
RadioProphet: Intelligent Radio Resource Deallocation
for Cellular Networks

Junxian Huang1, Feng Qian2, Z. Morley Mao3,
Subhabrata Sen2, and Oliver Spatscheck2

1 Google Inc.
2 AT&T Labs – Research
3 University of Michigan

Abstract. Traditionally, radio resources are released in cellular networks by
statically configured inactivity timers, causing substantial resource inefficiencies.
We propose a novel system RadioProphet (RP), which dynamically and
intelligently determines in real time when to deallocate radio resources by
predicting the network idle time based on traffic history. We evaluate RP using 7-
month-long real-world cellular traces. Properly configured, RP correctly predicts
85.9% of idle time instances and achieves radio energy savings of 59.1% at the
cost of 91.0% of signaling overhead, outperforming existing proposals. We also
implement and evaluate RP on real Android devices, demonstrating its negligible
runtime overhead.

1 Introduction

Cellular networks employ a specific radio resource management policy distinguishing
them from wired and Wi-Fi networks. Previous studies [5][10][8] have shown that in
cellular networks, the origin of low resource efficiency comes from the way resources
are released. To avoid high signaling load, radio resources are only released after an idle
time (also known as the “tail time” or Ttail) controlled by statically configured inactivity
timers. During the tail time, energy is essentially wasted by the radio interface.

Without knowing when network traffic will occur, long tail timer settings (e.g., 11.6
seconds configured by an LTE network [8]) are essentially a conservative way to ensure
low signaling overhead, which is known to be a bottleneck for cellular networks. Given
that application behaviors are not random, using a statically configured timer is clearly
suboptimal. A smaller static timer value helps reduce radio energy, but is not an option
due to the risk of overloading cellular networks caused by signaling load increase.

An attractive alternative is to configure the timer dynamically — adaptively per-
forming radio resource release signaled by the handset by monitoring the traffic and
accommodating different traffic patterns. But the key challenge is determining when
to release resources, which essentially comes down to accurate and efficient prediction
of the idle time period. Clearly, the best time to do so is when the handset is about to
experience a long idle time period, otherwise the incurred resource allocation overhead
(i.e., signaling load) might be unacceptably high. Therefore, accurate and efficient
prediction of the idle time period is a critical prerequisite for dynamic timer schemes.

This paper proposes RadioProphet (RP), a practical system running on a handset
that makes dynamic decisions to deallocate radio resources based on accurate and
efficient prediction of network idle times. It makes the following contributions.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 1–11, 2014.
c© Springer International Publishing Switzerland 2014

2 J. Huang et al.

First, RP utilizes standard online machine learning (ML) algorithms to accurately
predict the network idle time, and performs resource deallocation only when the idle
time is sufficiently long. We explored various ML algorithms and prediction models
with tunable parameters, with the main contribution of using a measurement-driven
approach to find robust and easy-to-measure features, whose complex interaction with
the network idle time can be automatically discovered by the ML algorithms. The model
is validated using seven-month-long traces collected from real users (§5).

Second, we implement RP on a real Android smartphone to demonstrate its negligible
energy and CPU overhead. In contrast, all previous proposals [10][4][7] only perform
trace-driven simulation. To reduce the runtime overhead, RP strategically performs
binary prediction (i.e., whether the idle time is short or long) at the granularity of
a traffic burst consisting of a packet train sent or received in a batch. Compared to
fine-grained prediction of the precise value of packet inter-arrival time, our proposed
approach is much more efficient while yielding similar optimization results.

Third, we overcome critical limitations of previously proposed approaches, i.e.,
RadioJockey [4] and MakeIdle / MakeActive [7] are only applicable to background
applications without user interaction, with the ideal usage scenario of RadioJockey for
a single application only. With multiple concurrent applications, it suffers from low
prediction accuracy with increased overhead. In contrast, RP is specifically designed for
both foreground and background traffic. Since its prediction is based on the aggregate
traffic of all apps, RP incurs no additional overhead for supporting concurrent apps.

