27 - 22— — 231 ‘meanwhile, the conditions c;; =
dii(i=17,..,10,12,17,...,22) and ¢|; # d,;(i = 4,5,6,11,13,...,16,23) ensure that the change of b, result in
Aay = =28 =29 - 2104211 4220 221 227 Combined with the conditions a»; = 0(i = 1, 12,...,21) and

a; = 1(i=2,..,11,22,...,32), we can obtain @, = a»[1,-2,...,-11,12,...,21,-22, ..., -32].
4. In step 6,
(dy,ci1[-1,-2,3,-24,...,-32],b1[4,...,10,-11,12,-13, ..., -22,23], a,[1, -2, ..., —11, 12, ..., 21, =22, ..., =32])
= (c1[-1,-2,3,-24,...,-32],b1[4,...,10,-11,12,-13, ..., =22,23], ax[1, -2, ..., =11, 12, ..., 21, =22, ..., =32], d>).
From Proposition 1, it is easy to get a, = a, without no condition.
5. Instep 7,
(c1[-1,-2,3,-24,...,-32],b[4,...,10,-11,12,-13, ..., -22,23],a,[1, -2, ...,— 11,12, ..., 21, =22, ..., =32], d>)
= (1[4, ...,10,-11,12,-13, ..., -22,23], a>[1, -2, ...,—11,12,...,21,-22, ..., =32], d>, ¢>).
From Proposition 1, the conditions dy; = b1;(i = 1,3) and do; # b1,;(i = 2,24,...,32) result in F(d},a}, b)) —
F(dy,ar,by) = 1+2 -2 +2% + .+ 23! Combined with ¢| = ¢|[-1,-2,3,-24, ..., —32] we get ¢ = c».

4.3 Message Modification

As demonstrated in Table 10 of linel operation, there is no constraint on the message words m;(i = 0,9,11,...,15),
and there is freedom on the message words m;(i = 1,5,7, 8, 10). Thus, all the freedom of these message words can be
utilized to fulfill the conditions in Table 11, which are imposed by the differential characteristic of line2 operation.

We modify M so that all the conditions in the first round of Table 10 and most of the conditions in Table 11 hold.
The outline of the modification is described as follows. Taking into consideration the fact that in Table 11 of line2
operation, the conditions first appear in the chaining variable bb;, and the message words ms, m4, m7 are involved in
steps 1-3, we first modify m;(i = 1,...,7) such that all the conditions of d,, cy, by, az, d2, ¢; and b, in Table 10 are
satisfied. Then we correct the conditions of bb; in Table 11. The message word involved in bb; is my, which is also
involved in the first step of linel operation. Therefore, if the conditions of bb; are corrected by my, it will probably
lead to the correction of d, ¢y, by, az, da, ¢z, by being invalid. As stated below, the condition bb; 4 = 0 is corrected by
my, and all the other conditions of bb; are corrected by the change of dd;. For example, if the condition bb| 54 = 0 does
not hold, we flip the bit dd, ;3 by changing m 4. However, we need to add the condition by ;3 = 0 such that the change
of dd, 13 does not disturb cc;. Meanwhile, we also need to add the condition aa; 13 = 0 such that the change of dd, 13
will invert bb 4. Similarly, we need to add some conditions on the chaining variables of /ine2 operation, especially on
the chaining variables aa;, dd; and cc;. Hence, we correct the conditions of line2 operation from aa;, and the process
of modification is in the following. It is noted that in most cases, the conditions are corrected from low bit to high bit.
Sometimes, the correction order is adjusted.

1. Modify m;(i = 1,2, 3,4) such that the conditions of d;, ¢, b; and a, in Table 10 hold.



2. Firstly, modify ms such that the conditions of d, in Table 10 hold. Secondly, if there is no overlap between the

et

conditions on d; in Table 10 and aa, in Table 11, i.e. the conditions on aa; lies in aa; ;(i # 1,2, 3,24, ...,32), then it
is easy to correct them. For example, if the condition aa, ;3 = 0 does not hold, we flip the bit d, ;3 by changing ms,
then aa, ;3 is inverted, i.e., aa ;3 = 0 is satisfied. Thirdly, if the conditions on aa, liesin aa, ;(i = 1,2,3,24, ...,32),
we present an example below to illustrate how to correct them. For example, if the condition aa;; = 0 does not
hold, we correct it by changing ms, which will also flip the bit d5 ;. In order to fulfill the condition d>; = by 1,
by is flipped by changing mj3. Similarly, mg, m; and my are modified in order to ensure the conditions on dj,

