Skip to main content

Minimal Triangulation Algorithms for Perfect Phylogeny Problems

  • Conference paper
Language and Automata Theory and Applications (LATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

Abstract

In this paper, we show that minimal triangulation techniques similar to those proposed by Bouchitté and Todinca can be applied to a variety of perfect phylogeny (or character compatibility) problems. These problems arise in the context of supertree construction, a critical step in estimating the Tree of Life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM Journal on Computing 23, 1216–1224 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berry, A., Bordat, J., Cogis, O.: Generating all the minimal separators of a graph. International Journal of Foundations of Computer Science 11(3), 397–403 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bininda-Emonds, O.R.: The evolution of supertrees. Trends in Ecology and Evolution 19(6), 315–322 (2004)

    Article  Google Scholar 

  4. Blair, J., Peyton, B.: An introduction to chordal graphs and clique trees. In: George, J., Gilbert, J., Liu, J.H. (eds.) Graph Theory and Sparse Matrix Computations, IMA Volumes in Mathematics and its Applications, vol. 56, pp. 1–27. Springer (1993)

    Google Scholar 

  5. Bodlaender, H., Heggernes, P., Villanger, Y.: Faster parameterized algorithms for minimum fill–in. Algorithmica 61, 817–838 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bodlaender, H., Fellows, M., Warnow, T.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  7. Bonet, M., Linz, S., John, K.S.: The complexity of finding multiple solutions to betweenness and quartet compatibility. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(1), 273–285 (2012)

    Article  Google Scholar 

  8. Bordewich, M., Huber, K., Semple, C.: Identifying phylogenetic trees. Discrete Mathematics 300(1-3), 30–43 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM Journal on Computing 31(1), 212–232 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theoretical Computer Science 276(1-2), 17–32 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brinkmeyer, M., Griebel, T., Böcker, S.: Polynomial supertree methods revisited. Advances in Bioinformatics (2011)

    Google Scholar 

  12. Buneman, P.: A characterisation of rigid circuit graphs. Discrete Mathematics 9(3), 205–212 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fernández-Baca, D.: The perfect phylogeny problem. In: Cheng, X., Du, D.Z. (eds.) Steiner Trees in Industry, pp. 203–234. Kluwer (2001)

    Google Scholar 

  14. Fomin, F., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM Journal on Computing 38(3), 1058–1079 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grünewald, S., Huber, K.: Identifying and defining trees. In: Gascuel, O., Steel, M. (eds.) Reconstructing Evolution: New Mathematical and Computational Advances, pp. 217–246. Oxford University Press (2007)

    Google Scholar 

  16. Gusfield, D.: The multi–state perfect phylogeny problem with missing and removable data: solutions via integer–programming and chordal graph theory. Journal of Computational Biology 17(3), 383–399 (2010)

    Article  MathSciNet  Google Scholar 

  17. Gysel, R.: Potential maximal clique algorithms for perfect phylogeny problems. Pre-print: arXiv 1303.3931 (2013)

    Google Scholar 

  18. Gysel, R., Gusfield, D.: Extensions and improvements to the chordal graph approach to the multistate perfect phylogeny problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(4), 912–917 (2011)

    Article  Google Scholar 

  19. Habib, M., Stacho, J.: Unique perfect phylogeny is intractable. Theoretical Computer Science 476, 47 – 66 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Heggernes, P.: Minimal triangulations of graphs: a survey. Discrete Mathematics 306(3), 297–317 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hudson, R.: Generating samples under a wright-fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)

    Article  Google Scholar 

  22. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal triple-free graphs. Theoretical Computer Science 175(2), 309–335 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. McMorris, F., Warnow, T., Wimer, T.: Triangulating vertex–colored graphs. SIAM Journal of Discrete Mathematics 7, 296–306 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meacham, C.: Theoretical and computational considerations of the compatibility of qualitative taxonomic characters. In: Felsenstein, J. (ed.) Numerical Taxonomy. NATO ASI Series G, vol. 1, pp. 304–314. Springer (1983)

    Google Scholar 

  25. Parra, A., Scheffler, P.: How to use the minimal separators of a graph for its chordal triangulation. In: Fülöp, Z. (ed.) ICALP 1995. LNCS, vol. 944, pp. 123–134. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  26. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Applied Mathematics 79(1-3), 171–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ross, H., Rodrigo, A.: An assessment of matrix representation with compatibility in supertree construction. In: Bininda-Emonds, O. (ed.) Phylogenetic supertrees: Combining information to reveal the Tree of Life, pp. 35–63. Kluwer Academic Publishers (2004)

    Google Scholar 

  28. Semple, C., Steel, M.: A characterization for a set of partial partitions to define an X-tree. Discrete Mathematics 247(1-3), 169–186 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Semple, C., Steel, M.: Phylogenetics. In: Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press (2003)

    Google Scholar 

  30. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9(1), 91–116 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM Journal on Algebraic Discrete Methods 2, 77–79 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gysel, R. (2014). Minimal Triangulation Algorithms for Perfect Phylogeny Problems. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics