
Practical collision attack on 40-step RIPEMD-128

Gaoli Wang

School of Computer Science and Technology, Donghua University,
Shanghai 201620, China
wanggaoli@dhu.edu.cn

Abstract. RIPEMD-128 is an ISO/IEC standard cryptographic hash function proposed in 1996 by Dobbertin,
Bosselaers and Preneel. There are two different and independent parallel lines called line1 operation and line2
operation, and each operation has 64 steps. The results of two line operations are combined at the end of every
application of the compression function. In this paper, we present collision differential characteristics for both line1
operation and line2 operation by choosing a proper message difference. By using message modification technique
seriously, we improve the probabilities of the differential characteristics so that we can give a collision attack on
40-step RIPEMD-128 with a complexity of 235 computations.
Keywords: Hash function, collisions, RIPEMD-128, differential characteristic, message modifications.

1 Introduction

The cryptographic hash function RIPEMD-128 [1] was proposed in 1996 by Hans Dobbertin, Antoon Bosselaers
and Bart Preneel. It was standardized by ISO [2] and was used in HMAC in RFC [3]. The design philosophy of
RIPEMD-128 adopts the experience gained by evaluating MD4 [9], MD5 [10], and RIPEMD [8] etc.. RIPEMD-128
is a double-branch hash function, where the compression function consists of two parallel operations denoted by line1
operation and line2 operation, respectively. The combination of Hi−1, line1(Hi−1,Mi−1) and line2(Hi−1,Mi−1) generates
the output Hi, where Hi−1 is the standard initial value or the output of the message block Mi−2.

As far as we know, the published cryptanalysis of RIPEMD-128 includes collision attack [5, 12, 6], (second) preim-
age attack [7, 13], distinguishing attack [11], and the attack in [4]. As for the practical collision attack on step reduced
RIPEMD-128, Wang et al. presented an example of collision on 32-step RIPEMD-128 in 2008 [12], Mendel et al. pre-
sented an example of collision on 38-step RIPEMD-128 in 2012 [5]. In the work [5], finding differential characteristic
and performing message modification in the first round are achieved by an automatic search tool.

It is widely believed that it is difficult to construct a differential characteristic including the first round of line1
operation because the absorption property of the boolean function X⊕Y ⊕Z does not hold. Thus, in the collision attack
on 32-step RIPEMD-128 [12], the difference of messages is chosen as ∆m14 , 0, ∆mi = 0(0 ≤ i ≤ 15, i , 14) such that
the differential characteristic of line1 operation almost keeps away from the boolean function X ⊕ Y ⊕ Z. Inspired by
Mendel’s work [5], we were motivated to find a differential characteristic of line1 operation, which takes advantage of
the property of the boolean function X ⊕ Y ⊕ Z.

In this paper, we use the bit tracing method to propose a collision attack on 40-step RIPEMD-128 with a complexity
of 235. The bit tracing method is proposed by Wang and formalized in [15, 16]. It is very powerful to break most of
the dedicated hash functions such as MD4 [15, 20], RIPEMD [15], HAVAL [14, 19], MD5 [16], SHA-0 [17] and
SHA-1 [18]. However, in the double-branch hash functions, two state words are updated using a single message word.
Therefore, the application of bit tracing method to RIPEMD-128 is far from being trivial. In this paper, constructing
differential characteristic, deducing the sufficient conditions and performing message modification are all fulfilled by
hand. The previous results and our results are summarized in Table 1.

The rest of the paper is organized as follows: In Section 2, we describe the RIPEMD-128 algorithm. In Section 3,
we introduce some useful properties of the nonlinear functions in RIPEMD-128 and some notations. Section 4 will
show the detailed descriptions of the attack on RIPEMD-128. Finally, we summarize the paper in Section 5.

Table 1. Summary of the Attacks on RIPEMD-128

Attack Steps Generic Complexity Reference
collision 32 264 228 [12]
collision 38 264 214 [5]
collision 40 264 235 Ours

near collision 44 247.8 232 [5]
free-start collision 48 264 240 [5]

preimage 33 2128 2124.5 [7]
preimage 35∗ 2128 2121 [7]
preimage 36∗ 2128 2126.5 [13]

distinguishing 48 276 270 [5]
distinguishing 45 242 227 [11]
distinguishing 47 242 239 [11]
distinguishing 48 − 253 [11]
distinguishing 52 − 2107 [11]

64 [4]
∗ The attack starts from an intermediate step.

2 Description of RIPEMD-128

The hash function RIPEMD-128 compresses any arbitrary length message into a message with length of 128 bit. Firstly
the algorithm pads any given message into a message with length of 512 bit multiple. For the description of the padding
method we refer to [1]. Then, for each 512-bit message block, RIPEMD-128 compresses it into a 128-bit hash value by
a compression function, which is composed of two parallel operations: line1 and line2. Each operation has four rounds,
and each round has 16 steps. The initial value is (a, b, c, d) = (0x67452301, 0xe f cdab89, 0x98badc f e, 0x10325476).
The nonlinear functions in each round are as follows:

F(X,Y,Z) = X ⊕ Y ⊕ Z

G(X,Y,Z) = (X ∧ Y) ∨ (¬X ∧ Z)
H(X,Y,Z) = (X ∨ ¬Y) ⊕ Z

I(X,Y,Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)

Here X, Y , Z are 32-bit words. The four boolean functions are all bitwise operations. ¬ represents the bitwise com-
plement of X. ∧, ⊕ and ∨ are bitwise AND, XOR and OR respectively. In each step of both line1 operation and line2
operation, one the four chaining variables a, b, c, d is updated.

φ0(a, b, c, d, x, s) = (a + F(b, c, d) + x)≪ s,

φ1(a, b, c, d, x, s) = (a + G(b, c, d) + x + 0x5a827999)≪ s,

φ2(a, b, c, d, x, s) = (a + H(b, c, d) + x + 0x6ed9eba1)≪ s,

φ3(a, b, c, d, x, s) = (a + I(b, c, d) + x + 0x8 f 1bbcdc)≪ s,

ψ0(a, b, c, d, x, s) = (a + I(b, c, d) + x + 0x50a28be6)≪ s,

ψ1(a, b, c, d, x, s) = (a + H(b, c, d) + x + 0x5c4dd124)≪ s,

ψ2(a, b, c, d, x, s) = (a + G(b, c, d) + x + 0x6d703e f 3)≪ s,

ψ3(a, b, c, d, x, s) = (a + F(b, c, d) + x)≪ s.

