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Abstract. This paper proposes an approach for detecting compromised pro-
grams by analysing suitable features from an embedded system. Features used 
in this paper are the performance variance and actual program counter values of 
the embedded processor extracted during program execution. “Cycles per In-
struction” is used as pre-processing block before the features are classified us-
ing a Self-Organizing Map. Experimental results demonstrate the validity of the 
proposed approach on detecting some common changes such as deletion, inser-
tion and substitution of programs. Overall, correct detection rate for our system 
is above 90.9% for tested programs. 

Keywords: ICmetrics, Self-Organising Map (SOM), embedded system securi-
ty. 

1 Introduction 

As embedded systems involve various aspects of our everyday lives, they are often 
needed to process sensitive information or perform critical functions, which make 
security an important concern in embedded computer architecture design [1]. The 
rapid growth of embedded systems has transformed the way we create, destroy, share, 
process and manage information. However, this has also paved the way for unauthor-
ised access, fraud and other related crimes [2]. Security has been extensively explored 
in the context of general purpose computing and communications systems, such as 
cryptographic algorithms and security protocols [3]. Such security measures typically 
provide a basis for securing embedded system rather than enabling a system’s overall 
security. On the other hand, as embedded systems are often specific to a certain func-
tion, the resources and cost are very limited by the strict performance and power con-



straints. Consequently, it is a challenge to increase overall dependability, integrity and 
robust security of embedded systems [4]. 

Identification and security of these embedded systems are emerging as an im-
portant concern in embedded computer architecture design. Mechanisms to protect the 
embedded system can be either included in the hardware architecture or at software 
level. Physical Unclonable Function (PUF) [5] or hardware intrinsic security [6], have 
been proposed as physically more secure alternative to storing secrets in a digital 
memory [7]. The core idea behind these approaches is to use the manufacturing pro-
cess variation to identify the integrated circuits, which offers a higher level of security 
against physical level attacks. However, they are limited by environmental variance 
such as changes in temperature, user interactions and software. There is much existing 
work focusing on detecting software failure, tampering and malicious codes in em-
bedded systems [1, 4, 8]. These approaches require storing sensitive data in the sys-
tem as “valid” samples or template. For example, a basic-block control flow graph 
(CFG) is usually stored and used to examine the running program.  

Currently, researchers are working on alternative solutions to the above problems 
in the fields of digital forensics and machine learning [9]. As electronic devices and 
components cannot have exactly the same frequency response and latency due to 
tolerances in production and the different designs employed by various manufactur-
ers, it is possible to find unique features or identifiers from the electronic devices [9]. 
In order to recognise the features, various machine learning algorithms can also be 
applied. Based on the above ideas, a new concept termed ICmetrics (Integrated Cir-
cuit metrics) was introduced [10]. Embedded systems typically consist of hardware 
and application specific software, and are applied in a specific environment. These 
could result in the embedded system performing uniquely to the others. Consequently, 
the structure, characteristic and behaviour of an embedded system can also be used to 
identify the devices. Fig.1 exhibits a typical embedded system and ICmetrics system. 
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Fig. 1. A typical embedded system and ICmetrics system.  

In Fig. 1, the embedded system can be affected by many factors, for example, 
compromised software, unauthorised access, environment changing, internal structure 
failure and malicious code. All these effects could change the behaviour or character-
istic of the embedded system significantly. Since the ICmetrics system is continually 



monitoring the information metric, and behaviours derived from the embedded system 
change over time as well, a different system identifier could be generated. As a result 
of this, a different encryption key will be generated by the key cryptography mecha-
nism [11], using a two phase approach to deal with training and recall. As the ICmet-
rics system only relies on the properties and features of the system, the system identi-
fier (i.e. basic number or encryption key) can be regenerated on demand and there is 
no requirement to store it locally. The major advantage of the ICmetrics system is no 
user data or template is required to be stored, which is essential for applications that 
have no direct interaction with human operators. Thus, the ICmetrics can improve 
both security and dependability based on exploitation of the system’s unique behav-
iour. 

