
ar
X

iv
:1

40
9.

20
03

v1
 [

cs
.F

L
]

 6
 S

ep
 2

01
4

Complexity of a Problem Concerning Reset Words for

Eulerian Binary Automata✩

Vojtěch Vorel

Faculty of Mathematics and Physics, Charles University

Malostranské nám. 25, 118 00 Prague, Czech Republic

Abstract

A word is called a reset word for a deterministic finite automaton if it maps all
the states of the automaton to a unique state. Deciding about the existence of a
reset word of a given maximum length for a given automaton is known to be an
NP-complete problem. We prove that it remains NP-complete even if restricted
to Eulerian automata with binary alphabets, as it has been conjectured by
Martyugin (2011).

1. Introduction and Preliminaries

A deterministic finite automaton is a triple A = (Q,X, δ), where Q and
X are finite sets and δ is an arbitrary mapping Q × X → Q. Elements of Q
are called states, X is the alphabet. The transition function δ can be naturally
extended to Q×X⋆ → Q, still denoted by δ. We extend it also by defining

δ(S,w) = {δ(s, w) | s ∈ S,w ∈ X⋆}

for each S ⊆ Q. If the automaton is fixed, we write

r
w

−→ s

instead of δ(r, w) = s.
For a given automaton A = (Q,X, δ), we call w ∈ X⋆ a reset word if

|δ(Q,w)| = 1.

If such a word exists, we call the automaton synchronizing. Note that each word
having a reset word as a factor is also a reset word.

A need for finding reset words appears in several fields of mathematics
and engineering. Classical applications (see [11]) include model-based testing,

✩Research supported by the Czech Science Foundation grant GA14-10799S.

Preprint submitted to Elsevier July 4, 2018

http://arxiv.org/abs/1409.2003v1

robotic manipulation, and symbolic dynamics, but there are important connec-
tions also with information theory [10] and with formal models of biomolecular
processes [1].

The Černý Conjecture, a longstanding open problem, claims that each syn-
chronizing automaton has a reset word of length (|Q| − 1)

2. Though it still
remains open, there are many weaker results in this field, see e.g. [8, 4] for
recent ones1.

Various computational problems arise from the study of synchronization:

• Given an automaton, decide if it is synchronizing. Relatively simple algo-
rithm, which could be traced back to [2], works in polynomial time.

• Given a synchronizing automaton and a number d, decide if d is the length
of shortest reset words. This has been shown to be both NP-hard [3] and
coNP-hard. More precisely, it is DP-complete [7].

• Given a synchronizing automaton and a number d, decide if there exists
a reset word of length d. This problem is of our interest. Lying in NP,
it is not so computationally hard as the previous problem. However, it
is proven to be NP-complete [3]. Following the notation of [6], we call it
Syn. Assuming that M is a class of automata and membership in M is
polynomially decidable, we define a restricted problem:

Syn(M)
Input: synchronizing automaton A = ([n], X, δ) ∈ M, d ∈ N

Output: does A have a reset word of length d?

An automaton A = (Q,X, δ) is Eulerian if
∑

x∈X

|{r ∈ Q | δ(r, x) = q}| = |X |

for each q ∈ Q. Informally, there should be exactly |X | transitions incoming
to each state. An automaton is binary if |X | = 2. The classes of Eulerian and
binary automata are denoted by EU and AL2 respectively.

Previous results about various restrictions of Syn can be found in [3, 5, 6].
Some of these problems turned out to be polynomially solvable, others are NP-
complete. In [6] Martyugin conjectured that Syn(EU ∩ AL2) is NP-complete.
This conjecture is confirmed in the rest of the present paper.

2. Main Result

2.1. Proof Outline

We prove the NP-completeness of Syn(EU∩AL2) by a polynomial reduction
from 3-SAT. So, for arbitrary propositional formula φ in 3-CNF we construct

1The result published by Trahtman [9] in 2011 has turned out to be proved incorrectly.