<<< s represents the circular shift s bit positions to the left. + denotes addition modulo 232.
line1 operation For a 512-bit block M, M = (m0,m1, . . . ,m15), line1 operation is as follows:

1. Let (a, b, c, d) = (a0, b0, c0, d0) be the input of line1 operation for M. If M is the first block to be hashed,
(a0, b0, c0, d0) is the initial value. Otherwise it is the output of compressing the previous block.

2. Perform the following 64 steps (four rounds):
For j = 0, 1, 2, 3,
For i = 0, 1, 2, 3,
a = φ j(a, b, c, d,mord1(j,16 j+4i+1), s1 j,16 j+4i+1),
d = φ j(d, a, b, c,mord1(j,16 j+4i+2), s1 j,16 j+4i+2),
c = φ j(c, d, a, b,mord1(j,16 j+4i+3), s1 j,16 j+4i+3),
b = φ j(b, c, d, a,mord1(j,16 j+4i+4), s1 j,16 j+4i+4).

line2 operation For a 512-bit block M, M = (m0,m1, . . . ,m15), line2 operation is as follows:

1. Let (aa, bb, cc, dd) = (a0, b0, c0, d0) be the input of line2 operation for M. If M is the first block to be hashed,
(a0, b0, c0, d0) is the initial value. Otherwise it is the output of compressing the previous block.

2. Perform the following 64 steps (four rounds):
For j = 0, 1, 2, 3,
For i = 0, 1, 2, 3,
aa = ψ j(aa, bb, cc, dd,mord2(j,16 j+4i+1), s2 j,16 j+4i+1),
dd = ψ j(dd, aa, bb, cc,mord2(j,16 j+4i+2), s2 j,16 j+4i+2),
cc = ψ j(cc, dd, aa, bb,mord2(j,16 j+4i+3), s2 j,16 j+4i+3),
bb = ψ j(bb, cc, dd, aa,mord2(j,16 j+4i+4), s2 j,16 j+4i+4).

The output of compressing the block M is obtained by combining the initial value with the outputs of line1 and
line2 operations: a = b0 +cc+ddd, b = c0 +dd+aaa, c = d0 +aa+bbb, d = a0 +bb+ccc. If M is the last message block,
a ‖ b ‖ c ‖ d is the hash value, where ‖ denotes the bit concatenation. Otherwise repeat the compression process for
the next 512-bit message. The ordering of message words and the details of the shift positions can be seen in Table 2.

Table 2. Order of the Message Words and Shift Positions in RIPEMD-128

Step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ord1(0, i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

line1 s10,i 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8
ord2(0, i) 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

line2 s20,i 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6
Step i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ord1(1, i) 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8
line1 s11,i 7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12

ord2(1, i) 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
line2 s21,i 9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11

Step i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
ord1(2, i) 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

line1 s12,i 11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5
ord2(2, i) 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

line2 s22,i 9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5
Step i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

ord1(3, i) 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2
line1 s13,i 11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12

ord2(3, i) 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14
line2 s23,i 15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8

3 Some basic conclusions and notations

In this section we will recall some properties of the four nonlinear functions in our attack.
Proposition 1. For the nonlinear function F(X,Y,Z) = X ⊕ Y ⊕ Z, there are the following properties:

1. F(0, y, z) = 0 and F(1, y, z) = 1⇐⇒ y = z.
F(0, y, z) = 1 and F(1, y, z) = 0⇐⇒ y , z.
F(x, 0, z) = 0 and F(x, 1, z) = 1⇐⇒ x = z.
F(x, 0, z) = 1 and F(x, 1, z) = 0⇐⇒ x , z.
F(x, y, 0) = 0 and F(x, y, 1) = 1⇐⇒ x = y.
F(x, y, 0) = 1 and F(x, y, 1) = 0⇐⇒ x , y.

2. F(x, y, z) = F(¬x,¬y, z) = F(x,¬y,¬z) = F(¬x, y,¬z).

Proposition 2. For the nonlinear function G(x, y, z) = (x ∧ y) ∨ (¬x ∧ z) , there are the following properties:

1. G(x, y, z) = G(¬x, y, z)⇐⇒ y = z.
G(0, y, z) = 0 and G(1, y, z) = 1⇐⇒ y = 1 and z = 0.
G(0, y, z) = 1 and G(1, y, z) = 0⇐⇒ y = 0 and z = 1.

2. G(x, y, z) = G(x,¬y, z)⇐⇒ x = 0.
G(x, 0, z) = 0 and G(x, 1, z) = 1⇐⇒ x = 1.

3. G(x, y, z) = G(x, y,¬z)⇐⇒ x = 1.
G(x, y, 0) = 0 and G(x, y, 1) = 1⇐⇒ x = 0.

Proposition 3. For the nonlinear function H(x, y, z) = (x ∨ ¬y) ⊕ z , there are the following properties:

1. H(x, y, z) = H(¬x, y, z)⇐⇒ y = 0.
H(0, y, z) = 0 and H(1, y, z) = 1⇐⇒ y = 1 and z = 0.
H(0, y, z) = 1 and H(1, y, z) = 0⇐⇒ y = 1 and z = 1.

2. H(x, y, z) = H(x,¬y, z)⇐⇒ x = 1.
H(x, 0, z) = 0 and H(x, 1, z) = 1⇐⇒ x = 0 and z = 1.
H(x, 0, z) = 1 and H(x, 1, z) = 0⇐⇒ x = 0 and z = 0.