c1, by and ay, especially, by = d;; and d;; = a;; hold. The modification of mg, m;, ms and m4 ensures that
the differential characteristic of linel operation is not disturbed by the change of ms. The detail of correcting the
condition aa, ; = 0 is described in the following steps and illustrated in Table 3.

(a) Modify myg such that a;; in Table 10 is flipped and all the other bits of a; are unchanged. Without loss of
generality, we suppose aa;; = 0, then a; becomes a;[1] after flipping a; ;.

(b) Modify m; such that d;; in Table 10 is flipped and all the other bits of d; are unchanged, which ensures the
condition d;; = a;; in Table 10 hold.

(c) The change of a;; and d; | does not disturb c; according to Proposition 1.

(d) Modify m3 such that b, ; in Table 10 is flipped and all the other bits of b, are unchanged, which ensures the
condition b, ; = d;; in Table 10 hold.

(e) Modity my such that a; in Table 10 is unchanged.

(f) Modify ms such that d>; in Table 10 is flipped and all the other bits of d, are unchanged, which ensures the
condition d»; = b;, hold. Meanwhile, aa, ; is flipped by the change of ms and the condition aa;; = 0 is
satisfied.

It is noted that combined with the conditions ¢;; = 1 and a,; = 0, the flips of d;; and b;; have no impact on d5.

Hence, the modification of ms does not need to offset the flips of d; 1, b1,1, and only flips d» ;. Consequently, the

change of ms is only likely to flip aa; ; and aa, ;(i = 2,...,8) by carry. Since the conditions of aa; are corrected

from low bit to high bit, i.e., the order of modification is 9,...,32,1,...,8, the correction of aa; ; does not disturb the
conditions which have been corrected. Therefore, the condition aa; ; = 0 is corrected successfully with probability

1.

Table 3. Message Modification for Correcting aa;

step|m; | Shift| Modify m;| Chaining values | Chaining values
before modifying m;|after modifying m;
linel| 1 |my| 11 |Modify myg a a[1]
linel| 2 |my| 14 |Modify m, d, di[1]
linel| 3 |my| 15 Cy Cy
linel| 4 |m3| 12 |Modify mj3 b, b[1]
linel| 5 |my| 5 |Modify my a a
linel| 6 |ms| 8 |Modify ms d, d>[1]
line2| 1 |ms| 8 |Modify ms aa, aay is flipped

Modify m4 and mg such that the conditions on dd; in Table 11 and c¢; in Table 10 hold, respectively.

Firstly, modify m such that the conditions on b, in Table 10 hold. Secondly, similar to the modification of aa; ;(i #
1,2,3,24,...,32), the conditions on ccy;(i # 2,...,12) can be corrected by the change of m;. Thirdly, the other
conditions on cc; are corrected by the change of dd,. For example, if the condition ccy ;9 = 0 does not hold, we
flip dd; 1 by changing m4. Then cc) 10 is flipped if the extra condition by ; = 1 is added according to Proposition
4. The detail of correcting the condition ccj 19 = 0 is illustrated in Table 4.

Firstly, the condition bb; 4 = 0 is corrected by the change of my. If bb; 4 = 0 does not hold, we flip bb; 4 by
modifying mg, which will change a; in Table 10. On one hand, there is no constraint on a;, so the change of a;
does not disturb the differential characteristic. On the other hand, d,, ¢, b; and a, are unchanged by modifying



Table 4. Message Modification for Correcting ccy 1o

step| m; [Shift| Modify m; |flipped bit|additional condition
2 nmig 9 MOdlfy nmig ddl,l
3 ms 9 CC1,10 bO,l =1

my, my, m3 and my respectively. Therefore, the change of my does not disturb the differential characteristic of linel
operation. The procedure of correcting bb; 4 = 0 is illustrated in Table 5. Secondly, all the other conditions on
bb, are corrected by the change of dd;. For example, if the condition bb; 54 = 0 does not hold, we flip dd; 13 by
changing my4. Then cc, is unchanged if the extra condition b 3 = 0 is added, and bb; »4 is flipped if the extra
condition aa; ;3 = 0 is added according to Proposition 4.