The information metrics used in the ICmetrics system can be collected from any 
aspect of the embedded system, for example, memory usage, program monitoring, 
processor caches, and register status checking. In this paper, we limit the focus on 
monitoring the system processor’s status while running various programs. A method 
for detecting compromised programs is proposed. The method extracts suitable fea-
tures from the embedded system (i.e. the performance variance and program counter 
(PC) register of the embedded processor), enabling it to identify the running programs 
using Self-Organising Map (SOM) classifier [12]. The experimental results demon-
strate the effectiveness of the proposed method for identifying compromised pro-
grams. The performance variance and PC status can be one of the information metrics 
for the ICmetrics system. 

The remainder of this paper is organised as follows. A survey of related work is 
presented in Section II. The proposed algorithm is introduced in Section III. The ex-
perimental setup and the implementation results are discussed in Section IV. Finally, 
the conclusions are presented in Section V. 

2 Related Work 

As most information is being digitized to facilitate quick access, digital privacy is 
becoming even more important in protecting personal information [13]. Arora et al [1] 
addressed secure program execution by focusing on the specific problem of ensuring 
that the program does not deviate from its intended behaviour. Similar to [1], Rahmat-
ian et al [4] used a CFG to detect intrusion for secured embedded systems by detect-
ing behavioural differences between the correct system and malware. An attack is 
detected if the system call sequence deviates from the known sequence. Yang et al 
[14] presents a very interesting approach for detecting digital audio forgeries mainly 
in MP3. Using a passive approach, they are able to detect doctored MP3 audio by 
checking frame offsets.  

   Information hiding can be used in authentication, copyright management as well 
as digital forensics [15]. Swaminathan et al [15] proposed an enhanced computer 
system performance with information hiding in the compiled program binaries. The 
system wide performance is improved by providing additional information to the 
processor without changing the instruction set architecture. In [16] Boufounos and 



Rana demonstrate with the use of signal processing and machine learning techniques, 
to securely determine whether two signals are similar to each other. They also show 
how to utilize an embedding scheme for privacy-preserving nearest neighbour search 
by presenting protocols for clustering and authenticating applications. 

ICmetrics can be defined as a unique characteristic that a program possesses when 
running on a particular embedded device and can be used to identify the program and 
hardware. In this paper we use Cycle per Instruction (CPI) to extract corresponding 
PC values, and use it as ICmetric for program identification. Using an unsupervised 
SOM to reduce the dimensionality of PC values, we introduce an offset rule similar to 
that presented in [14] to detect compromised programs rather than detecting digital 
audio forgeries. Thus using machine learning techniques [16], we are able to deter-
mine whether two PC values are similar to each other, with the use of the program 
binaries [15] and no prior knowledge of the source code. The following section de-
scribes our system to detect compromised programmes in details. 

3 Methods for Detecting Compromised Programs 

In this section, we first provide an overview of the proposed methods for detecting 
compromised programs, and then details of the proposed method are introduced. 

3.1 Overall System Architecture 

In computer systems, a program normally consists of three structure levels: (1) func-
tion call level, as represented by function call relationship; (2) internal control flow 
for each function, represented by a basic-block CFG; (3) instruction stream within 
each CFG [1]. A program is comprised of a number of micro operations, which de-
pend on the instruction sets and the exact processor architecture that are used in the 
embedded system. The number of clock cycles for each instruction depends on the 
used hardware architecture and type of instruction, for example, most of instructions 
only require one clock cycle to be executed in modern pipelined processer architec-
ture, but some instructions require multi-cycle to be executed, as they need access to 
memory during processing (e.g. Load, Store and Jump). In particularly, these multi-
cycle instructions indicate where the functions call or the condition branch is [4]. 
Consequently, we can approximately detect the function call or condition branch 
based on the variance of the processor’s performance. In addition, the value of PC 
register shows the instruction stream of a program, which is also a suitable source for 
monitoring changes at the instruction level.  

Based on the above principle, through monitoring the processor’s performance, we 
detect changes in the function call and CFG, and then analyse the PC values within 
each CFG. Finally, an overall evaluation could indicate whether the program is com-
promised or not. In the proposed work, we measure the average CPI as the parameter 
of a processor’s performance. Fig. 2 shows a block diagram of the proposed program 
monitoring system. 
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Fig. 2. Overall block diagram of the proposed monitoring system.  

In Fig. 2, phase localiser and peak point detector blocks are used to obtain the func-
tion call and conditional branch location information from average CPI profile respec-
tively, and then the obtained information will be used to extract features for the SOM 
classifier. The final evaluation is based on the results of the SOM classifier. 