Fourth, we conduct comprehensive measurement of RP using real-world smartphone
traces (7 months from 20 users). The overall prediction accuracy is 85.9%. RP achieves
radio energy saving by 59.1%, at the cost of 91.0% additional signaling overhead in LTE
networks, significantly outperforming previous proposals. To achieve the same energy
saving, the additional signaling overheads incurred by MakeIdle [7] and naı̈ve fast
dormancy [1] are 305% and 215%, respectively. The maximal energy saving achieved
by RadioJockey [4] is only 27% since it is only applicable to background traffic.

Paper Organization. We provide sufficient background in §2 before giving an overview
of the RadioProphet (RP) system in §3. We detail how we select relevant features for
idle time prediction in §4, and then systematically evaluate RP in §5. In §6, we describe
related work before concluding the paper.

2 Background

In cellular networks, there is a radio resource control (RRC) state machine that
determines radio resource usage based on application traffic patterns, affecting device
energy consumption and user experience. Conceptually similar RRC state machines
exist in different types of cellular networks from 2G to 4G LTE. In 3G UMTS networks,
there are usually three RRC states [11]: idle, low-power state, and high-power state. In
4G LTE networks, there are only two RRC states: idle and active [8]. Note that RP
works for any type of RRC state machine with fast dormancy (described soon) support.

State Transitions. There are two types of state transitions. State promotions switch
from a low-power state to a high-power state. They are triggered by user data transmis-
sion in either direction. State demotions go in the reverse direction, usually triggered

RadioProphet: Intelligent Radio Resource Deallocation for Cellular Networks 3

by inactivity timers configured by the radio access network (RAN). For example, for a
commercial LTE network [8], at the active state, the RAN resets the timer to a constant
threshold Ttail=11.6 seconds whenever it observes any data frame. If there is no user
data transmission for Ttail seconds, the timer expires and the state is demoted to idle.
Similar timers exist in 3G networks (e.g., 12 seconds [11]).

State promotions incur long “ramp-up” delays of up to several seconds during which
tens of control messages are exchanged between the handset and the RAN for resource
allocation. Excessive state promotions increase the signaling overhead at the RAN and
degrade user experience, especially for short data transfers [3][10]. On the other hand,
state demotions incur tail times (Ttail) causing waste of radio resources and handset
energy [5]. During the tail time, no data is transferred but the handset radio power is
much higher than that at the idle state (e.g., 1060mW vs 11mW for LTE [8]).

Fast Dormancy. Why are tail times necessary? First, the overhead of resource allo-
cation (i.e., state promotions) is high and tail times prevent frequent allocation and
deallocation of radio resources. Second, the RAN has no easy way of predicting the
network idle time of a handset, so it conservatively appends a tail to every network
usage period. This naturally gives rise to the idea of letting the handset actively
request for immediate resource release. Based on this intuition, a feature called Fast
Dormancy has been included in 3GPP since Release 7 [1][2]. It allows a handset
to send a control message to the RAN to immediately demote the RRC state to
idle (or a hibernating state) without experiencing the tail time. Fast dormancy is
supported by many handsets [2]. It can dramatically reduce the radio resource and the
handset energy usage with the potential penalty of increased signaling load when used
aggressively [3][10].

3 The RadioProphet (RP) System

The static tail times are the root cause of low resource efficiency in cellular networks.
RP leverages fast dormancy to dynamically determine when to release radio resources.

Challenge 1: trading off between resource saving and signaling load. The best
time to perform resource deallocation is when the handset is about to experience a long
idle time period t. If t is longer than the tail time, deallocating resources immediately
saves resources without any penalty of signaling load (i.e., state promotions). Other-
wise, doing so incurs an additional state promotion. Balancing such a critical tradeoff
requires predicting the idle time between data transfers so that fast dormancy is only
invoked when the idle time is sufficiently long.

Challenge 2: handling both foreground and background traffic. Idle time pre-
diction is particularly difficult for applications involving user interactions. Previous
systems, such as RadioJockey [4] and MakeActive [7], simply avoid this by only
handling traffic generated by applications running in the background.