3. H(x, y, 0) = 0 and H(x, y, 1) = 1⇐⇒ x = 0 and y = 1.
H(x, y, 0) = 1 and H(x, y, 1) = 0⇐⇒ x = 1 or y = 0.

Proposition 4. For the nonlinear function I(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z) , there are the following properties:

1. I(x, y, z) = I(¬x, y, z)⇐⇒ z = 0.
I(0, y, z) = 0 and I(1, y, z) = 1⇐⇒ z = 1.

2. I(x, y, z) = I(x,¬y, z)⇐⇒ z = 1.
I(x, 0, z) = 0 and I(x, 1, z) = 1⇐⇒ z = 0.

3. I(x, y, z) = I(x, y,¬z)⇐⇒ x = y.
I(x, y, 0) = 0 and I(x, y, 1) = 1⇐⇒ x = 1 and y = 0.
I(x, y, 0) = 1 and I(x, y, 1) = 0⇐⇒ x = 0 and y = 1.

Notations In order to describe our attack conveniently, we define some notations in the following.

1. M = (m0,m1, ...,m15) and M′ = (m′0,m
′
1, ...,m

′
15) represent two 512-bit messages.

2. ai, di, ci, bi respectively denote the outputs of the (4i−3)-th, (4i−2)-th, (4i−1)-th and 4i-th steps for compressing
M in line1 operation, where 1 ≤ i ≤ 16.

3. aai, ddi, cci, bbi respectively denote the outputs of the (4i − 3)-th, (4i − 2)-th, (4i − 1)-th and 4i-th steps for
compressing M in line2 operation, where 1 ≤ i ≤ 16.

4. a′i , d′i , c′i , b′i respectively denote the outputs of the (4i−3)-th, (4i−2)-th, (4i−1)-th and 4i-th steps for compressing
M′ in line1 operation.

5. aa′i , dd′i , cc′i , bb′i respectively denote the outputs of the (4i − 3)-th, (4i − 2)-th, (4i − 1)-th and 4i-th steps for
compressing M′ in line2 operation.

6. ∆mi = m′i − mi denotes the difference of two words mi and m′i . It is noted that ∆mi is a modular difference and not
a XOR difference.

7. xi, j represent the j − th bit of xi, where the least significant bit is the 1-st bit, and the most significant bit is 32-nd
bit.

8. xi[j], xi[− j] are the resulting values by only changing the j − th bit of the word xi. xi[j] is obtained by changing
the j-th bit of xi from 0 to 1. xi[− j] is obtained by changing the j-th bit of xi from 1 to 0.

9. xi[± j1,± j2, ...,± jl] is the value by change j1 − th, j2 − th, ..., jl − th bits of xi. The ”+” sign means that the bit is
changed from 0 to 1, and the ”-” sign means that the bit is changed from 1 to 0.

4 The Collision Attack against 40-step RIPEMD-128

The collision consists of a pair of two 512-bit blocks (N ‖ M,N ‖ M′). As stated below, in order to implement the
message modification, we have to add some conditions on b0, which leads to the hash value of the first block N satisfies
b0,i = 1(i = 1, 2, 3, 27),b0,i = 0(i = 7, ..., 10, 13, ..., 24). We search the second block in the following three parts:

1. Choose proper differences of message words and find two concrete differential characteristics for line1 and line2
operations respectively in which M and M′ produces a collision. The differential characteristics without round 1
must hold with high probability.

2. Derive two sets of sufficient conditions which ensure the two differential characteristics hold, respectively.
3. Modify the message to fulfill most of the chaining variable conditions.

4.1 Differential Characteristics for 40-step RIPEMD-128

Choosing proper differences of message words plays an important role in constructing differential characteristic-
s which contain as many steps as possible and hold with high probabilities after message modification. Let M =

(m0,m1, . . . ,m15), we select ∆M = M′ − M as follows: ∆mi = 0(0 ≤ i ≤ 15, i , 2, 12), ∆m2 = 28 and ∆m12 = −2.
It forms a local collision from step 25 to step 29 in line1 operation. Although in the same round, there are the same
circular shift values corresponding to the same message words between line1 operation and line2 operation, e.g. in step
25 (29) of line1 operation, the shift value is 7 (11) corresponding to the message word m12 (m2), and in step 28 (32)
of line2 operation, the shift value is also 7 (11) corresponding to the message word m12 (m2), it can not form a local
collision from step 28 to step 32 in line2 operation. The reason is that the property of the boolean function (X∨¬Y)⊕Z
make it need at least three message words to form a local collision. Therefore, the differential characteristic of line2
operation consists of one long local collision between step 6 to step 32. In round 3, the message differences first ap-
pear at step 41 of line1 operation and at step 43 of line2 operation. Thus, we can get a collision attack on 40-step
RIPEMD-128 by using this message differences.

The boolean function X ⊕ Y ⊕ Z make it more difficult to construct a differential characteristic in line1 operation.
Hence, the differential characteristic of line1 operation we presented in Table 8 is dense. The differential characteristic
for line2 operations is presented in Table 9, which makes the probability after round 1 hold as high as possible.

4.2 Deriving Conditions on Chaining Variables of line1 and line2 Operations

In this section, we derive two sets of sufficient conditions presented in Table 10 and Table 11, which ensure the
differential characteristics in Table 8 and Table 9 hold, respectively. We describe how to derive a set of sufficient
conditions that guarantee the difference in steps 3-7 of table 8 hold. Other conditions can be derived similarly.

1. In step 3, the message difference ∆m2 = 28 produces c1[−1,−2, 3,−24, ...,−32].
2. In step 4, (b0, a1, d1, c1[−1,−2, 3,−24, ...,−32])

=⇒ (a1, d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23]).
According to Proposition 1, the conditions d1,i = a1,i(i = 1, 2, 3, 31) ensure that the change of c1,i(i = 1, 2, 3, 31)
result in ∆b1 = −212−213 +214−210, meanwhile, the conditions d1,i , a1,i(i = 24, ..., 30, 32) ensure that the change
of c1,i(i = 24, ..., 30, 32) result in ∆b1 = 23+...+29+211. Combined with the conditions b1,i = 0(i = 4, ..., 10, 12, 23)
and b1,i = 1(i = 11, 13, ..., 22), we can get b′1 = b1[4, ..., 10,−11, 12,−13, ...,−22, 23].

3. In step 5, (a1, d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23])
=⇒ (d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23], a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32]).
From Proposition 1, the conditions b1,i = d1,i(i = 1, 2, 24, ..., 27, 29, ..., 32) and b1,i , d1,i(i = 3, 28) ensure
that the change of c1 result in ∆a2 = 1 − 2 − 22 − ... − 27 − 228 − ... − 231, meanwhile, the conditions c1,i =

d1,i(i = 7, ..., 10, 12, 17, ..., 22) and c1,i , d1,i(i = 4, 5, 6, 11, 13, ..., 16, 23) ensure that the change of b1 result in
∆a2 = −28 − 29 − 210 + 211 + ... + 220 − 221 − ... − 227. Combined with the conditions a2,i = 0(i = 1, 12, ..., 21) and
a2,i = 1(i = 2, ..., 11, 22, ..., 32), we can obtain a′2 = a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32].

4. In step 6,
(d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23], a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32])
=⇒ (c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23], a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32], d2).
From Proposition 1, it is easy to get a′2 = a2 without no condition.

5. In step 7,
(c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23], a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32], d2)
=⇒ (b1[4, ..., 10,−11, 12,−13, ...,−22, 23], a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32], d2, c2).
From Proposition 1, the conditions d2,i = b1,i(i = 1, 3) and d2,i , b1,i(i = 2, 24, ..., 32) result in F(d′2, a

′
2, b
′
1) −

F(d2, a2, b1) = 1 + 2 − 22 + 223 + ... + 231. Combined with c′1 = c1[−1,−2, 3,−24, ...,−32] we get c′2 = c2.

4.3 Message Modification

As demonstrated in Table 10 of line1 operation, there is no constraint on the message words mi(i = 0, 9, 11, ..., 15),
and there is freedom on the message words mi(i = 1, 5, 7, 8, 10). Thus, all the freedom of these message words can be
utilized to fulfill the conditions in Table 11, which are imposed by the differential characteristic of line2 operation.

We modify M so that all the conditions in the first round of Table 10 and most of the conditions in Table 11 hold.
The outline of the modification is described as follows. Taking into consideration the fact that in Table 11 of line2
operation, the conditions first appear in the chaining variable bb1, and the message words m5, m14, m7 are involved in
steps 1-3, we first modify mi(i = 1, ..., 7) such that all the conditions of d1, c1, b1, a2, d2, c2 and b2 in Table 10 are
satisfied. Then we correct the conditions of bb1 in Table 11. The message word involved in bb1 is m0, which is also
involved in the first step of line1 operation. Therefore, if the conditions of bb1 are corrected by m0, it will probably
lead to the correction of d1, c1, b1, a2, d2, c2, b2 being invalid. As stated below, the condition bb1,4 = 0 is corrected by
m0, and all the other conditions of bb1 are corrected by the change of dd1. For example, if the condition bb1,24 = 0 does
not hold, we flip the bit dd1,13 by changing m14. However, we need to add the condition b0,13 = 0 such that the change
of dd1,13 does not disturb cc1. Meanwhile, we also need to add the condition aa1,13 = 0 such that the change of dd1,13
will invert bb1,24. Similarly, we need to add some conditions on the chaining variables of line2 operation, especially on
the chaining variables aa1, dd1 and cc1. Hence, we correct the conditions of line2 operation from aa1, and the process
of modification is in the following. It is noted that in most cases, the conditions are corrected from low bit to high bit.
Sometimes, the correction order is adjusted.

1. Modify mi(i = 1, 2, 3, 4) such that the conditions of d1, c1, b1 and a2 in Table 10 hold.

2. Firstly, modify m5 such that the conditions of d2 in Table 10 hold. Secondly, if there is no overlap between the
conditions on d2 in Table 10 and aa1 in Table 11, i.e. the conditions on aa1 lies in aa1,i(i , 1, 2, 3, 24, ..., 32), then it
is easy to correct them. For example, if the condition aa1,13 = 0 does not hold, we flip the bit d2,13 by changing m5,
then aa1,13 is inverted, i.e., aa1,13 = 0 is satisfied. Thirdly, if the conditions on aa1 lies in aa1,i(i = 1, 2, 3, 24, ..., 32),
we present an example below to illustrate how to correct them. For example, if the condition aa1,1 = 0 does not
hold, we correct it by changing m5, which will also flip the bit d2,1. In order to fulfill the condition d2,1 = b1,1,
b1,1 is flipped by changing m3. Similarly, m0, m1 and m4 are modified in order to ensure the conditions on d1,
c1, b1 and a2, especially, b1,1 = d1,1 and d1,1 = a1,1 hold. The modification of m0, m1, m3 and m4 ensures that
the differential characteristic of line1 operation is not disturbed by the change of m5. The detail of correcting the
condition aa1,1 = 0 is described in the following steps and illustrated in Table 3.
(a) Modify m0 such that a1,1 in Table 10 is flipped and all the other bits of a1 are unchanged. Without loss of

generality, we suppose aa1,1 = 0, then a1 becomes a1[1] after flipping a1,1.
(b) Modify m1 such that d1,1 in Table 10 is flipped and all the other bits of d1 are unchanged, which ensures the

condition d1,1 = a1,1 in Table 10 hold.
(c) The change of a1,1 and d1,1 does not disturb c1 according to Proposition 1.
(d) Modify m3 such that b1,1 in Table 10 is flipped and all the other bits of b1 are unchanged, which ensures the

condition b1,1 = d1,1 in Table 10 hold.
(e) Modify m4 such that a2 in Table 10 is unchanged.
(f) Modify m5 such that d2,1 in Table 10 is flipped and all the other bits of d2 are unchanged, which ensures the

condition d2,1 = b1,1 hold. Meanwhile, aa1,1 is flipped by the change of m5 and the condition aa1,1 = 0 is
satisfied.