Table 5. Message Modification for Correcting bb, 4

step|m; | Shift| Modify m;| Chaining values | Chaining values
before modifying m;|after modifying m;

line2| 4 |my| 11 |Modify myg bb, bb, 4 is flipped
linel| 1 |my| 11 |Modify myg a a, is changed
linel| 2 |my| 14 |Modify m, d, d,
linel| 3 |my| 15 |Modifty m, cy c1
linel| 4 ms 12 MOdlfy ms b] b]
linel| 5 |my| 5 |Modify my a a

. Modify myg such that the conditions on aa, in Table 11 hold.

. The conditions on dd, in Table 11 are corrected through the following four approaches. All the conditions on dd,
are fulfilled after message modification except dd,9 = 1. We present examples to illustrate the approaches of
modification.

(a) The condition dd, ¢ = 0 is corrected by the change of m7. In order not to disturb the condition b, , = 0 which

(b)

(©

(d)

has been corrected, we modify m7 such that only b, is flipped and the other bits of b, are unchanged. The
modification of my flips cc;,; definitely, and is likely to flip ccy;(i = 2,...,9) by carry. Hence, according to
Proposition 4, bb; in all probability is unchanged if the extra conditions aa;; = 0 and aa; » = 0 are added, and
dd, 16 1s flipped because the condition aa,; # bb; is hold yet. Furthermore, aa, is unchanged by modifying
myg. The success probability of correcting dd, 16 = 0, i.e., the probability that dd, ¢ = O is satisfied and all the
other conditions which have been corrected are not disturbed, is very close to 1.

The condition dd, 24 = 1 is corrected by the change of m4. Firstly, mi4 is changed such that dd, ¢ is flipped
and all the other bits of dd, are unchanged. Then, according to Proposition 4, cc; will remain unchanged if
the extra condition byp9 = 0 is added, and bb; will be unchanged if the extra condition aa; 9 = 1 is added.
Furthermore, aa, remains unchanged by modifying mo, and dd, »4 is flipped by the change of dd, o.

The condition dd, ¢ = 1 is corrected by the change of my. Furthermore, my is changed such that only aas 1)
is flipped and the other bits of aa, are unchanged, which does not make the differential characteristic invalid
because there is no constraint on aa, 1. The change of aa, ;| will flip dd, 5 if the extra condition ccy j; = 1 is
added.

The condition dd, 19 = 1 is corrected by the change of m,. However, the change of m;, disturbs the conditions
on ¢, which is compensated by modifying m; and mg. Firstly, we modify m; such that d, 19 is flipped and
all the other bits of d; are unchanged. Then we modify m, such that ¢ |9 is flipped and all the other bits of
¢y are unchanged. According to Proposition 1, we can get b, and a, are unchanged, meanwhile, d, is also
unchanged because of the conditions cj,19 = dj 19, b1,19 = 1 and az 9 = 0. Thirdly, we modify m¢ such



10.
11.

12.
13.

14.

15.

16.

that ¢, is unchanged. Therefore, by, a,, d, and ¢, are unchanged, and all the conditions in Table 10 are not
disturbed. Obviously, the change of m, will flip dd, 19, however, it is also likely to change dd, ;. Fortunately,
the conditions on dd, are corrected from low bit to high bit and dd,, = 1 is not corrected yet. So the success
probability of correcting dd, 19 = 1 is 1. The procedure of correction dd, 9 is illustrated in Table 6.

Table 6. Message Modification for Correcting dd, 19

step|m; |Shift| Modify m;| Chaining values | Chaining values |Conditions
before modifying m; |after modifying m;

linel| 2 |my| 14 [Modify m, d; d[19]
linel| 3 |my| 15 [Modify m, ¢ c1[19] cri9 =dy 19
linel| 4 |ms| 12 b by big =1
linel| 5 |my| 5 a a a9 =0
linel| 6 |ms| 8 d, dy
linel| 7 |mg| 7 |Modify mg (633 ) C2,19 = da 19
line2| 6 nmy 15 MOdlfy my ddz ddzvlg is ﬂlpped ddzylg =1

Modify my; to correct the conditions of cc, in Table 11.