Challenge 3: trading off between prediction accuracy and system performance.
RP is a service running on a handset with limited computational capabilities and
more importantly, limited battery life. So we need to minimize the overhead without
sacrificing much of the prediction accuracy.

4 J. Huang et al.

To address Challenge 1, we establish a novel machine-learning-based framework
for idle time prediction. Besides measuring the effectiveness and efficiency of a wide-
range of ML algorithms, our key contribution is addressing the hard problem of
selecting discriminating features that are relevant to idle time prediction. Based on
extensive measurement, we find that strategically using a few simple features (e.g.,
packet direction and size) leads to high prediction accuracy (§4). To address Challenge
2, we designed a general prediction framework that works for the aggregated (possibly
concurrent) traffic containing both foreground and background traffic. In contrast,
previous systems such as RadioJockey have the ideal usage case for a single app.
Further, we leverage the screen status [9], which indicates whether a user is interacting
with the device, to customize the prediction for screen-on and off traffic. Such a novel
approach can better balance the aforementioned tradeoff between resource saving and
signaling load. To address Challenge 3, RP performs binary prediction at the granularity
of a traffic burst consisting of a train of packets. In other words, we find that the
knowledge of whether the inter-burst time (IBT) is short or long (determined by a
threshold) is already accurate enough for guiding the resource deallocation. Such an
approach is much more efficient while yielding similar accuracy compared to the
expensive approach of predicting the precise value of packet inter-arrival time.

RP consists of three components: a traffic monitor, an IBT prediction module, and
a Fast Dormancy (FD) scheduler. The monitor inspects network traffic (only examines
packet headers) and extracts lightweight features for each burst in an online manner. The
features are then fed into the IBT prediction module, which trains models to predict the
IBT for the current burst. Then, the FD scheduler makes decision on whether to invoke
fast dormancy based on the IBT prediction result.

For IBT prediction, we formulate the traffic pattern as follows. The traffic is a
sequence of packets {Pi}(1 ≤ i ≤ n) in both directions. Let the timestamp of Pi be ti.
Using a burst threshold BT, the packets are grouped into bursts, i.e., {Pp, Pp+1, ..., Pq}
belongs to a burst B if and only if: (1) tk+1 − tk ≤ BT for ∀k ∈ {p, ..., q − 1}, (2)
tq+1 − tq > BT, and (3) tp − tp−1 > BT. We define the inter-burst time IBT of burst
B to be the time gap following this burst, i.e., tq+1 − tq. We use a short IBT threshold
called SBT to classify an IBT, i.e., if IBT≤ SBT, the burst is short, otherwise, it is long.

The IBT prediction module trains a model based on historical traffic information,
which consists of an array of bursts {B1, ..., Bm}. Each Bi is a vector (f1, f2, ..., ft,
ibti) where {f1, ..., ft} is the list of features of Bi and ibti is the IBT following burst
Bi observed by the traffic monitor. Whenever there is an idle time of BT, i.e., a new bust
appears, the prediction process starts. The feature vector of the current burst {f1, ..., ft}
is generated and fed to the prediction module, which predicts whether the IBT following
the current burst is short or long. If short, no change is made and the handset stays in the
tail, since a packet is likely to appear soon. Otherwise, the FD scheduler invokes fast
dormancy to save energy. The prediction model is customized for each handset, and is
dynamically updated to adapt to the recent traffic pattern.

4 Feature Selection

We describe the measurement dataset before studying the feature selection in §4.2.

RadioProphet: Intelligent Radio Resource Deallocation for Cellular Networks 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Inter-burst time (sec)

Port 80
Port 443

Port 5222
Port 5228

Port 53

Fig. 1. IBT distributions of
bursts whose last packets have
specific port numbers

 0

 5

 10

 15

 20

 25

 30

 35

 40 50 60 70 80 90 100 110 120

%
 o

f
a

ll
b

u
rs

ts

Packet length (bytes)

Any bursts
Short bursts

Fig. 2. Distributions of bursts
grouped by packet length of
the last packet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

Inter-burst time (sec)

