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Abstract. The 95th percentile billing mechanism has been an industry de facto
standard for transit providers for well over a decade. While the simplicity of the
scheme makes it attractive as a billing mechanism, dramatic evolution in traf-
fic patterns, associated interconnection practices and industry structure over the
last two decades motivates an obvious question: is it still appropriate? In this
paper, we evaluate the 95th percentile pricing mechanism from the perspective
of transit providers, using a decade of traffic statistics from SWITCH (a large
research/academic network), and more recent traffic statistics from 3 Internet Ex-
change Points (IXPs). We find that over time, heavy-inbound and heavy-hitter
networks are able to achieve a lower 95th-to-average ratio than heavy-inbound
and moderate-hitter networks, possibly due to their ability to better manage their
traffic profile. The 95th percentile traffic volume also does not necessarily reflect
the cost burden to the provider, motivating our exploration of an alternative met-
ric that better captures the costs imposed on a network. We define the provision
ratio for a customer, which captures its contribution to the provider’s peak load.

1 Introduction

The industry standard for transit billing is the 95th percentile billing method [1, 2]
wherein a transit provider measures the utilization of a customer link in 5-minute bins
over the duration of a month, and then computes the 95th percentile of these utilization
values as the billing volume. The 95th percentile method has several attractive prop-
erties. First, this method is simple to implement, and uses data (e.g., SNMP) that the
provider typically already collects. Second, it approximates the load that a customer
causes the provider, while “forgiving” a few bursts (the top 5% of samples are ignored).
While this transit billing method has remained fairly standard for over a decade, traffic
patterns have evolved dramatically, from the dominance of client-server traffic in the
early days of the Internet, to the rise and fall in popularity of peer-to-peer applications,
to the rise of streaming video. Given that the traffic profile of a transit customer depends
on the popularity of underlying applications, it is not clear that a transit billing scheme
that may have been rational a decade ago is still appropriate.

In this work, we revisit the 95th percentile billing scheme from the perspective
of a provider, to investigate whether this scheme approximately achieves its intended



objective of providing an easy-to-compute approximation of a customer’s traffic load
to the provider. We first use 10 years of historical data from SWITCH, a Swiss re-
search/academic network, and more recent data from 3 Internet Exchange Points (IXPs)
to investigate how the 95th percentile of a customer’s traffic relates to: (1) its total traf-
fic volume, (2) its nature as a predominantly inbound/outbound customer, and (3) its
behavior as a heavy vs. moderate hitter. Second, we study the fairness of the 95th per-
centile scheme, and define a new metric called the provision ratio to investigate the
relationship between the 95th percentile of customer and the contribution of that cus-
tomer to the provider’s traffic load.

Analysis of these data sets reveals evidence that over the years the customers with a
predominantly outbound traffic profile are able to maintain a lower 95th-to-average ratio
than predominantly inbound customers, meaning that they have a lower billing volume
for the same amount of traffic sent. Furthermore, the 95th-percentile pricing mechanism
is unfair, because for many customers the 95th percentile may not reflect their cost bur-
den to the provider, as there is little overlap between the customer’s peak and the overall
(provider) peak traffic. Our results motivate the need to look for alternatives to the 95th

percentile billing method that can better approximate a customer’s cost burden to the
provider without adding too much additional measurement or computational overhead.

2 Datasets
SWITCH dataset: Our first dataset comes from SWITCH, a Swiss Research/Academic
network which provides Internet connectivity to major universities and organizations in
Switzerland. Currently, SWITCH connects about 50 research and education sites, acting
as a transit provider for traffic that originates or is destined to those networks. SWITCH
also provides connectivity to the public Internet via commercial providers, and hosts
content caches of two large content providers. For traffic billing, SWITCH measures
the utilization of each border router interface in both inbound and outbound directions
in 5-minute intervals. To present a longitudinal analysis, we use historical datasets from
SWITCH from January 2003 to December 2012.

IXP dataset: The second dataset consists of traffic statistics published by 3 Internet Ex-
change Points (IXPs) – Budapest Internet Exchange (BIX), Slovak Internet Exchange
(SIX), and Interlan Internet Exchange (ILAN). These IXPs publish MRTG graphs with
5-minute utilization (inbound and outbound) for each network connected to the public
peering fabric of the IXP. We collected these graphs every day for the month of Au-
gust 2013 and used Optical Character Recognition tools [3] to parse them. BIX had
62 networks connected to its public peering fabric, while SIX and ILAN had 48 and
55 networks, respectively. Networks connect to IXPs to create (settlement-free) peering
connections with other participating networks, and so the traffic statistics we see at an
IXP are for a connected network’s peering traffic4. Castro et al. [3] showed that transit
traffic and peering traffic have similar diurnal patterns and peak-to-valley ratios; in fact,
the transit traffic for a network can be well-approximated as a multiplicative factor of
the peering traffic. In our analysis we consider the IXP as proxy for a transit provider,
and the networks connected to it as its customers.

4 While not explicitly disallowed, transit sale over the shared IXP fabric is rare [4]



3 Longitudinal Study of 95th percentile billing

We first describe two common methods of computing the 95th percentile traffic volume,
and how the two methods can treat customers differently. We then classify networks
based on two criteria: (i) major direction of traffic (inbound, outbound, and balanced);
and (ii) volume of traffic (heavy-hitter and moderate-hitter), and present a longitudinal
view of the traffic properties of these network types.

3.1 Calculation of 95th percentile

Although 95th percentile billing is the industry standard, there are two common im-
plementations and several possible variations. The first method measures the inbound
and outbound traffic in every 5 minutes over the month, calculates the 95th percentile
for each direction, and uses the maximum of these two values. Most transit provider
references to computing the 95th percentile use this method, e.g., [5, 6], so we use it in
our subsequent analysis. The second method records the maximum of inbound and out-
bound traffic in each five minute interval, and calculates the 95th percentile value from
the resulting data set. This second method seems to be less common although we found
a few transit providers that bill using this method [7, 8]. The second method will yield a
value greater than or equal to the first method, and the results will differ significantly for
customers with balanced traffic profiles, but with inbound peaks occurring at different
times from outbound peaks. We computed the 95th percentile for each network in the
SWITCH dataset over 10 years. We found that the median ratio of the 95th percentile
value for each network, computed using these two methods is close to 1, but the widest
difference induces a 20% higher transit bill using the second method.

3.2 Classification of networks

Direction of Traffic: We divide networks into three categories based on the dominant
direction of traffic. For each network, we measure the traffic that terminates within that
network (inbound) and traffic that originates from that network (outbound). If the in-
bound traffic of the network is more than twice the outbound traffic we classify it as
heavy-inbound, and if the outbound traffic is more than twice the inbound traffic we
classify the network as heavy-outbound. Networks that do not satisfy either condition
are classified as balanced. Typically, content providers are heavy-outbound, while eye-
ball providers are heavy-inbound.
Volume of Traffic: We next classify networks based on the volume of traffic they gen-
erate/consume over a month into heavy-hitter and moderate-hitter networks. To define
the two classes we evaluated the traffic contribution by the top 20% of networks in each
month of the SWITCH and IXP datasets. The top 20% of networks consistently con-
tributed between 80 and 90% of total traffic in the SWITCH dataset, and 75% of total
traffic in the IXP dataset. Based on this observation, we classify the top 20% of net-
works in each month as heavy-hitter networks and the rest as moderate-hitter networks.
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Fig. 1. Mean 95th percentile to average ratio for different network types in the SWITCH dataset.
Heavy-inbound networks have a larger 95th percentile to average ratio than heavy-outbound
networks. Also, moderate-hitter networks have a larger ratio than heavy-hitter networks.

3.3 95th percentile to average ratio

For each customer network, we first evaluate the 95th percentile to average traffic ratio;
the average reflects the total volume of traffic, whereas the 95th percentile value gives an
idea of the peak, and is also the traffic volume for which the customer is billed. If the two
significantly differ, it suggests that the customer is paying primarily for its burstiness.
Figure 1 shows the mean of the 95th percentile to average traffic ratio over time for
networks in the SWITCH dataset classified by traffic direction and traffic volume.

First, we observe that the 95th percentile to average ratio has been fairly stable
over the years for each type of network, despite the dramatic changes in overall inter-
domain traffic patterns that have occurred during the same time. In the last 4 years,
the mean ratio for heavy-outbound networks is between 2 and 3, while the mean for
heavy-inbound networks is between 3.25 and 4. For balanced networks, the ratio is less
than 3.25. Hence, heavy-inbound networks in general have higher 95th percentile traffic
compared to heavy-outbound or balanced networks for the same average traffic. Con-
sequently, heavy-inbound networks have a higher billing volume than heavy-outbound
networks for the same amount of total traffic sent. We observe that the mean ratio is
between 2.25 and 3 for heavy-hitter networks, especially in the last 4 years. However,
the mean ratio always exceeds 3 for moderate-hitter networks in those 4 years.