Similar to the procedure of modification above, the conditions of bb,; (i # 1,4,8,16,23,24,25,26,29,31,32) in
Table 11 are corrected by changing cc, or aa,, corresponding to changing m;; or mg, respectively.

Modify m3 to correct the conditions of aas.

Similar to the procedure of modification above, the conditions of dds; (i # 2,5,7,23,25,26,30,31,32) in Table 11
are corrected by changing aas, corresponding to changing m3.

Modify m;s to correct the conditions of ccs.

Firstly, modify mg such that the conditions on a3 in Table 10 and bbs; (i = 23, ...,32) in Table 11 hold. Secondly,
the condition bb3 1, = 1 in Table 11 is corrected by flipping cc3,; combined with the condition aas; = 1 according
to Proposition 4. Thirdly, if the condition bb3, = 0 does not hold, we flip cc3 22, then bbs; is flipped if the extra
condition aas»; = 1 (which is satisfied in step 10) is added according to Proposition 4. Meanwhile, if bbs | # cc3 22,
then the change of bb;; will result in the change of bbs, by bit carry. Furthermore, the condition bbs | # cc32
can be corrected by modifying msg.

Firstly, the condition on aas 5 can be corrected by the change of cc3 23 and bbs3 3. Similarly, the condition on aas g
can be corrected by the change of cc3 57 and bb3 7. Secondly, the condition aas »s = 1 in Table 11 is corrected by
flipping cc3.11. Then bbs is unchanged if the extra condition aas 1; = 0 is added, and aas »s is changed if the extra
condition dds;; = 0 is added according to Proposition 4. The condition aa3;; = dds;; is already corrected in
step 11, thus, the extra conditions aaz ;; = 0 and ddz;; = 0 hold with a probability of 2-!. Therefore, the success
probability of correcting the condition on aay »s is about 27! + 27! x 27! = 3/4. Thirdly, if the condition aas7 = 0
does not hold, we flip cc3 24, then bbs is unchanged if the extra condition aas 4 = 0 is added, and aa4 ¢ is changed
if the extra condition dd3 24 = 0 is added according to Proposition 4. Furthermore, if aas ¢ # cc3 24, then the change
of aas ¢ will lead to the change of aas 7 by bit carry. The condition aas 24 = dds 4 is already corrected in step 11,
thus, the extra conditions aaz»+ = 0 and dds;»4 = 0 hold with a probability of 2-1. Meanwhile, the condition
aase # cc3pq holds with a probability of 2-!'. Therefore, the success probability of correcting the condition on
aayyis about 271 + 271 x 271 x 271 = 5/8.

The condition dds9 = 1 is corrected by flipping ccs13. Then bbs is unchanged if the extra condition aasz ;3 = 0
is added, and aas 7 is flipped if the extra condition dds 3 = 0 is added. The change of aas 7 will result in the
change of dd, ¢ if the extra condition cc3 7 = 1 is added. The condition cc3 27 = 1 has been corrected in step 12.
The condition dds 13 = aas 13 has been corrected in step 11, thus, the extra conditions aa3 13 = 0 and ddz 13 = 0
hold with a probability of 27!. Therefore, the success probability of correcting the condition on ddyg is about
2714272t = 3/4,

The conditions on ccq; (i = 7,9, 12) are corrected by the change of ddy; (i = 27,29, 32) respectively with proba-
bility 1. The condition cc45 = 1 is corrected by flipping dd, »4 if the extra condition ccs 4 # dda 4 is added, which



holds with a probability of 27!, Therefore, the success probability of correcting the condition on ccys is about
271427 w27l =3/4,

It is noted that the conditions which are corrected in the first 12 steps hold with a probability of about 27° by
experiment after message modification. Meanwhile, after message modification, in the first round of /ine2 operation
in Table 11, there are 29 conditions which are not corrected, 3 conditions which hold with a probability of 3/4 respec-
tively, and 1 condition which holds with a probability of 5/8. Therefore, all the conditions in steps 2-11 of Table 10
and in steps 4-15 of Table 11 hold with a probability of about 273,

4.4 Collision Search Algorithm

From the above technique details, we present an overview of the collision search algorithm to get the second block
M =mg || my || ... | mys.