2

an Eulerian binary automaton A and a number d such that

φ is satisfiable ⇔ A has a reset word of length d. (1)

For the rest of the paper we fix a formula

φ =

m
∧

i=1

∨

λ∈Ci

λ

on n variables where each Ci is a three-element set of literals, i.e. subset of

Lφ = {x1, . . . , xn,¬x1, . . . ,¬xn} .

We index the literals λ ∈ LΦ by the following mapping κ:

λ x1 x2 . . . xn ¬x1 ¬x2 . . . ¬xn

κ(λ) 0 1 . . . n− 1 n n+ 1 . . . 2n−1

Let A = (Q,X, δ), X = {a, b}. Because the structure of the automaton A
will be very heterogeneous, we use an unusual method of description. The basic
principles of the method are:

• We describe the automaton A via a labeled directed multigraph G, repre-
senting the automaton in a standard way: edges of G are labeled by single
letters a and b and carry the structure of the function δ. Paths in G are
thus labeled by words from {a, b}⋆.

• There is a collection of labeled directed multigraphs called templates. The
graph G is one of them. Another template is SINGLE, which consists of
one vertex and no edges.

• Each template T 6=SINGLE is expressed in a fixed way as a disjoint union
through a set PARTST of its proper subgraphs (the parts of T), extended by
a set of additional edges (the links of T). Each H ∈ PARTST is isomorphic
to some template U. We say that H is of type U.

• Let q be a vertex of a template T, lying in a subgraph H ∈ PARTST which
is of type U via a vertex mapping ρ : H → U. The local address adrT(q) is
a finite string of identifiers separated by „|”. It is defined inductively by

adrT(q) =

{

H | adrU(ρ(q)) if U 6= SINGLE

H if U = SINGLE.

The string adrG(q) is used as a regular vertex identifier.

Having a word w ∈ X⋆, we denote a t-th letter of w by wt and define the set
St = δ(Q,w1 . . . wt) of active states at time t. Whenever we depict a graph, a
solid arrow stands for the label a and a dotted arrow stands for the label b.

3

2.2. Description of the Graph G

Let us define all the templates and informally comment on their purpose.
Figure 1 defines the template ABS, which does not depend on the formula φ.

in

out

r2r1

q1 q2 q3

Figure 1: Template ABS Figure 2: A barrier of ABS parts

The state out of a part of type ABS is always inactive after application of a
word of length at least 2 which does not contain b2 as a factor. This allows us
to ensure the existence of a relatively short reset word. Actually, large areas of
the graph (namely the CLAUSE(. . .) parts) have roughly the shape depicted in
Figure 2, a cylindrical structure with a horizontal barrier of ABS parts. If we
use a sufficiently long word with no occurrence of b2, the edges outgoing from
the ABS parts are never used and almost all states become inactive.

in

out

sbsa

in

out

sbsa

s2

sd

s1

Figure 3: Templates CCA, CCI and PIPE(d) respectively

Figure 3 defines simple templates CCA, CCI and PIPE(d) for each d ≥ 1. The
activity of an out state depends on the last two letters applied. In the case of
CCA it is inactive if (and typically only if) the two letters were equal. In the case
of CCI it works oppositely, equal letters correspond to active out state. One of
the key ideas of the entire construction is the following. Let there be a subgraph
of the form

part of type PIPE(d)
↓ a, b

part of type CCA or CCI
↓ a, b

part of type PIPE(d).

(2)

Before the synchronization process starts, all the states are active. As soon
as the second letter of an input word is applied, the activity of the out state

4

starts to depend on the last two letters and the pipe below keeps a record of
its previous activity. We say that a part H of type PIPE(d) records a sequence
B1 . . . Bd ∈ {0,1}d at time t, if it holds that

Bk = 1 ⇔ H |sk /∈ St.

In order to continue with defining templates, let us define a set Mφ containing
all the literals from Lφ and some auxiliary symbols:

Mφ = Lφ ∪ {y1, . . . , yn} ∪ {z1, . . . , zn} ∪ {q, q′, r, r′} .