It is noted that combined with the conditions c1,1 = 1 and a2,1 = 0, the flips of d1,1 and b1,1 have no impact on d2.
Hence, the modification of m5 does not need to offset the flips of d1,1, b1,1, and only flips d2,1. Consequently, the
change of m5 is only likely to flip aa1,1 and aa1,i(i = 2, ..., 8) by carry. Since the conditions of aa1 are corrected
from low bit to high bit, i.e., the order of modification is 9,...,32,1,...,8, the correction of aa1,1 does not disturb the
conditions which have been corrected. Therefore, the condition aa1,1 = 0 is corrected successfully with probability
1.

Table 3. Message Modification for Correcting aa1,1

step mi Shift Modify mi Chaining values Chaining values
before modifying mi after modifying mi

line1 1 m0 11 Modify m0 a1 a1[1]
line1 2 m1 14 Modify m1 d1 d1[1]
line1 3 m2 15 c1 c1

line1 4 m3 12 Modify m3 b1 b1[1]
line1 5 m4 5 Modify m4 a2 a2

line1 6 m5 8 Modify m5 d2 d2[1]
line2 1 m5 8 Modify m5 aa1 aa1,1 is flipped

3. Modify m14 and m6 such that the conditions on dd1 in Table 11 and c2 in Table 10 hold, respectively.
4. Firstly, modify m7 such that the conditions on b2 in Table 10 hold. Secondly, similar to the modification of aa1,i(i ,

1, 2, 3, 24, ..., 32), the conditions on cc1,i(i , 2, ..., 12) can be corrected by the change of m7. Thirdly, the other
conditions on cc1 are corrected by the change of dd1. For example, if the condition cc1,10 = 0 does not hold, we
flip dd1,1 by changing m14. Then cc1,10 is flipped if the extra condition b0,1 = 1 is added according to Proposition
4. The detail of correcting the condition cc1,10 = 0 is illustrated in Table 4.

5. Firstly, the condition bb1,4 = 0 is corrected by the change of m0. If bb1,4 = 0 does not hold, we flip bb1,4 by
modifying m0, which will change a1 in Table 10. On one hand, there is no constraint on a1, so the change of a1
does not disturb the differential characteristic. On the other hand, d1, c1, b1 and a2 are unchanged by modifying

Table 4. Message Modification for Correcting cc1,10

step mi Shift Modify mi flipped bit additional condition
2 m14 9 Modify m14 dd1,1

3 m7 9 cc1,10 b0,1 = 1

m1, m2, m3 and m4 respectively. Therefore, the change of m0 does not disturb the differential characteristic of line1
operation. The procedure of correcting bb1,4 = 0 is illustrated in Table 5. Secondly, all the other conditions on
bb1 are corrected by the change of dd1. For example, if the condition bb1,24 = 0 does not hold, we flip dd1,13 by
changing m14. Then cc1 is unchanged if the extra condition b0,13 = 0 is added, and bb1,24 is flipped if the extra
condition aa1,13 = 0 is added according to Proposition 4.

Table 5. Message Modification for Correcting bb1,4

step mi Shift Modify mi Chaining values Chaining values
before modifying mi after modifying mi

line2 4 m0 11 Modify m0 bb1 bb1,4 is flipped
line1 1 m0 11 Modify m0 a1 a1 is changed
line1 2 m1 14 Modify m1 d1 d1

line1 3 m2 15 Modify m2 c1 c1

line1 4 m3 12 Modify m3 b1 b1

line1 5 m4 5 Modify m4 a2 a2

6. Modify m9 such that the conditions on aa2 in Table 11 hold.
7. The conditions on dd2 in Table 11 are corrected through the following four approaches. All the conditions on dd2

are fulfilled after message modification except dd2,29 = 1. We present examples to illustrate the approaches of
modification.
(a) The condition dd2,16 = 0 is corrected by the change of m7. In order not to disturb the condition b2,2 = 0 which

has been corrected, we modify m7 such that only b2,1 is flipped and the other bits of b2 are unchanged. The
modification of m7 flips cc1,1 definitely, and is likely to flip cc1,i(i = 2, ..., 9) by carry. Hence, according to
Proposition 4, bb1 in all probability is unchanged if the extra conditions aa1,1 = 0 and aa1,2 = 0 are added, and
dd2,16 is flipped because the condition aa2,1 , bb1,1 is hold yet. Furthermore, aa2 is unchanged by modifying
m9. The success probability of correcting dd2,16 = 0, i.e., the probability that dd2,16 = 0 is satisfied and all the
other conditions which have been corrected are not disturbed, is very close to 1.

(b) The condition dd2,24 = 1 is corrected by the change of m14. Firstly, m14 is changed such that dd1,9 is flipped
and all the other bits of dd1 are unchanged. Then, according to Proposition 4, cc1 will remain unchanged if
the extra condition b0,9 = 0 is added, and bb1 will be unchanged if the extra condition aa1,9 = 1 is added.
Furthermore, aa2 remains unchanged by modifying m9, and dd2,24 is flipped by the change of dd1,9.

(c) The condition dd2,26 = 1 is corrected by the change of m9. Furthermore, m9 is changed such that only aa2,11
is flipped and the other bits of aa2 are unchanged, which does not make the differential characteristic invalid
because there is no constraint on aa2,11. The change of aa2,11 will flip dd2,26 if the extra condition cc1,11 = 1 is
added.

(d) The condition dd2,19 = 1 is corrected by the change of m2. However, the change of m2 disturbs the conditions
on c1, which is compensated by modifying m1 and m6. Firstly, we modify m1 such that d1,19 is flipped and
all the other bits of d1 are unchanged. Then we modify m2 such that c1,19 is flipped and all the other bits of
c1 are unchanged. According to Proposition 1, we can get b1 and a2 are unchanged, meanwhile, d2 is also
unchanged because of the conditions c1,19 = d1,19, b1,19 = 1 and a2,19 = 0. Thirdly, we modify m6 such

that c2 is unchanged. Therefore, b1, a2, d2 and c2 are unchanged, and all the conditions in Table 10 are not
disturbed. Obviously, the change of m2 will flip dd2,19, however, it is also likely to change dd2,2. Fortunately,
the conditions on dd2 are corrected from low bit to high bit and dd2,2 = 1 is not corrected yet. So the success
probability of correcting dd2,19 = 1 is 1. The procedure of correction dd2,19 is illustrated in Table 6.