Facebook
Google services framework

LiveProfile
Yahoo! Sportacular

Fig. 3. IBT distributions of
bursts whose last packets are
associated with specific apps

4.1 The UMICH Dataset

The measurement data used in this study, which we call the UMICH dataset, is collected
from 20 students at University of Michigan for seven months. The students were given
Motorola Atrix (11 of them) or Samsung Galaxy S smartphones (9 of them) running
Android. Our custom data collection software continuously runs in the background and
collects three types of data. (1) Packet traces (only headers are used in this study).
(2) The process name responsible for sending or receiving each packet. (3) Other
system information such as screen status. Over the seven months (May to Dec 2011) we
collected 152 GB data. Although both cellular and Wi-Fi traces were collected, in this
study, we only use cellular traces, which contribute to 57.8% of the total traffic volume.

4.2 Measurement Driven Feature Selection for Burst Classification

We use a measurement-driven approach to derive features for the prediction model by
analyzing the correlation between various features and the IBT. First, to predict whether
an IBT is short or long, we look at the burst right before the IBT, since we observe that
the correlations between the IBT and earlier bursts’ features are much weaker. Second,
the features are extracted from the last three packets of a burst. This is because in most
cases, bursts are small (53% of bursts consist of no more than 3 packets), and even for
large bursts, we can usually tell their nature based on the last three packets, e.g., TCP
three-way handshake. Third, we only inspect packet headers since examining payload
incurs much higher overhead and also because traffic is increasingly being encrypted.

The lightweight features of the last three packets1 used by RP are listed below:
(1) packet direction, (2) server port number, (3) packet length (including header), (4)
protocol field in IP header, (5) TCP flags field in TCP header (0 if not TCP), and (6)
application name associated with the packet. These features are selected empirically so
that they are most relevant to IBT based on our measurement. We show three features
below as examples. We start our analysis with BT =1s and SBT =3s. Later we explore
how different BT and SBT settings affect our results in a quantitative manner (§5.4).

Port Number. Figure 1 shows IBT distributions of the top 5 ports ordered from top to
bottom in the legend, e.g., 80 is the most popular port, across all users. IBT distributions

1 If a burst contains less than three packets, all features for the missing packet(s) have a value of
0.

6 J. Huang et al.

of different ports clearly differ, especially for port 53, whose sudden jump at IBT = 5
seconds corresponds to the DNS retransmission timeout on Android. We also observe
clusters of IBT values for many other ports. For example, most bursts over port 5222
have a 20-second IBT corresponding to the keep-alive periodicity of Facebook.

Packet Length. Figure 2 plots the distributions of last packet lengths of bursts with
short IBT (IBT <SBT) and all bursts. Most bursts end with small packets, i.e., 84.59%
have their last packets ≤ 100 bytes, as a large packet is typically in the middle of a burst.
We observe high correlation for a few packet lengths values. For example, for 121 bytes,
93.04% bursts have short IBTs. The machine learning algorithms could automatically
discover these rules for prediction.

Applications. In Figure 3, the legend shows the sorted list of apps contributing the
largest amount of bursts with Facebook ranked at top 1. The differences in IBT values
are clear across apps. We also observe that for some apps, their periodic transfer
behaviors contribute to clusters of specific IBT values, e.g., Facebook and LiveProfile.
The application information can be very efficiently obtained (e.g., on Android [11]).

5 Implementation and Evaluation

5.1 Implementation

Trace-Driven Evaluation. We implement simulators of RP, MakeIdle [7], and Radio-
Jockey [4] on a desktop (3.16 GHz Xeon CPU with 16GB memory) using Matlab.
They work with an RRC state machine simulator (§5.2). We use them to evaluate the
accuracy and resource savings of RP under various configurations (§5.3, §5.4), as well
as to compare RP with other optimization techniques (§5.5), using the UMICH trace.

Implementation on Real Android Phone. We also implement the full RP system on
a Samsung Galaxy S3 phone running Android 4.0.4 to evaluate its running overhead
(§5.6). A modified TcpDump program is used as the traffic monitor. The IBT prediction
module is implemented as a native Android application running in the background.