We index the 4n+ 4 members ν ∈ Mφ by the following mapping µ:

ν q r y1 x1 y2 x2 . . . yn xn

µ(ν) 1 2 3 4 5 6 2n+1 2n+2

ν q′ r′ z1 ¬x1 z2 ¬x2 . . . zn ¬xn

µ(ν) 2n+3 2n+4 2n+5 2n+6 2n+7 2n+8 . . . 4n+3 4n+4

The inverse mapping is denoted by µ′. For each λ ∈ Lφ we define templates
INC(λ) and NOTINC(λ), both consisting of 12n+ 12 SINGLE parts identified by
elements of {1, 2, 3} ×Mφ. As depicted by Figure 4a, the links of INC(λ)are:

(1, ν)
a

−→

{

(2, λ) if ν = λ or ν = r

(2, ν) otherwise

(2, ν)
a

−→

{

(3, q) if ν = r or ν = q

(3, ν) otherwise

(1, ν)
b

−→

{

(2, r) if ν = λ or ν = r

(2, ν) otherwise

(2, ν)
b

−→

{

(3, r) if ν = r or ν = q

(3, ν) otherwise

Note that we use the same identifier for an one-vertex subgraph and for its
vertex. As it is clear from Figure 4b, the links of NOTINC(λ) are:

(1, ν)
a

−→ (2, λ)

(2, ν)
a

−→

{

(3, q) if ν = q or ν = λ

(3, ν) otherwise

(1, ν)
b

−→ (2, r)

(2, ν)
b

−→

{

(3, λ) if ν = q or ν = λ

(3, ν) otherwise

The key property of such templates comes to light when we need to apply
some two-letter word in order to make the state (3, λ) inactive assuming (1, r)
inactive. If also (1, λ) is initially inactive, we can use the word a2 in both
templates. If it is active (which corresponds to the idea of unsatisfied literal λ),
we discover the difference between the two templates: The word a2 works if the
type is NOTINC(λ), but fails in the case of INC(λ). Such failure corresponds to
the idea of unsatisfied literal λ occurring in a clause of φ.

For each clause (each i ∈ {1, . . . ,m}) we define a template TESTER(i). It
consists of 2n serially linked parts, namely levelλ for each λ ∈ Lφ, each of type
INC(λ) or NOTINC(λ). The particular type of each levelλ depends on the clause

5

1, x1

2, x1

3, x1

1, λ

2, λ

3, λ

1,¬x1

2,¬x1

3,¬x1

1, r

2, r

3, r

1, q

2, q

3, q

(a) INC(λ)

1, x1

2, x1

3, x1

1, λ

2, λ

3, λ

1,¬x1

2,¬x1

3,¬x1

1, r

2, r

3, r

1, q

2, q

3, q

(b) NOTINC(λ)

Figure 4: Templates INC(λ) and NOTINC(λ)

part levelx2
of type

{

INC(x) if x2 ∈ Ci

NOTINC(x) otherwise

part levelλ of type

{

INC(λ) if λ ∈ Ci

NOTINC(λ) otherwise

part level
¬xn

of type

{

INC(¬xn) if ¬xn ∈ Ci

NOTINC(¬xn) otherwise

part levelx1
of type

{

INC(x) if x1 ∈ Ci

NOTINC(x) otherwise

Figure 5: Template TESTER

6

s6n−6,0 s6n−6,1 s6n−6,2 s6n−6,3

q1,0

s0
s1,0

s2,0

s3,0

s4,0

s5,0

s2,1

s3,1

s4,1

s5,1

s3,2

s4,2

s5,2

s4,3

s5,3

r1,0

q1,1

r1,1

q1,2

r1,2

q2n+1,0

q2n+1,0

s6n−4,0 s6n−4,1 s6n−4,2 s6n−4,3

s6n−5,0 s6n−5,1 s6n−5,2 s6n−5,3

s6n−3,0 s6n−3,1 s6n−3,2 s6n−3,3

s6n−2,0 s6n−2,1 s6n−2,2 s6n−2,3

q2,0

r2,0

q2,1

r2,1

q2,2

r2,2

q2n+1,1

r2n+1,1

q2n+1,2

r2n+1,2

Figure 6: Templates FORCER and LIMITER respectively

Ci as seen in Figure 5, so exactly three of them are always of type INC(. . .). If
the corresponding clause is unsatisfied, each of its three literals is unsatisfied,
which causes three failures within the levels. Three failures imply at least three
occurrences of b, which turns up to be too much for a reset word of certain
length to exist. Clearly we still need some additional mechanisms to realize this
vague vision.

Figure 6 defines templates FORCER and LIMITER. The idea of template FORCER
is simple. Imagine a situation when q1,0 or r1,0 is active and we need to deac-
tivate the entire forcer by a word of length at most 2n+ 3. Any use of b would
cause an unbearable delay, so if such a word exists, it starts by a2n+2.

The idea of LIMITER is similar, but we tolerate some occurrences of b here,
namely two of them. This works if we assume s1,0 active and it is necessary to
deactivate the entire limiter by a word of length at most 6n+ 1.

We also need a template PIPES(d, k) for each d, k ≥ 1. It consists just of k
parallel pipes of length d. Namely there is a SINGLE part sd′,k′ for each d′ ≤ d,
k′ ≤ k and all the edges are of the form sd′,k′ −→ sd′+1,k′ .

The most complex templates are CLAUSE(i) for each i ∈ {1, . . . ,m}. Denote

αi = (i − 1) (12n− 2) ,

βi = (m− i) (12n− 2) .

As shown in Figure 7, CLAUSE(i) consists of the following parts:

7

sp4n+4 sp4n+5 sp4n+6

q

r

y1

x1

y2

x2

yn

xn

q ′

r ′

z1

¬x1

z2

¬x2

zn

¬xn

x1 x2 xn ¬x1 ¬x2 ¬xn

pipes2

pipes3

tester

forcer

sp4n+6

sp2

sp1
sp2n+8

sp2n+9

sp2n+6

sp2n+7

sp2n+4

sp2n+5

abs3

abs4

abs5

abs6

abs7

abs8

abs1

abs2

abs2n+4 abs2n+6

abs2n+5 abs2n+7

sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8

abs2n+8 abs2n+10

abs2n+9 abs2n+11

abs4n+6

sp4

sp3

sp6

sp5

sp8

sp7

sp2n+11

sp2n+10

limiter

cca cci

pipes1

pipe3pipe2

pipe5

pipe4

pipe7pipe6

pipe8

pipe1

pipe9

Figure 7: Template CLAUSE(i)

8

• Parts sp1, . . . , sp4n+6 of type SINGLE.

• Parts abs1, . . . , abs4n+6 of type ABS. The entire template has a shape sim-
ilar to Figure 2, including the barrier of ABS parts.

• Parts pipe2, pipe3, pipe4 of types PIPE(2n− 1) and pipe6, pipe7 of types
PIPE(2n+ 2).

• Parts cca and cci of types CCA and CCI respectively. Together with the
pipes above they realize the idea described in (2). As they form two con-
stellations which work simultaneously, the parts pipe6 and pipe7 typically
record mutually inverse sequences. We interpret them as an assignment of
the variables x1, . . . , xn. Such assignment is then processed by the tester.

• A part ν of type SINGLE for each ν ∈ Mφ.

• A part tester of type TESTER(i).

• A part λ of type SINGLE for each λ ∈ Lφ. While describing the templates
INC(λ) and NOTINC(λ) we claimed that in certain case there arises a need
to make the state (3, λ) inactive. This happens when the border of in-
active area moves down through the tester levels. The point is that any
word of length 6n deactivates the entire tester, but we need to ensure that
some tester columns, namely the κ(λ)-th for each λ ∈ Lφ, are deactivated
one step earlier. If some of them is still active just before the deactiva-
tion of tester finishes, the state λ becomes active, which slows down the
synchronization process.