1. Randomly choose m; (0 < i < 15,7 # 12), and modify them by the above modification techniques such that all
the conditions in steps 2-11 of Table 10 are satisfied and all the conditions in steps 4-15 of Table 11 hold with a
probability of 273,

2. If all the conditions in steps 4-15 of Table 11 are satisfied, then goto Step 3. Otherwise, go to Step 1.

3. Randomly choose m;; and compute the hash values of M and M’ under 40-step RIPEMD-128. If the two hash
values are equal, then output M and M’. Otherwise, goto Step 1.

There are 4 conditions in steps 24-27 of Table 10 and 17 conditions in steps 16-29 of Table 11. It is easy to make the 21
conditions hold by exhaustively search m;, when the other conditions of Table 10 and Table 11 hold by our experiment.
Therefore, the time complexity of the collision attack is about 233 + 22! 40-step RIPEMD-128 computations. We give
an example in Table 7.

Table 7. Collision for 40-step of RIPEMD-128.

N 664504b6 d6e949ba 2176407d 85426fcl 5ec28995 ¢3d318b 787db431 ae2cl3fb
cee9d90 c5078edb 84baeSbc 99f3fdae d7403dc6 917faldc 85155db5 £fd9311e6
M aT7e4a89f 6278156¢ 2a535118 90eba965 670841b2 ea6f8dcb 800766d9 dObfa5c6
ffe74d8e 6df2c5t7 a3ffdbfd 53el156d4 54f75d f0d3al3f 7eef12b9 ef317f76
M’ aTe4a89f 6278156¢ 2a535218 90eba965 670841b2 ea6f8dcb 800766d9 dObfa5c6
ffe74d8e 6df2c5t7 a3ffdbfd 53el156d4 54f75b f0d3al3f 7eef12b9 ef317f76
H a76df6ab 43aela6e 171d9fda da03925e

5 Conclusions

In this paper, we present a practical collision attack for 40-step RIPEMD-128 with a complexity of about 2% com-
putations. Firstly, we find two differential characteristics for linel operation and line2 operation respectively. Then,
by correcting most of the sufficient conditions that ensure the collision characteristics hold, we can improve the prob-
abilities of the characteristics. Furthermore, our attack can be extended to near-collision attack on more steps than
40.
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Table 8. Differential Characteristic for /inel Operation

Step|Message M|S hift|Am; The output for M’
1 o 11 a
2 m 14 dl
3 "y 15 | 2° [e)[-1,-2,3,-24,..,-32]
4 s 12 bil4,..,10,—11,12, 13, ..., —22,23]
5 my 5 all,-2,..,-11,12,..,21,-22, ..., -32]
6 ms 8 dz
7 Mg 7 C
8 my 9 b[2,...,10,-11,-12]
9 ms 11 (=2, .., —11,12]
10 My 13 ds
11 m 14 c3
12 myq 15 bg
13 npp 6 -2 ay
25 mpp 7 -2 Cl7[—9]
26 my 12 d7
27 Mg 15 C7
28 ms 9 b7
29 m, 11 | 2% |ag
40 m 15 b]()




Table 9. Differential Characteristic for line2 Operation

Step|Message M |Shift|4m;|The output for M’
1 ms 8 aa;
2 nig 9 dd]
3 my 9 ccy
4 my 11 bb,
5 mo 13 aa,
6 my 15 | 28 |ddy[-1,-2,-3,4,-24,...,-32]
7 my 15 ccy[17,18 = 19]
8 my 5 bb,[8, ..., 15,-16,-24]
9 nms3 7 aa3[—31]
10 mg 7 dds[8,-23,26,...,31,-32]
11 mys 8 cc3[7, 8, -25]
12 mg 11 bbs[2,5]
13 m; 14 aay[7,-9, -12]
14 myo 14 dd,[-5,7,-9]
15 ms 12 ccq[-5]
16 mip 6 -2 bb4
17 mg 9 aas[—21]
18 my 13 dds[-20,-21]
19 ms 15 ces[—20]
20 my 7 bb5
21 my 12 aag
22 miy3 8 ddﬁ[—29]
23 ms 9 ccg[—29]
24 nmio 11 bb()
25 miy 7 aaq
26 nmis 7 dd7
27 mg 12 cc7[-9]
28 mip 7 -2 bb7[—9]
29 my 6 aag
30 mo 15 ddyg
31 my 13 ccg
32 ) 11 | 2% |bbg
40 mg 14 bb]o