5.2 Evaluation Methodology

We use three metrics to evaluate RP: prediction accuracy, saved radio energy, and
increased signaling load. The accuracy is defined as the number of bursts whose
immediate IBT (short or long) are correctly predicted divided by the total number of
bursts in the input trace. The radio energy, denoted as E, is the energy consumed by
the handset radio interface. It is one of the most significant components for the overall
energy usage of a handset, along with screen and CPU energy [11]. We build an RRC
state machine simulator, which takes as input a packet trace and employs the LTE
radio energy model derived in our previous work [8] to calculate E (using a UMTS
model [11] yields qualitatively similar results). The signaling load, denoted as S, is
quantified by the number of state promotions, each incurring a fixed number of signaling
messages [4]. S is also computed by the RRC state machine simulator.

Assume when a specific user trace is evaluated without any optimization performed
(no fast dormancy), E and S are calculated to be Ed and Sd, respectively. When RP

RadioProphet: Intelligent Radio Resource Deallocation for Cellular Networks 7

Table 1. Impact of α, β on the prediction
accuracy (PerUserDynamic model)

α = 100 500 1000 2000 5000
β = 1 81.5% 83.7% 84.2% 82.4% 80.2%
β = 2 80.1% 81.4% 82.9% 82.0% 80.0%
β = 5 79.8% 80.9% 81.4% 81.0% 79.3%
β = 10 79.4% 80.0% 80.9% 80.0% 79.0%
β = 20 78.9% 79.6% 80.2% 79.5% 78.7%

Table 2. Summary of prediction models

Name Description Accuracy
PerUser Use most recent α bursts of a user

84.2%
Dynamic to predict next β bursts for that user
PerUser Use a fixed set of n bursts of a user

80.8%
Static to train a fixed model for that user
AllUser Use a fixed set of k bursts of all users

77.5%
Static train a fixed model for all users

is used, the resulting E and S become E′ and S′, respectively. We define Δ(E) =
(Ed −E′)/Ed and Δ(S) = (S′ −Sd)/Sd (usually both are positive). They correspond
to the reduction of the radio energy and the increase of the signaling load brought by
RP, respectively. RP’s goal is to maximize Δ(E) while minimizing Δ(S).

5.3 Prediction Model Comparison

In RP, we use recent traffic information of a user to train a model, denoted as
PerUserDynamic. Specifically, for each user, the most recent α bursts are used to
predict the next β bursts. We study the impact of α, β in Table 1, using the Ensemble
Bagging [6] learning algorithm as an example (number of trees set to 20). If α is too
small, there is not enough training data for learning; if α is too large, the user is more
likely to switch to new applications that generate different traffic patterns so previously
learned rules may not be useful. Based on Table 1, we choose α = 1000 and β = 1 that
maximize the accuracy. In practice, α and β could also be dynamically adjusted.

Table 2 compares the PerUserDynamic model with two other models,
PerUserStatic (a fixed model for each user) and AllUserStatic (a fixed model for
all 20 users). For fair comparison, we use the same ML algorithm (Ensemble Bagging)
as used in Table 1. We set α = 1000 and β = 1 for the PerUserDynamic model as
discussed previously, and use n = 10,000 for PerUserStatic and k = 10,000 for
AllUserStatic (n and k defined in Table 2). Similar to Table 1, n and k are empiri-
cally selected to yield good prediction accuracies. We observe that PerUserDynamic
has higher prediction accuracy than the other two models, suggesting that it is necessary
to have a dynamic model for each user whose traffic pattern may be different from
others.

5.4 Selecting Burst Thresholds

We study the impact of BT and SBT (previous evaluations use BT =1s and SBT =3s). In
Table 3, S0 to S4 correspond to representative (BT, SBT) pairs. We find that aggressively
using a short SBT (S1) can significantly increase Δ(S). Among all settings, S4 yields
the highest Δ(E)/(1 + Δ(S)) value (the average radio energy saving per unit of
signaling load). It quantifies how well the balance between Δ(E) and Δ(S) is handled.