• Parts pipes1, pipes2 and pipes3 of types PIPES(αi, 4n + 4), PIPES(6n−
2, 4n+4) and PIPES(βi, 4n+4) respectively. There are multiple clauses in
φ, but multiple testers cannot work in parallel. That is why each of them
is padded by a passive PIPES(. . .) part of size depending on particular i.
If αi = 0 or βi = 0, the corresponding PIPES part is not present in cl i.

• Parts pipe1, pipe5, pipe8, pipe9 of types PIPE(12mn + 4n − 2m + 6),
PIPE(4), PIPE(αi + 6n− 1), PIPE(βi) respectively.

• The part forcer of type FORCER. This part guarantees that only the letter
a is used in certain segment of the word w. This is necessary for the data
produced by cca and cci to safely leave the parts pipe3, pipe4 and line up
in the states of the form ν for ν ∈ Mφ, from where they are shifted to the
tester.

• The part limiter of type LIMITER. This part guarantees that the letter
b occurs at most twice when the border of inactive area passes through
the tester. Because each unsatisfied literal from the clause requests an
occurrence of b, only a satisfied clause meets all the conditions for a reset
word of certain length to exist.

9

r ′1

r ′2

r ′m

cl1

clm

abs1

abs2

absm

cl2

cl1

clm−1

clm

cl2

r1

r2

rm

q1

q2

qm

s1 s2

clm−1r ′m−1 absm−1
qm−1 rm−1

Figure 8: The graph G

Links of CLAUSE(i), which are not clear from Figure 7 are

ν
a

−→

{

pipes1|s1,µ(ν) if ν = ¬xn

µ′(µ(ν) + 1) otherwise
ν

b
−→ pipes1|s1,µ(ν)

for each ν ∈ Mφ and

pipes3|sβi,k
a,b
−→

{

µ′(k) if µ′(k) ∈ Lφ

absk+2|in otherwise λ
a,b
−→ absµ(λ)+2|in

for each k ∈ {1, . . . , 4n+ 4}, λ ∈ Lφ.
We are ready to form the whole graph G, see Figure 8. For each i, k ∈

{1, . . .m} there are parts clk, absk of types CLAUSE(i) and ABS respectively and
parts qk, rk, r

′

k, s1, s2 of type SINGLE. The edge incoming to a cl i part ends in
cl i|sp1, the outgoing one starts in cl i|sp4n+6. When no states outside ABS parts
are active within each CLAUSE(. . .) part and no out , r1 nor r2 state is active in
any ABS part, the word b2ab4n+m+7 takes all active states to s2 and completes
the synchronization. Graph G does not fully represent the automaton A yet
because there are

• 8mn+ 4m vertices with only one outgoing edge, namely cl i|absk|out and
cl i|spl for each i ∈ {1, . . . ,m} , k ∈ {1, . . . , 4n+ 6} , l ∈ {7, . . . , 4n+ 4},

• 8mn+4m vertices with only one incoming edge: cl i|ν and cl i|pipes1| (1, ν
′)

for each i ∈ {1, . . . ,m} , ν ∈ Mφ\ {q, q
′} , ν′ ∈ Mφ\ {xn,¬xn}.

But we do not need to specify the missing edges exactly, let us just say that
they somehow connect the relevant states and the automaton A is complete.
Let us set

d = 12mn+ 8n−m+ 18

and prove that the equivalence (1) holds.

10

2.3. From an Assignment to a Word

First let us suppose that there is an assignment ξ1, . . . , ξn ∈ {0,1} of the
variables x1, . . . , xn (respectively) satisfying the formula φ and prove that the
automaton A has a reset word w of length d. For each j ∈ {1, . . . , n} we denote

σj =

{

a if ξj = 1

b if ξj = 0

and for each i ∈ {1, . . . ,m} we choose a satisfied literal λi from Ci. We set

w = a2 (σna) (σn−1a) . . . (σ1a) aba
2n+3b

(

a6n−2v1
)

. . .
(

a6n−2vm
)

b2ab4n+m+7,

where for each i ∈ {1, . . . ,m} we use the word

vi = ui,x1
. . . ui,xn

ui,¬x1
. . . ui,¬xn

,

denoting

ui,λ =

{

a3 if λ = λi or λ /∈ Ci

ba2 if λ 6= λi and λ ∈ Ci

for each λ ∈ Lφ. We see that |vi| = 6n and therefore

|w| = 4n+ 8 +m (12n− 2) + 4n+m+ 10 = 12mn+ 8n−m+ 18 = d.