Table 3.3 shows the mean 95th percentile to average ratio for different classes
of networks in the IXP dataset. We observe that the mean ratio is higher for heavy-
inbound networks than for heavy-outbound networks, consistent with our analysis of
the SWITCH dataset. With the exception of BIX, the mean 95th percentile to average
ratio for networks at the other two IXPs is larger for moderate-hitter networks than
for heavy-hitter networks, meaning that moderate-hitter networks have a burstier traffic
profile than heavy-hitter networks.

3.4 Skewness of the traffic distribution

The above analysis shows that heavy-inbound and moderate-hitter networks have a
higher 95th-to-average ratio as compared to other networks, meaning that their traf-
fic profile is likely to be burstier. Figure 2 illustrates the difference by plotting the mean
skewness of the traffic distribution for each network type.



IXP Heavy-inbound Balanced Heavy-outbound Heavy-hitter Moderate-hitter
SIX 2.6 - 1.7 1.4 1.9
BIX 2.82 2.3 2.1 2.59 1.94

ILAN 2.62 1.9 2.21 1.7 2.386

Table 1. Mean 95th percentile to average ratio for IXPs, using different network classifications.
Heavy-inbound and moderate-hitter networks (except at BIX) generally have higher ratios.
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Fig. 2. Mean skewness for different network types in the SWITCH dataset. Heavy-outbound net-
works have a higher skewness, especially in the last 4 years. Heavy-hitter networks have larger
skewness than moderate-hitter networks.

Skewness reveals how much the traffic distribution leans to one side of the mean;
for a random variable X: Skewness = E

[
(X − µ)3

]
/
(
E
[
(X − µ)2

])3/2
, where µ

is the mean. If a probability distribution function is unimodal, then higher positive
skew implies few values higher than the mean, i.e., the 95th percentile value would be
closer to the average. The empirical probability mass function for the traffic of each net-
work is unimodal for our data sets. Heavy-outbound networks have high positive skew
(the mean is between 5 and 25), especially in the last 4 years5, compared to heavy-
inbound networks or balanced networks, whose mean skewness is between 0 and 12
and 5 and 15, respectively. Similarly, heavy-hitter networks have higher positive skew
than moderate-hitter networks. Table 3.4 shows the mean skew of traffic for networks
at each IXP, classified according to dominant traffic direction and traffic volume. As
in the SWITCH dataset, heavy-outbound and heavy-hitter networks generally have a
larger skewness than heavy-inbound and moderate-hitter networks.

In summary, the 95th-to-average ratio has been stable for various classes of net-
works in our dataset over the last decade, indicating that a high-percentile billing scheme
is still useful. Certain networks (particularly heavy-outbound and heavy-hitter networks)
are able to achieve a lower 95th percentile to average ratio (perhaps using intelligent
means of traffic shaping), and hence a lower billing volume for the same total amount
of transit traffic. Traffic smoothing may allow networks to achieve a lower transit bill,
but this says little about the contribution of those networks to the provider’s peak traffic.
The 95th percentile of a network does not account for when the peaks occur, and so it
is unclear whether it is fair to charge each customer using the same percentile.

5 The level shifts around 2009 coincide with SWITCH connecting to AMS-IX, acquiring hun-
dreds of new peers, though the set of customers over which we compute statistics is unchanged.



IXP Heavy-inbound Balanced Heavy-outbound Heavy-hitter Moderate-hitter
SIX -0.56 - 0.04 0.3 -0.88
BIX -1.6 -0.4 -0.19 -0.88 0.317

ILAN -0.122 0.07 0.29 0.253 -0.11

Table 2. Mean skewness for networks in the IXP dataset. Heavy-hitter networks and heavy-
outbound networks generally have higher skewness.

80 85 90 95 100
Percentile Charged

0

1

2

3

4

5

6

N
o
 o

f 
N

e
tw

o
rk

s

Shapley Percentiles of SWITCH Data

55 60 65 70 75 80 85 90 95 100
Percentile Charged

Shapley Percentiles of IXP data

Fig. 3. Shapley value percentiles: SWITCH dataset (Mar 2012) and IXP dataset (SIX, Aug 2013).

4 Fairness of 95th percentile Billing

Motivated by the preceding discussion, we now focus on the fairness of the 95th per-
centile billing mechanism. We consider a billing mechanism fair if the amount of re-
sources used by a network is reflected in the amount it is charged. An appealing idea in
this context is the Shapley value, which assigns costs to the members in a cooperative
game [9]. It possesses many attractive properties – it is efficient, i.e., the sum of costs
assigned to each member is the total cost to the system, and it is symmetric, i.e., two
members that have the same contribution will be assigned the same cost.