Table 6. Message Modification for Correcting dd2,19

step mi Shift Modify mi Chaining values Chaining values Conditions
before modifying mi after modifying mi

line1 2 m1 14 Modify m1 d1 d1[19]
line1 3 m2 15 Modify m2 c1 c1[19] c1,19 = d1,19

line1 4 m3 12 b1 b1 b1,19 = 1
line1 5 m4 5 a2 a2 a2,19 = 0
line1 6 m5 8 d2 d2

line1 7 m6 7 Modify m6 c2 c2 c2,19 = d2,19

line2 6 m2 15 Modify m2 dd2 dd2,19 is flipped dd2,19 = 1

8. Modify m11 to correct the conditions of cc2 in Table 11.
9. Similar to the procedure of modification above, the conditions of bb2,i (i , 1, 4, 8, 16, 23, 24, 25, 26, 29, 31, 32) in

Table 11 are corrected by changing cc2 or aa2, corresponding to changing m11 or m9, respectively.
10. Modify m13 to correct the conditions of aa3.
11. Similar to the procedure of modification above, the conditions of dd3,i (i , 2, 5, 7, 23, 25, 26, 30, 31, 32) in Table 11

are corrected by changing aa3, corresponding to changing m13.
12. Modify m15 to correct the conditions of cc3.
13. Firstly, modify m8 such that the conditions on a3 in Table 10 and bb3,i (i = 23, ..., 32) in Table 11 hold. Secondly,

the condition bb3,12 = 1 in Table 11 is corrected by flipping cc3,1 combined with the condition aa3,1 = 1 according
to Proposition 4. Thirdly, if the condition bb3,2 = 0 does not hold, we flip cc3,22, then bb3,1 is flipped if the extra
condition aa3,22 = 1 (which is satisfied in step 10) is added according to Proposition 4. Meanwhile, if bb3,1 , cc3,22,
then the change of bb3,1 will result in the change of bb3,2 by bit carry. Furthermore, the condition bb3,1 , cc3,22
can be corrected by modifying m8.

14. Firstly, the condition on aa4,5 can be corrected by the change of cc3,23 and bb3,23. Similarly, the condition on aa4,9
can be corrected by the change of cc3,27 and bb3,27. Secondly, the condition aa4,25 = 1 in Table 11 is corrected by
flipping cc3,11. Then bb3 is unchanged if the extra condition aa3,11 = 0 is added, and aa4,25 is changed if the extra
condition dd3,11 = 0 is added according to Proposition 4. The condition aa3,11 = dd3,11 is already corrected in
step 11, thus, the extra conditions aa3,11 = 0 and dd3,11 = 0 hold with a probability of 2−1. Therefore, the success
probability of correcting the condition on aa4,25 is about 2−1 + 2−1 × 2−1 = 3/4. Thirdly, if the condition aa4,7 = 0
does not hold, we flip cc3,24, then bb3 is unchanged if the extra condition aa3,24 = 0 is added, and aa4,6 is changed
if the extra condition dd3,24 = 0 is added according to Proposition 4. Furthermore, if aa4,6 , cc3,24, then the change
of aa4,6 will lead to the change of aa4,7 by bit carry. The condition aa3,24 = dd3,24 is already corrected in step 11,
thus, the extra conditions aa3,24 = 0 and dd3,24 = 0 hold with a probability of 2−1. Meanwhile, the condition
aa4,6 , cc3,24 holds with a probability of 2−1. Therefore, the success probability of correcting the condition on
aa4,7 is about 2−1 + 2−1 × 2−1 × 2−1 = 5/8.

15. The condition dd4,9 = 1 is corrected by flipping cc3,13. Then bb3 is unchanged if the extra condition aa3,13 = 0
is added, and aa4,27 is flipped if the extra condition dd3,13 = 0 is added. The change of aa4,27 will result in the
change of dd4,9 if the extra condition cc3,27 = 1 is added. The condition cc3,27 = 1 has been corrected in step 12.
The condition dd3,13 = aa3,13 has been corrected in step 11, thus, the extra conditions aa3,13 = 0 and dd3,13 = 0
hold with a probability of 2−1. Therefore, the success probability of correcting the condition on dd4,9 is about
2−1 + 2−1 × 2−1 = 3/4.

16. The conditions on cc4,i (i = 7, 9, 12) are corrected by the change of dd4,i (i = 27, 29, 32) respectively with proba-
bility 1. The condition cc4,5 = 1 is corrected by flipping dd4,24 if the extra condition cc4,4 , dd4,24 is added, which

holds with a probability of 2−1. Therefore, the success probability of correcting the condition on cc4,5 is about
2−1 + 2−1 × 2−1 = 3/4.

It is noted that the conditions which are corrected in the first 12 steps hold with a probability of about 2−3 by
experiment after message modification. Meanwhile, after message modification, in the first round of line2 operation
in Table 11, there are 29 conditions which are not corrected, 3 conditions which hold with a probability of 3/4 respec-
tively, and 1 condition which holds with a probability of 5/8. Therefore, all the conditions in steps 2-11 of Table 10
and in steps 4-15 of Table 11 hold with a probability of about 2−35.

4.4 Collision Search Algorithm

From the above technique details, we present an overview of the collision search algorithm to get the second block
M = m0 ‖ m1 ‖ ... ‖ m15.

1. Randomly choose mi (0 ≤ i ≤ 15, i , 12), and modify them by the above modification techniques such that all
the conditions in steps 2-11 of Table 10 are satisfied and all the conditions in steps 4-15 of Table 11 hold with a
probability of 2−35.

2. If all the conditions in steps 4-15 of Table 11 are satisfied, then goto Step 3. Otherwise, go to Step 1.
3. Randomly choose m12 and compute the hash values of M and M′ under 40-step RIPEMD-128. If the two hash

values are equal, then output M and M′. Otherwise, goto Step 1.