3.2 CPI Analysis 

CPI indicates the complexity of instructions executed within a particular period of 
time. The average CPI of a processor can be calculated as described in [17]. Fig. 3 
shows an average CPI profile while a program is running in an ARM cortex-M3 pro-
cessor based embedded platform, where I and maxf  are 211 and 120 MHz respectively. 

 
Fig. 3. Example of average CPI diagram.  

As can be seen from Fig. 3, the program mainly consists of five phases, and there 
are also many variances (i.e. peaks) within each phase. In the following sections, we 
introduce a method to obtain the position information of the phases and peaks. 

Phase localiser block 
In the phase localiser block, there are mainly two sub-blocks: mean filter and criti-

cal point localiser. The mean filter is first used to smooth the original CPI diagram, 
the critical point localiser is then used to localise the positions of each phase. 

Mean filter 
A 1×w rectangular window is used as a mask in the mean filter, the local average 

value within the mask is then calculated. Let f(n) denote the CPI value at position n 
which is always the centre point of a rectangular window B with size 1×w. The win-
dow mean value fmean(n) is calculated by (1): 

( ) ( ) /mean
n B

f n f n w
∈

=∑                                            (1) 



Fig. 4 shows the resulting diagram after applying the mean filter on the original 
CPI diagram (i.e. Fig. 3), where w is set to ‘5’. As can be seen from Fig. 4, the vari-
ances within each phase have been significantly suppressed, and the boundaries of 
each phase still stay intact. 

 
Fig. 4. Resulting CPI diagram after applying the mean filter.  

Critical point localiser 
As the values of two adjacent points at the boundary are normally significantly dif-

ferent, the proposed method is to localise the high variance points, and then select the 
best candidates based on pre-defined criterion. 

Let fmean denote averaged CPI, absolute differences between adjacent elements of 
fmean can then be calculated by: 

( ) ( 1) ( )mean meand n f n f n= + −                                            (2) 

where1 ,n N≤ <  N is the total numbers of elements in array fmean, d(n) is nth element 
in an array of absolute differences between adjacent elements of  fmean(n).  

A threshold t1 is first used to select the high variance elements from array d , 
where the indices of the elements are greater than t1 they are stored in array d1. After 
that, absolute differences between adjacent elements of d1 are calculated to form d2. 
Finally, a threshold t2 is used to select the boundary candidates, where elements great-
er than t2 are selected as the candidates. Values of t1 and t2 are fixed based on experi-
mental results. In this work, t1 and t2 are set to 0.03 and 9 respectively. Fig. 5 shows 
resulting diagram after applying the critical point localiser on Fig.4. 

 
Fig. 5. Resulting diagram after applying the critical point localiser. 

Peak detector block  
In order to obtain positions of peaks and valleys, we apply the peak detector on ar-

ray d rather than the original array fmean. Pseudo-codes for detecting the peaks are 
summarised as follows: 



Peak detection procedure: 
Input: id is an array of absolute differences between ad-

jacent elements of meanf in the ith phase. 

Output: = 1 2 3{ , , ,..., }iP p p p p where 1p is a set of locations 
for the ith phase.  
for all samples in id do 
    if − <( 1) ( )i id n d n  and > +( ) ( 1)i id n d n  then 

     '( )id j = ( )id n ; /* record the amplitude in array '( )id j */ 
    end  
end 
ti=mean( '( )id j );  /*t is mean of all the elements in 'id */ 

for all samples in 'id do 

    if >'( )id j t then 
      pi = j;  /*mark j

th element as a peak*/ 
    end  
end 
Fig. 6 shows resulting diagram after applying the peak detector on array d. 

 
Fig. 6. Diagram following the application of the peak detector.  

Similarity analyser  
The similarity analyser has three different parts, each with a measure to ascertain 

the originality of the program in execution. The three parts are the phase, peak and 
SOM analysers. The first part is used to verify if the number of known phases is the 
same as the number of phases in the executed program. Any mismatch shows that the 
number of function calls differ, signifying an insertion or deletion. The second part 
compares the number of identified peaks within each phase. It must be noted that any 
difference in the number of peaks does not necessarily mean the program is compro-
mised, but rather a variation in CPI. The first two parts of the analyser becomes useful 
when the system has completed a cycle. The final part of the analyser uses the SOM 
to measure similarity between known programs and programs currently executed. 