As mentioned in §3, configuring screen-on and off settings differently may yield
better optimization results, as screen-off traffic is usually generated by background apps
without user interaction, leading to statistically longer IBT. Therefore a more aggressive

8 J. Huang et al.

Table 3. Impact of BT and IBT (Classification Tree
with PerUserDynamic model, α=1000, β=1)

Settings (unit: sec) Accuracy Δ(E) Δ(S) Δ(E)
(1+Δ(S))

S0 BT: 1 SBT: 3 82.65% 52.10% 101.64% 0.26
S1 BT: 1 SBT: 2 84.80% 56.69% 158.99% 0.22
S2 BT: 1 SBT: 4 81.94% 49.07% 83.34% 0.27
S3 BT: 0.5 SBT: 3 84.71% 53.74% 100.36% 0.27
S4 BT: 1.5 SBT: 3 85.39% 58.85% 93.75% 0.30
S5 BT: 1/1.5 off/on

85.88% 59.07% 91.01% 0.31
SBT: 2.5/3 off/on

Table 4. Performance and accuracy of
different ML algorithms

ML Prediction time
Accuracy

Algorithm (Training time)

Naı̈ve Bayes
2.5 ms

76.1%
6.4 ms

Classification 5.9 ms
85.9%

Tree 136.9 ms
Ensemble 106.6 ms

87.4%
Bagging 626.1 ms

setting (smaller BT and SBT) can be applied to screen-off traffic without incurring much
signaling overhead. In Table 3, S5 is such a screen-aware setting. Compared with S4,
S5 saves more energy with less signaling overhead incurred. In fact, S5 achieves results
comparable to the optimal scenario to be shown in Table 5. This also indicates that
dynamically changing BT and SBT can help improve the effectiveness of RP.

5.5 Comparing Fast Dormancy Based Resource Optimization Approaches

Table 5 compares various optimization techniques using the UMICH dataset.
Basic fast dormancy. We set Ttail to a fixed value smaller than its original value.
RadioJockey [4] uses system calls to predict the end-of-session (EOS) for back-

ground app without user interaction, with the ideal usage scenario for a single app.
Given that we do not have system call traces in our dataset, we make two assumptions in
our simulation: (1) we use end-of-burst to approximate end-of-session, (2) RadioJockey
has high prediction accuracies (90% and 100%) for both single and concurrent apps
(although in reality, it performs worse when concurrent apps exist). A key limitation of
RadioJockey is it does not handle foreground traffic and only works when the screen is
idle (see §6), so we only apply RadioJockey to screen-off traffic2.

MakeIdle [7] computes a wait time Twait that maximizes the energy saving if Ttail

is set to Twait for the previous M packets, it then applies this Twait for the next N
packets. The range we search for the optimal Twait is [0.5, 11.5] seconds, as suggested
by the authors. Since no recommendations have been made for the values of M and N ,
we empirically select different combinations of (M,N) pairs.

RadioProphet : we explore three off-the-shelf machine learning algorithms with
the PerUserDynamicmodel (α=1000 and β=1): Naı̈ve Bayes, Classification Tree, and
Ensemble Bagging. Their performance and accuracy are summarized in Table 43.

We now discuss the results in Table 5. “Fast dormancy 1s” is an aggressive approach
incurring unacceptable signaling overhead. “Fast dormancy 3s” reduces Δ(S) with
less energy saving as expected. For both approaches, their Δ(E)/(1 + Δ(S)) values

2 We configured short screen timeout for the 20 phones so screen-off is good approximation for
screen-idle.

3 The performance numbers in Table 4 correspond to the execution time of the scripts written
in Matlab on desktop. Our real implementation on the S3 smartphone uses C++ so it is much
more efficient (§5.6).

RadioProphet: Intelligent Radio Resource Deallocation for Cellular Networks 9

Table 5. Comparison of optimization approaches. For RP, we use the PerUserDynamicmodel
(α=1000, β=1) with setting S5 in Table 3. RadioJockey is only applicable to screen-off traffic.