4.1 Shapley Value Percentile Billing

Stanojevic et al. [10] presented a model of the ISP cost allocation problem as a coopera-
tive game. The cost function of a group is the 95th percentile of the total traffic obtained
by adding the traffic of all members in that group. This cost estimate is consistent with
the idea that the transit provider must provision for peak traffic, and is itself billed by
its provider based on this value. The Shapley value (φi) of network i is then uniquely
defined by φi = 1

N !

∑
π∈Π (V(S(π, i)− V(S(π, i)\i)) where V is the cost function,Π

is the set of all possible permutations of players N and S(π, i) is the set of all players
in ordering π before i and including i.

Once we determine the Shapley value of each network, we need to map it to a billing
percentile. Let the volume corresponding to the 95th percentile value of the total traffic
be V . Then (by efficiency) the Shapley values of the customer networks will satisfy
V =

∑
i φi. Let the volume corresponding to the 95th percentile of network i be xi.



Then the total volume billed by the transit provider under the 95th percentile billing
scheme is

∑
i xi, which we define as X . Trivially, X ≥ V . For an apples-to-apples

comparison between the two billing schemes, we define the normalized Shapley value
of network i as si = φiX/V, so that the total billing volume in both cases is X . Then
each network can be charged based on a percentile that yields the traffic volume closest
its normalized Shapley value, which is the “Shapley value percentile” of that network.

Computation of the Shapley value is quite complex—with N users, it has com-
plexity order of O(N !). Even for a moderate size ISP, which has around 50 users, the
complexity is of the order of 1064. Stanojevic et al. [10] used a Monte Carlo approx-
imation, which achieves a good trade-off between accuracy and complexity. We used
this approximation to find the Shapley value percentile for the SWITCH dataset (month
of March 2012) and the SIX IXP (August 2013). The results are shown in Figure 3.
Clearly, the Shapley value percentiles are widely different from the 95th percentile .

In addition to computational complexity, the Shapley value percentile can be any-
where between 0 and 100. This approach lacks the ability of restricting the charging
percentiles to a fixed range. The handicaps of directly using the Shapley value motivate
a need for a simple proxy that captures its essence. A key observation is that a traffic
profile has greater Shapley value when it is concentrated during the peak periods when
demand is highest. Thus, Shapley value percentile billing would charge users with high
peak traffic higher than users with off peak traffic.

4.2 Overlap rank

Building on the intuition developed in the last section that it is fair to charge more to
networks with traffic during peak periods than off-peak periods, we will show how the
current 95th percentile billing mechanism can lead to unfairness as it does not consider
peak and off-peak periods. We define the peak periods of a transit provider as those
in which the total traffic carried by the transit provider exceeds the 95th percentile of
the provider’s total traffic. We similarly define the peak slots for customer networks.
Based on the number of peak slots of networks that overlap with peak slots of the total
traffic, we rank the networks from highest to lowest and call it the overlap rank. Thus, a
network with rank 0 has the maximum number of peak slots that occur during the same
time intervals as the peak slots of the transit provider. We also rank networks based on
their 95th percentile and call it the 95th percentile rank.

Figure 4 plots overlap rank vs. percentile rank (normalized to 100) for the IXP
dataset (first 3 plots) and one month (January 2012) from the SWITCH dataset (far
right). If networks with high 95th percentile rank also had high overlap rank, most
points would appear on the diagonal, and imply that 95th percentile billing is charging
the contributors who necessitate the provisioning of large transit links. Figure 4 tells a
different story. The points below the diagonal, especially those in the red shaded area
(16% of networks for SWITCH) have a high 95th percentile rank but a low overlap rank,
which means that their peaks are mostly in the peak period, but their billing volume is
relatively lower. Analogously, the points above the diagonal line, especially in the gray
region (15% of networks for SWITCH) correspond to low 95th percentile rank and high
overlap rank. Their contribution to the peak period is low but they have a relatively high
billing volume. Similar observations can also be made from the IXP graphs in Figure 4.
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4.3 Provision ratio

The overlap rank considers only the cardinality of overlap slots, without accounting for
diverse traffic volumes. A good proxy for the Shapley value should capture the volume
during peak slots, appropriately normalized with the amount of traffic generated by the
network. We define the provision ratio (PR) of a network as the ratio of the average
traffic during the peak slots of total traffic to the 95th percentile of that network’s traffic.

PR of network i =
Total traffic of network i during peak slots / # of peak slots

95th percentile of network i’s traffic
.