The basic principle of the SOM is to adjust the weight vectors until the neurons 
represent the input data, while using a topological neighbourhood update rule to en-
sure that similar prototypes occupy nearby positions on the topological map. PC val-
ues extracted from the program execution trace, corresponding to the peaks in the 
trace are used as inputs to the SOM during training and testing. For a given network 



with k neurons and N-dimensional input vector Ki, the distance from the jth neuron 
with weight vector wj (j<k) is given by 

 ( )22

1

N
i

j l jl
l

D K w
=

= −∑  (3) 

where wjl is the lth component of weight vector wj. The vector components of the win-
ning neuron wk with minimum distance Dk are updated as follows, where (0,1)η∈ is 
the learning rate. 

 ( )i
k kw K wηΔ = −  (4) 

Updates are only carried out during the training phase. Additionally, for every neu-
ron in the network we maintain two extra parameters; the minimum and maximum 
distances of all input vectors associated with any particular neuron. 
After training, the next step is to associate each of the network neurons with the cor-
responding program or sub-program. In this work, we use Vector Quantization (VQ) 
[12] to assign labels to the trained neurons in the network as follows: 

• Assign labels to all the input training data. The label is an identifier for the pro-
gram from which the training data has been extracted from. 

• Find the neuron in the network with the minimum distance to the labelled input 
data. 

• For each input data maintain the application label, the corresponding neuron and 
the distance measured. The distance is maintained as a tie breaker for applications 
that share similar address space. 

For each network neuron, we estimate the number of programs that are associated 
with that neuron. If only one program is associated with a neuron and the number of 
data points exceeds 5% of the total number of program data points, the neuron is ex-
clusively assigned to that very program. For all programs with more than 5% of data 
points associated with a neuron, we create a codebook with an entry for the neuron, 
and the corresponding programs, each with its distance range (i.e. minimum distance 
and maximum distance). 

4 Experimental Results 

An embedded system based on a STMicroelectronics STM32F207IG microcontroller 
equipped with an ARM 32-bit Cortex-M3 processor is used in the proposed work 
[18]. A combination of KEIL µVision IDE, and ULINKpro Debug and Trace Unit 
[19] is used to download the program and trace the instructions executed in the mi-
crocontroller. High-speed data and instruction trace are streamed directly to the host 
computer allowing off-line analysis of the program behaviour [19]. MATLAB is used 
to implement the proposed method prior to hardware implementation. It should be 
noted that our experimental platform limits the complexity of test programs, as it 



comes with only 128KB of on-chip RAM and 2MB of external SRAM, for which 
only 1MB is usable when the tracing port is enabled. This limitation falls within the 
scope of our initial embedded architecture, expected to have minimal memory, power 
and computational resources. The concept presented here is very scalable; as the 
available resources increase the complexity of applications can also be increased.  

As our initial focus is dedicated and constrained embedded systems, five algo-
rithms from the automotive package of the MiBench benchmark suite [20] are select-
ed: angle conversion (AC); bit count (BC); cubic function (CF); random numbers 
(RN); and square roots (SR). These five algorithms are mixed together as a single 
program, and this program is treated as original. We also propose five further com-
promised programs formed by various combinations of the five algorithms. In each 
combination AC, BC, CF, RN, and SR are executed twice. In addition to the above, 
we also use an “unknown” algorithm “Fibonacci Series (FS)” to replace AC, BC, CF, 
RN, and SR to represent another five compromised programs for testing. Since the FS 
algorithm consists of some similar sub-functions to the known algorithms, this exper-
imental setup is more suitable for evaluating the proposed system. At the beginning of 
the test, we run the original program five times separately in the embedded platform, 
and all the program execution trace profiles are stored into five different files respec-
tively. One of the files (i.e. the training file) is used for training the SOM classifier 
and the remainder are used for testing. 