Let us denote
γ = 12mn+ 4n− 2m+ 9

and
St = Q\St

for each t ≤ d. Because the first occurrence of b2 in w starts by the γ-th letter,
we have:

Lemma 2.1. Each state of a form cl ...|abs ...|out or abs...|out lies in S2∩· · ·∩Sγ .

Let us fix an arbitrary i ∈ {1, . . . ,m} and describe a growing area of inactive
states within cl i. We use the following method of verifying inactivity of states:
Having a state s ∈ Q and t, k ≥ 1 such that any path of length k ending in s
uses a member of St−k ∩ · · · ∩ St−1, we easily deduce that s ∈ St. In such case
let us just say that k witnesses that s ∈ St. The following claims follow directly
from the definition of w. Note that Claim 7 relies on the fact that b occurs only
twice in vi.

11

Lemma 2.2.

1.
{

cl i|sp1, . . . , cl i|sp4n+6

}

⊆ S2 ∩ · · · ∩ Sγ

2. cl i|pipe2 ∪ cl i|pipe3 ∪ cl i|pipe4 ⊆ S2n+1 ∩ · · · ∩ Sγ

3. cl i|cca ∪ cl i|cci ∪ cl i|pipe5 ⊆ S2n+5 ∩ · · · ∩ Sγ

4. cl i|pipe6 ∪ cl i|pipe7 ∪ cl i|forcer ⊆ S4n+7 ∩ · · · ∩ Sγ

5. {cl i|ν : ν ∈ Mφ} ⊆ S4n+8 ∩ · · · ∩ Sγ

6. cl i|pipes1 ∪ cl i|pipes2 ∪ cl i|pipe8 ⊆ S10n+αi+6 ∩ · · · ∩ Sγ

7. cl i|limiter ∪ cl i|tester ⊆ S16n+αi+6 ∩ · · · ∩ Sγ

8. cl i|pipe1 ∪ cl i|pipe9 ∪ cl i|pipes3 ⊆ Sγ−1 ∩ Sγ

Proof.

1. Claim:
{

cl i|sp1, . . . , cl i|sp4n+6

}

⊆ S2 ∩ · · · ∩ Sγ .
We have w1w2 = a2 and there is no path labeled by a2 ending in any
cl i|sp... state, so such states lie in S2. For each t = 3, . . . , γ we can
inductively use k = 1 to witness the memberships in St. In the induction
step we use Lemma 2.1, which excludes the out states of the ABS parts
from each corresponding St−1.

2. Claim: cl i|pipe2 ∪ cl i|pipe3 ∪ cl i|pipe4 ⊆ S2n+1 ∩ · · · ∩ Sγ .
All the memberships are witnessed by k = 2n − 1, because any path of
the length 2n− 1 ending in such state must use a cl i|sp... state and such
states lie in S2 ∩ · · · ∩ Sγ by the previous claim.

3. Claim: cl i|cca ∪ cl i|cci ∪ cl i|pipe5 ⊆ S2n+5 ∩ · · · ∩ Sγ .
We have w2n+2 . . . w2n+5 = a2ba, which clearly maps each state of cl i|cca,
cl i|cci or cl i|pipe5 out of those parts. Each path of length 4 leading into
the parts from outside starts in S2n+1, so it follows that all the states lie
in S2n+5. To prove the rest we inductively use the witness k = 1.