There are 4 conditions in steps 24-27 of Table 10 and 17 conditions in steps 16-29 of Table 11. It is easy to make the 21
conditions hold by exhaustively search m12 when the other conditions of Table 10 and Table 11 hold by our experiment.
Therefore, the time complexity of the collision attack is about 235 + 221 40-step RIPEMD-128 computations. We give
an example in Table 7.

Table 7. Collision for 40-step of RIPEMD-128.

N 664504b6 d6e949ba 2176407d 85426fc1 5ec28995 c3d318b 787db431 ae2c13fb
cee9d90 c5078e4b 84bae5bc 99f3f4ae d7403dc6 917fa14c 85155db5 fd9311e6

M a7e4a89f 6278156c 2a535118 90eba965 670841b2 ea6f8dcb 800766d9 d0bfa5c6
ffe74d8e 6df2c5f7 a3ffdbfd 53e156d4 54f75d f0d3a13f 7eef12b9 ef317f76

M′ a7e4a89f 6278156c 2a535218 90eba965 670841b2 ea6f8dcb 800766d9 d0bfa5c6
ffe74d8e 6df2c5f7 a3ffdbfd 53e156d4 54f75b f0d3a13f 7eef12b9 ef317f76

H a76df6ab 43ae1a6e 171d9fda da03925e

5 Conclusions

In this paper, we present a practical collision attack for 40-step RIPEMD-128 with a complexity of about 235 com-
putations. Firstly, we find two differential characteristics for line1 operation and line2 operation respectively. Then,
by correcting most of the sufficient conditions that ensure the collision characteristics hold, we can improve the prob-
abilities of the characteristics. Furthermore, our attack can be extended to near-collision attack on more steps than
40.

References

1. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Version of RIPEMD. In: Gollmann, D. (ed.) FSE.
LNCS 1039, pp. 71-82. Springer (1996)

2. International Organization for Standardization: ISO/IEC 10118-3:2004, Informa- tion technology-Security techniques-Hash-
functions-Part 3: Dedicated hash functions (2004)

3. Kap, J.: Test Cases for HMAC-RIPEMD160 and HMAC-RIPEMD128. Internet Engineering Task Force (IETF), RFC 2286
(1998), http://www.ietf.org/rfc/rfc2286.txt

4. Landelle, F., Peyrin, T.: Cryptanalysis of Full RIPEMD-128. Accepted by EUROCRYPT’13.
5. Mendel, F., Nad, T., Schlaffer, M.: Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128. In: Canteaut,

A. (ed.) FSE. LNCS 7549, pp. 226-243. Springer (2012)
6. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: On the Collision Resistance of RIPEMD-160. In: Katsikas, S., Lopez,

J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC. LNCS 4176, pp. 101-116. Springer (2006)
7. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage Attacks on Step-Reduced RIPEMD-128 and RIPEMD-160. In: Lai, X.,

Yung, M., Lin, D. (eds.) Inscrypt. LNCS 6584, pp. 169-186. Springer (2011)
8. RIPE,Integrity Primitives for Secure Information Systems, Final Report of RACE Integrity Primitives Evalution(RIPE-RACE

1040), LNCS 1007, 1995.
9. Rivest, R.: The MD4 message digest algorithm, Advanced in Cryptology. In: Menezes, A., Vanstone, S. (eds.) CRYPTO. LNCS

537, pp. 303-312. Springer (1990)
10. Rivest, R.: The MD5 message-digest algorithm, Request for Comments(RFC 1320), Internet Activities Board, Internet Privacy

Task Force, 1992.
11. Sasaki, Y., Wang, L.: Distinguishers beyond Three Rounds of the RIPEMD-128/-160 Compression Functions. In: Bao, F.,

Samarati, P., Zhou, J. (eds.): ACNS. LNCS 7341, pp. 275-292. Springer (2012)
12. Wang G., Wang M.: Cryptanalysis of Reduced RIPEMD-128. Ruanjianxuebao/Journal of Software in Chinese, 2008,19(9):

2442-2448.
13. Wang, L., Sasaki, Y., Komatsubara, W., Ohta, K., Sakiyama, K.: (Second) Preim- age Attacks on Step-Reduced

RIPEMD/RIPEMD-128 with a New Local-Collision Approach. In: Kiayias, A. (ed.) CT-RSA. LNCS 6558, pp. 197-212.
Springer (2011)

14. Wang, X., Feng, D., Yu, X.: An attack on HAVAL function HAVAL-128. Science in China Ser. F Information Sciences 2005
Vol.48, No.5,1-12.

15. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis for Hash Functions MD4 and RIPEMD. In: Cramer, R. (ed.)
EUROCRYPT. LNCS 3494, pp. 1-18. Springer (2005)

16. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT. LNCS 3494, pp. 19-35.
Springer (2005)

17. Wang, X., Yu, B., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup, V. (ed.) CRYPTO. LNCS 3621, pp. 1-16.
Springer (2005)

18. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO. LNCS 3621, pp. 17-36.
Springer (2005)

19. Yu, H., Wang, X., Yun, A., Park, S.: Cryptanalysis of the full HAVAL with 4 and 5 passes. In: Robshaw, M. (ed.) FSE. LNCS
4047, pp. 89-110. Springer (2006)

20. Yu, H., Wang, G., Zhang, G., Wang, X.: The Second-Preimage Attack on MD4. In: Desmedt, Y.G. et al. (eds.) CANS. LNCS
3810, pp. 1-12. Springer (2005)

Table 8. Differential Characteristic for line1 Operation

Step Message M S hi f t ∆mi The output for M′

1 m0 11 a1

2 m1 14 d1

3 m2 15 28 c1[−1,−2, 3,−24, ...,−32]
4 m3 12 b1[4, ..., 10,−11, 12,−13, ...,−22, 23]
5 m4 5 a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32]
6 m5 8 d2

7 m6 7 c2

8 m7 9 b2[2, ..., 10,−11,−12]
9 m8 11 a3[−2, ...,−11, 12]

10 m9 13 d3

11 m10 14 c3

12 m11 15 b3

13 m12 6 -2 a4

.