During training, PC values from the “training file” are used as input to the SOM. 
The size of the training vectors is 2048, taken from 2048 PC values for each peak in 
the training file. The vector values are then normalised before feeding them into the 
SOM. The epoch use for training is set to 1000, after which VQ is used to assign la-
bels to the neurons. The outputs of the training are network weights, a record of each 
phase, the corresponding neuron(s), and associated minimum and maximum distance 
for the phase. In these experiments the network size has been fixed to 20 each of 
length 2048. For testing, each of the test files (27 files in total) is fed into the trained 
network to generate individual output files. The output after testing is the peak simi-
larity (Ps), the correct detection rate (true positive (Tp) and true negative (Tn)) repre-
senting  the correct detection rate of the SOM for known testing programs and un-
known testing programs respectively, rate of misclassified unknown testing programs 
(false positive (Fp)) and rate of programs misclassified as compromised ( false nega-
tive (Fn)). Fig. 7 shows the training and testing results for the original program. 

 

 
Fig. 7. Training and testing results for the original program. 
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Table 1. Outputs of SOM using compromised testing programs 

 Ps (%) Tp (%) Tn (%) Fp (%) Fn (%) 
T1

a T2
b T1 T2 T1 T2 T1 T2 T1 T2 

AC 98.0 98.0 86.5 82.7 0 0 3.9 5.8 9.6 11.5 
BC 95.8 94.4 86.7 86.8 0 0 6.7 2.9 6.7 10.3 

CF/FS 90.9 0 40.0 0 0 50.0 0 50.0 60.0 0 
RN 40.0 80.0 87.5 75.0 0 0 0 0 12.5 25.0 
SR 98.7 94.7 68.8 73.8 0 0 1.3 1.3 29.9 25.0 

a. Without unknown algorithm; b. With unknown algorithm 
 

As shown in Fig. 7, the training and testing results have very similar performance, 
but Ps for a particular algorithm may vary when it is executed at different times. This 
is because CPI does not remain exactly the same as the original value in the training 
file. In Table I, RN has been repeated twice in T1 and we replaced CF with FS repre-
senting the unknown algorithm in T2. Ps of 40% in Table I shows RN has the least 
peak similarity compare to the other algorithms, suggesting RN has been compro-
mised. However, the result from the Tp (87.5%) shows that the algorithm is known to 
the SOM. Overall, the correct detection rate for our system is above 90.9% for un-
compromised programs. Ps of 0% in Table I shows that FS is completely different 
from CF in the original training file. The result for Tp (0%) in Table I shows that FS is 
unknown to the SOM. Tn (50%) means that 50% of codes are unknown to the SOM 
and Fp (50%) means that 50% of codes are known to the SOM but they appeared in 
the wrong section. As an unknown program is introduced, the overall SOM recogni-
tion rate for each algorithm is reduced, which indicates the original program has been 
compromised. In our experiments, the threshold for detecting a compromised program 
is set to 50%. Hence a program is treated as compromised if Tn is greater than 50%. 
Fig. 8 shows the PC profile when the CF is replaced by the FS. 

 
Fig. 8. PC profile when the CF is replaced by the FS. 

In Fig. 8, the yellow circles indicate selected peaks from compromised part of the 
executed intrusions. As can be seen from the figure, most of the circles are concen-
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grams, contributing to the marginal error.  
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5 Conclusion 

In this paper, we have presented an approach for detecting compromised programs by 
analysing CPI and PC from an embedded system. Through monitoring the processor’s 
CPI, we detect changes in the function call and CFG, and then analyse the PC values 
within each CFG using SOM. The results achieved show that the proposed algorithm 
can be used to detect the changes in a program, and the information metrics can fur-
ther be generated based on the outputs from the SOM. For example, different basic 
numbers could be generated based on the results of SOM, as a result of this, different 
encryption keys can be generated by the key cryptography mechanism, using the re-
call phase. Since the main aim of this research work is to implement a real-time secu-
rity solution for complex embedded computer architectures, more evaluation on real-
istic attacks for the proposed algorithms will further be investigated. Moreover, the 
proposed algorithm can be used in combination with other ICmetric approaches to 
evaluate commercial embedded system benchmarks. For evaluation parameters of 
real-time detection system, the proposed algorithm can also be implemented with a 
soft-core processor on FPGA as part of an on-line protection system. The online im-
plementation will have the capability of extracting execution trace from customised 
tracing interfaces directly located on the processor, determine the behaviour in real-
time, and subsequently halting the program to prevent any harmful effect on the em-
bedded system architecture.  
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