Table 10. A Set of Sufficient Conditions for the Differential Characteristic in Table 8

Step|Chaining|Conditions on the Chaining Variable

Variable

2 d dii=a;(i=1,2,3,31),d; # a;;(i = 24, ...,30,32)

3 ¢ Jas=0c,=1G=1,224,..32),cr:=dy i =17,..,10, 12,17, ..., 22),
1 # dyi(i =4,5,6,11,13,...,16,23)

41 by |b;=0(G=4,.,10,12,23),b,; = 1 = 11,13, .., 22),
bii=di(i=1,2,24,..,27,29,...32),by; # di(i = 3,28)

a  |a; =00=1,12,..,21),a5; = 1(i = 2,...,11,22,...,32)

dy |dri=b1i(i=1,3),do; #b;(i=2,24,..,32)

b, by; =00 =2,..,10),b,; = 1(i = 11,12)

5

6

7 ¢2 |cai=doii=1,..,10,13,...,21,24), c2; # do,(i = 11,12,22,23,25, ... 32)
3

9

as a3 =0,a3;, =10 =2,..,11)

11 3 |ezi=ds(i=2,..,10,12),c311 # d3 )

24 b bso = ce9

25 ay arg = 1

26 d7 d7,9 =0

27 C7 C79 = 1

Table 11. A Set of Sufficient Conditions for the Differential Characteristic in Table 9

Step|Chaining|Conditions on the Chaining Variable
Variable

4 bb, |bby; =0(i=1,3,4,24,..,32),bb;, = 1

5 aa, |aay; =0(i=3,17,18),aa,; = 1(i = 1,2,4,19,24,...,32)

6 dd, |dd,; =0(1=4.,8,...,16),dd,; =11 =1,2,3,17,18,19,24,...,32)

7 ccy  |ccri =0(i=16,17,18,24,26,...,32),ccr; = 1(i = 8, ..., 15,19)

8 bb, |bby; =0(i =8,...,15,19,23,26, ...,32),bb,; = 1(i = 16,24),bb,; = cc,,(i = 1,2,3,4,25)

9 aas |aas; = 0(i =7,23,27),aa;; = 1(i = 8,19, 25,26, 28, ...,32),aa3; = bb, (i = 17, 18)
10 ddy |dds; =00 =2,5,8,25,...,31),dds; = 1(i = 7,23,32),dds; = aa3 (i = 9, ..., 16, 24)
11 cey  |ees; =001 =17,8,12),cc3;, = 1(i = 2,5,9,25,26,30,31)

12 bby  |bbs; =0(i = 2,5,8,25,26,30,31),bbs; = 1(i = 7,12),bbs; = cc3,;(i = 23,27,28,29),bb3 3, # cc3z
13 aay |aas; = 0(i =5,7),aas; = 1(i = 8,9, 12,25)

14 dd4 dd4y7 = 0, dd4,[ = l(l = 5, 9),dd4,2 = dadagp

15 CCy CCqi = 0([ = 7,9), CCy5 = 1,(,‘()4_12 = dd4’12

16 bby  |bby; =0(i =5,21)

17 aas |aasyy = 0,aasp =1

18 dds |dds; = 1(i = 20,21)

19 CCs CC521 = 0, CC520 = 1

20 bbs  |bbsyy =0

21 adg adep9 = 0

22 dds |ddgro =1

23 CCq CCp9 = 1

24 bb@ bb6,29 =0

26 dd; |dd;9 =0

27 cc; |ccro =1

28 bb7 bb7,9 =1

29 aag |aasg =0