Name Description & Configuration Δ(E) Δ(S) Δ(E)
(1+Δ(S))

Basic Fast dormancy 1s Invoke fast dormancy after 1s idle time 62.7% 214.9% 0.20
Basic Fast dormancy 3s Invoke fast dormancy after 3s idle time 40.9% 95.8% 0.21

RadioJockey RadioJockey applied to
30.1% 51.7%

0.20
Assuming 100% accuracy only screen-off traffic (screen-off)

RadioJockey RadioJockey applied to
27.2% 52.0%

0.18
Assuming 90% accuracy only screen-off traffic (screen-off)

MakeIdle MakeIdle: based on previous M packets,
64.9% 305.2% 0.16

M:1000, N:100 predict next N packets
MakeIdle MakeIdle: based on previous M packets,

44.9% 195.2% 0.15
M:10, N:10 predict next N packets

RP: Naı̈ve Bayes
Naı̈ve Bayes classification with mvmn:

53.0% 107.9% 0.25
multivariate multinomial distribution

RP: Classification Tree Binary decision tree for classification 59.1% 91.0% 0.31

RP: Ensemble Bagging
Method: Bag; type: classification

59.3% 90.2% 0.31
weak leaner: decision tree; # of trees: 20

RP: Optimal Predict all IBTs correctly 59.8% 85.4% 0.32

(the average radio energy saving per unit of signaling load) are low due to a lack of
adaptation to dynamic traffic patterns.

For RadioJockey, by assuming the prediction accuracy for each background app to be
90%, it saves 27.2% of radio energy with 52% of signaling load, which can be slightly
improved when the accuracy increases to 100%. The overall saving is lower than that
of RP because RadioJockey does not handle foreground traffic usually triggered by
user interaction (§6). For MakeIdle, we use two representative (M,N) settings. In both
cases, the incurred signaling load is prohibitive, since MakeIdle does not consider the
very important signaling load metric in its optimization framework.

For RP, in the optimal case assuming 100% prediction accuracy, it saves 59.8% of
radio energy with 85.4% of signaling load incurred. The signaling load is not zero,
because for IBTs smaller than Ttail but larger than SBT, even if the prediction is correct,
invoking fast dormancy would still incur an extra state promotion. This is inherent for
any fast dormancy based optimization technique. Among the three machine learning
algorithms, Ensemble Bagging achieves the best results, likely due to its usage of
multiple submodels to avoid overfitting. However, as shown in Table 4, its runtime
overhead is very high. The Classification Tree approach achieves similar optimization
results with much lower runtime overhead. The Δ(E)/(1+Δ(S)) metric indicates that
RP outperforms other approaches in balancing Δ(E) and Δ(S).

5.6 Running Overhead on Real Phone

We implement the RadioProphet system on Android as discussed in §5.1, in order
to demonstrate its practicality on today’s smartphones. We breakdown its runtime

10 J. Huang et al.

overhead into three components: (1) traffic monitoring and feature extraction, (2) model
training and prediction, and (3) fast dormancy invocation. We found invoking fast
dormancy incurs negligible overhead. We therefore focus on (1) and (2) below.

Traffic Monitoring and Feature Selection. Unlike RadioJockey requiring system call
instrumentation, RP only needs to monitor packet traces, which is also needed by
RadioJockey. On the S3 smartphone, our traffic monitor incurs no more than 1% of
CPU overhead for parsing packet headers and generating burst features, although the
overhead is much lower when the throughput is low (e.g., less than 200 kbps). The
additional power to run the data collector is less than 17mW most of the time. In
contrast, the LTE radio power is at least 1000 mW [8].
Model Training and Prediction: Our implementation on S3 uses the Classification
Tree model that balances between accuracy and performance (Table 4). We measure
the average model training time to be 200ms and the average prediction time to be
0.1ms. Its incurred power overhead is always negligible (less than 10 mW).

6 Related Work and Concluding Remarks

We compare RP with three representative adaptive resource deallocation proposals.
TOP [10] leverages fast dormancy to eliminate the tail. It assumes each individual

application can predict an imminent long IBT with reasonable accuracy, and fast
dormancy is only invoked when the aggregate prediction across all concurrent apps
is long enough. TOP provides the prediction framework, but it does not solve the
challenging prediction problem itself, which is the key focus of RP.