25 m12 7 -2 a7[−9]
26 m0 12 d7

27 m9 15 c7

28 m5 9 b7

29 m2 11 28 a8

.

40 m1 15 b10

Table 9. Differential Characteristic for line2 Operation

Step Message M Shift ∆mi The output for M′

1 m5 8 aa1

2 m14 9 dd1

3 m7 9 cc1

4 m0 11 bb1

5 m9 13 aa2

6 m2 15 28 dd2[−1,−2,−3, 4,−24, ...,−32]
7 m11 15 cc2[17, 18 − 19]
8 m4 5 bb2[8, ..., 15,−16,−24]
9 m13 7 aa3[−31]

10 m6 7 dd3[8,−23, 26, ..., 31,−32]
11 m15 8 cc3[7, 8,−25]
12 m8 11 bb3[2, 5]
13 m1 14 aa4[7,−9,−12]
14 m10 14 dd4[−5, 7,−9]
15 m3 12 cc4[−5]
16 m12 6 −2 bb4

17 m6 9 aa5[−21]
18 m11 13 dd5[−20,−21]
19 m3 15 cc5[−20]
20 m7 7 bb5

21 m0 12 aa6

22 m13 8 dd6[−29]
23 m5 9 cc6[−29]
24 m10 11 bb6

25 m14 7 aa7

26 m15 7 dd7

27 m8 12 cc7[−9]
28 m12 7 −2 bb7[−9]
29 m4 6 aa8

30 m9 15 dd8

31 m1 13 cc8

32 m2 11 28 bb8

.

40 m9 14 bb10

Table 10. A Set of Sufficient Conditions for the Differential Characteristic in Table 8

Step Chaining Conditions on the Chaining Variable
Variable

2 d1 d1,i = a1,i(i = 1, 2, 3, 31), d1,i , a1,i(i = 24, ..., 30, 32)
3 c1 c1,3 = 0, c1,i = 1(i = 1, 2, 24, ..., 32), c1,i = d1,i(i = 7, ..., 10, 12, 17, ..., 22),

c1,i , d1,i(i = 4, 5, 6, 11, 13, ..., 16, 23)
4 b1 b1,i = 0(i = 4, ..., 10, 12, 23), b1,i = 1(i = 11, 13, ..., 22),

b1,i = d1,i(i = 1, 2, 24, ..., 27, 29, ..., 32), b1,i , d1,i(i = 3, 28)
5 a2 a2,i = 0(i = 1, 12, ..., 21), a2,i = 1(i = 2, ..., 11, 22, ..., 32)
6 d2 d2,i = b1,i(i = 1, 3), d2,i , b1,i(i = 2, 24, ..., 32)
7 c2 c2,i = d2,i(i = 1, ..., 10, 13, ..., 21, 24), c2,i , d2,i(i = 11, 12, 22, 23, 25, ..., 32)
8 b2 b2,i = 0(i = 2, ..., 10), b2,i = 1(i = 11, 12)
9 a3 a3,12 = 0, a3,i = 1(i = 2, ..., 11)

11 c3 c3,i = d3,i(i = 2, ..., 10, 12), c3,11 , d3,11

24 b6 b6,9 = c6,9

25 a7 a7,9 = 1
26 d7 d7,9 = 0
27 c7 c7,9 = 1

Table 11. A Set of Sufficient Conditions for the Differential Characteristic in Table 9

Step Chaining Conditions on the Chaining Variable
Variable

4 bb1 bb1,i = 0(i = 1, 3, 4, 24, ..., 32), bb1,2 = 1
5 aa2 aa2,i = 0(i = 3, 17, 18), aa2,i = 1(i = 1, 2, 4, 19, 24, ..., 32)
6 dd2 dd2,i = 0(i = 4, 8, ..., 16), dd2,i = 1(i = 1, 2, 3, 17, 18, 19, 24, ..., 32)
7 cc2 cc2,i = 0(i = 16, 17, 18, 24, 26, ..., 32), cc2,i = 1(i = 8, ..., 15, 19)
8 bb2 bb2,i = 0(i = 8, ..., 15, 19, 23, 26, ..., 32), bb2,i = 1(i = 16, 24), bb2,i = cc2,i(i = 1, 2, 3, 4, 25)
9 aa3 aa3,i = 0(i = 7, 23, 27), aa3,i = 1(i = 8, 19, 25, 26, 28, ..., 32), aa3,i = bb2,i(i = 17, 18)

10 dd3 dd3,i = 0(i = 2, 5, 8, 25, ..., 31), dd3,i = 1(i = 7, 23, 32), dd3,i = aa3,i(i = 9, ..., 16, 24)
11 cc3 cc3,i = 0(i = 7, 8, 12), cc3,i = 1(i = 2, 5, 9, 25, 26, 30, 31)
12 bb3 bb3,i = 0(i = 2, 5, 8, 25, 26, 30, 31), bb3,i = 1(i = 7, 12), bb3,i = cc3,i(i = 23, 27, 28, 29), bb3,32 , cc3,32

13 aa4 aa4,i = 0(i = 5, 7), aa4,i = 1(i = 8, 9, 12, 25)
14 dd4 dd4,7 = 0, dd4,i = 1(i = 5, 9), dd4,2 = aa4,2

15 cc4 cc4,i = 0(i = 7, 9), cc4,5 = 1, cc4,12 = dd4,12

16 bb4 bb4,i = 0(i = 5, 21)
17 aa5 aa5,20 = 0, aa5,21 = 1
18 dd5 dd5,i = 1(i = 20, 21)
19 cc5 cc5,21 = 0, cc5,20 = 1
20 bb5 bb5,20 = 0
21 aa6 aa6,29 = 0
22 dd6 dd6,29 = 1
23 cc6 cc6,29 = 1
24 bb6 bb6,29 = 0
26 dd7 dd7,9 = 0
27 cc7 cc7,9 = 1
28 bb7 bb7,9 = 1
29 aa8 aa8,9 = 0