The PR is essentially the ratio of traffic contributed by the network during the peak
time slots (or average capacity provided to that network during these peaks) to the peak
traffic of that network (excluding the top 5% of bursts); It can be viewed as the fraction
of a network’s peak traffic that occurs during the provider’s peak periods. We propose
that the PR can be an important component of a billing mechanism, because it captures
the contribution of a network’s traffic to the provider’s peak. The PR is also robust to
the exact thresholds used to compute it – we found that in our datasets, the provision
ratio is robust to the exact threshold for defining a peak slot, e.g., if we change the 95th

percentile to 85th percentile, the provision ratio does not change significantly.
The provision ratio is not equal to the Shapley value percentile in an absolute sense,

but in a relative sense it appears to have the right characteristics. To quantify the simi-
larity between the two, we find the percentage of orders preserved between all possible
pairs of networks in both datasets. A transit provider with N customers will have NC2

customer pairs. For each pair, order is preserved if the network that is charged a higher
Shapley percentile also has a higher provision ratio. We find that for the SWITCH
dataset, the provision ratio preserves between 76% and 82% of orders in the SWITCH
dataset (each month of 2012) and 89%, 75%, and 82% for the SIX, BIX, and ILAN
IXPs, respectively (August 2013). The strong similarity of orders indicates that provi-
sion ratio is indeed order preserving.

4.4 Towards a new billing mechanism

One could argue that the 95th percentile billing scheme is an approximation, aiming
for simplicity and predictability over fairness. At the other extreme is Shapley value
pricing, which charges each user differently based on their actual contribution to the
provider’s costs. An open challenge is how to achieve both objectives – fairness and



low computational complexity. We are currently exploring the use of the provision
ratio in a scheme that determines the optimal percentile to charge a given customer.
The objective of this scheme would be to vary the billing percentile per customer,
and to use the provision ratio as a measure of the contribution of a customer to the
provider’s peak traffic. This pricing scheme would automatically assign lower billing
percentiles (i.e., give discounts) to customers whose peak traffic does not contribute
significantly to the provider’s peak, and higher percentiles to customers that contribute
most to the provider’s peak. An important criterion for such a scheme is that the provider
should be able to communicate information about its peak and off-peak periods to cus-
tomers, without having to make its traffic profile available publicly. For this purpose,
the provider could design a tool that accepts a customer’s traffic profile and analyzes
it in relation to its own traffic to determine the percentile at which it would charge the
customer. Such a scheme would retain the attractive properties of burstable billing (be-
cause it is still based on a billing percentile), while better accounting for a network’s
contribution to total provider costs. Our initial investigation indicates that this problem
can be formulated as a convex optimization, and hence solved efficiently.

5 Related Work

While network service pricing has been studied extensively, relatively little work has
focused on specific mechanisms in the transit business, i.e., volume based pricing based
on the 95th percentile rule. As early as 1999, Brownlee et al. [11] experimented with
an alternative to the 95th percentile pricing mechanism, the “third quartile day”, which
they showed was a better estimate of the bandwidth requirements for customers of New
Zealand’s Kawaihiko network. Norton discussed 95th percentile pricing in his white pa-
pers, particularly the possibility of ISPs gaming the scheme to get free transit [12], and
the impact of streaming video on the statistics of customer traffic [13]. Dmitropoulos et
al. [2] studied the 95th percentile billing method using traffic traces, and investigated
how the 95th percentile computed for a given network depends on factors such as the
averaging window size and the effect of flow aggregation. In the context of broadband
users, Stanojevic et al. [10] used the Shapley value approach to quantify the contribu-
tion of each broadband user to the total costs of the access provider. Valancius et al. [14]
proposed that transit providers implement tiered pricing using just a few tiers based on
the volume of traffic and the cost of carrying it to maximize their profits. However, their
approach was targeted at properly structuring pricing tiers, i.e., the price per unit of traf-
fic that the provider charges to a customer. The focus of our work is on the underlying
traffic percentile at which a provider charges its customers.

6 Conclusions

In this paper, our goal was to empirically examine the effectivenvess of the 95th per-
centile pricing scheme, using a decade of historical traffic data from a transit provider
network and more recent data from three European IXPs. Our analysis shows that
over the years, certain networks have lower 95th-to-average ratio than others – for the



datasets we studied, networks with predominantly inbound traffic have higher 95th-to-
average ratios, and would incur a higher billing volume than those with predominantly
outbound traffic (for the same amount of total traffic), and similarly for moderate hitters
vs. heavy hitters. Furthermore, we find that the 95th percentile pricing scheme can be
unfair, as the 95th percentile traffic of a network is often unrelated to the amount of time
that network’s peak traffic overlaps that of its provider, nor does it accurately represent
the contribution of that network to the provider’s peak traffic. We define a new metric,
the Provision Ratio (PR) for a network, which is easy to compute and is able to capture
the contribution of a customer traffic to the provider’s peak.
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