MakeIdle [7] uses packet timing to calculate the optimal idle time before invoking
fast dormancy, in order to maximize the radio energy saving. However, MakeIdle
considers minimizing radio energy as the only objective, leading to unacceptably high
signaling overhead shown in Table 5. It leaves the job of reducing the signaling load to
another algorithm called MakeActive [7] that changes the traffic pattern by shifting
packets. MakeActive does not work with foreground traffic that is usually delay-
sensitive, and even for background traffic, there is no guarantee that it does not affect
user experience. In contrast, RP does not rely on changing traffic patterns and it works
with both foreground and background traffic. It can in fact coexist with traffic shaping
based optimization techniques such as MakeActive and TailEnder [5].

RadioJockey [4] uses program execution traces to predict the end of communication
spurts and invoke fast dormancy when necessary. It however has several limitations. (1)
It needs heavy instrumentation i.e., requiring complete system call traces in addition to
packet traces, while RP only examines packet header information. (2) RadioJockey only
works for background app without user interaction, since “predicting EOS events for
foreground applications turns out to be challenging since user interactions can trigger
network communications at any point in time” [4]. (3) RadioJockey treats different
apps separately and does not predict start-of-session, hence when concurrent apps
exist, the prediction accuracy would be affected. In contrast, RP introduces a general,
lightweight, and effective framework that naturally optimizes concurrent traffic from
both foreground and background apps. RP achieves even better optimization results for
all traffic than RadioJockey does for only background traffic (Table 5).

RadioProphet: Intelligent Radio Resource Deallocation for Cellular Networks 11

To conclude, we propose a novel, practical, and effective system called
RadioProphet that intelligently predicts long idle period using off-the-shelf machine
learning algorithms, and deallocate resources based on IBT prediction for cellular net-
works. Using 7-month data collected from 20 real users, we show that RP outperforms
existing proposals in balancing the key tradeoff between resource saving and signaling
load. We present the first implementation of adaptive resource deallocation using fast
dormancy, demonstrating the feasibility of RP on real smartphones. We believe RP is an
important step towards application-aware energy and resource optimization in wireless
networks.

Acknowledgements. This research was supported in part by the National Science
Foundation under grants CNS-1039657, CNS-1059372 and CNS-0964545.

References

1. UE “Fast Dormancy” behavior. 3GPP discussion and decision notes R2-075251 (2007)
2. Configuration of fast dormancy in release 8. 3GPP discussion notes RP-090960 (2009)
3. System Impact of Poor Proprietary Fast Dormancy. 3GPP discussion and decision notes RP-

090941 (2009)
4. Athivarapu, P., Bhagwan, R., Guha, S., Navda, V., Ramjee, R., Arora, D., Padmanabhan, V.,

Varghese, G.: RadioJockey: Mining Program Execution to Optimize Cellular Radio Usage.
In: MobiCom (2012)

5. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy Consumption in
Mobile Phones: A Measurement Study and Implications for Network Applications. In: IMC
(2009)

6. Breiman, L.: Bagging Predictor. Machine Learning 24(2) (1996)
7. Deng, S., Balakrishnan, H.: Traffic-Aware Techniques to Reduce 3G/LTE Wireless Energy

Consumption. In: CoNEXT (2012)
8. Huang, J., Qian, F., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: A Close Examination of

Performance and Power Characteristics of 4G LTE Networks. In: MobiSys (2012)
9. Huang, J., Qian, F., Mao, Z.M., Sen, S., Spatscheck, O.: Screen-Off Traffic Characterization

and Optimization in 3G/4G Networks. In: Proc. ACM SIGCOMM IMC (2012)
10. Qian, F., Wang, Z., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: TOP: Tail Optimization

Protocol for Cellular Radio Resource Allocation. In: Proc. ICNP (2010)
11. Qian, F., Wang, Z., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: Profiling Resource Usage

for Mobile Applications: a Cross-layer Approach. In: MobiSys (2011)