4. Claim: cl i|pipe6 ∪ cl i|pipe7 ∪ cl i|forcer ⊆ S4n+7 ∩ · · · ∩ Sγ .
In the cases of cl i|pipe6 and cl i|pipe7 we just use the witness k = 2n+ 2.
In the case of cl i|forcer we proceed the same way as in the previous
claim. We have w2n+6 . . . w4n+7 = a2n+2. Because also w2n+5 = a, only
the states q...,0 can be active within the part cl i|forcer in time 2n + 6.
The word w2n+7 . . . w4n+7 maps all such states out of cl i|forcer . Each
path of length 2n+ 2 leading into cl i|forcer from outside starts in S2n+5,
so it follows that all states from cl i|forcer lie in S4n+7. To handle t =
4n+ 8, . . . , γ we inductively use the witness k = 1.

5. Claim: {cl i|ν : ν ∈ Mφ} ⊆ S4n+8 ∩ · · · ∩ Sγ .
In the cases of cl i|q and cl i|q

′ we use the witness 1. We have w4n+8 = b and
the only edges labeled by b incoming to remaining states could be some of
the 8mn+ 4m unspecified edges of G. But we have w4n+6w4n+7 = a2, so
each out state of any ABS part lies in S4n+7 and thus no unspecified edge
starts in a state outside S4n+7.

12

6. Claim: cl i|pipes1 ∪ cl i|pipes2 ∪ cl i|pipe8 ⊆ S10n+αi+6 ∩ · · · ∩ Sγ .
We use witnesses k = αi for cl i|pipes1, k = 6n − 2 for cl i|pipes2 and
k = αi + 6n− 1 for cl i|pipe8.

7. Claim: cl i|limiter ∪ cl i|tester ⊆ S16n+αi+6 ∩ · · · ∩ Sγ .
Because

w4n+αi+9 . . . w10n+αi+6 = a6n−2,

there are only states of the form cl i|limiter |s...,0 in the intersection of
cl i|limiter and S10n+αi+6. Together with the fact that there are only two
occurrences of b in vi it confirms that the case of cl i|limiter holds. The
case of cl i|tester is easily witnessed by k = 6n.

8. Claim: cl i|pipe1 ∪ cl i|pipe9 ∪ cl i|pipes3 ⊆ Sγ−1 ∩ Sγ .
We use witnesses k = 12mn + 4n − 2m + 6 for cl i|pipe1 and k = βi for
cl i|pipe9, cl i|pipes3.

For each λ ∈ Lφ we ensure by the word ui,λ that the κ(λ)-th tester column
is deactivated in advance, namely at time t = 16n+αi+5. The advance allows
the following key claim to hold true.

Lemma 2.3.
{

cl i|λ : λ ∈ Lφ

}

⊆ Sγ−1 ∩ Sγ .

Proof. For each such λ we choose

k = 6n− 3κ(λ) + βi + 1

as a witness of cl i|λ ∈ Sγ−1. There is only one state where a path of length k
ending in λ starts: the state

s = cl i|tester |levelλ| (3, λ) .

It holds that
s ∈ S10n+αi+3κ(λ)+6 ∩ · · · ∩ Sγ ,

as is easily witnessed by k′ = 3κ(λ) using Claim 6 of Lemma 2.2. But we are
going to show also that

s ∈ S10n+αi+3κ(λ)+5, (3)

which will imply that k is a true witness of λ ∈ Sγ−1, because

(γ − 1)− k = 10n+ αi + 3κ(λ) + 5.

So let us prove the membership (3). We need to observe, using the definition of
w, that:

• At time 2n+ 5 the part pipe6 records the sequence

0,1, ξ1, ξ1, ξ2, ξ2, . . . , ξn, ξn

13

and the part pipe7 records the sequence of inverted values. Because

w2n+6 . . . w4n+7 = a2n+2,

at time 4n+ 7 the states q, r′ are active, the states q′, r are inactive and
for each j ∈ {1, . . . , n} it holds that

xj ∈ S4n+7 ⇔ yj ∈ S4n+7 ⇔ ¬xj ∈ S4n+7 ⇔ zj ∈ S4n+7 ⇔ ξj = 1.

Because w4n+8 = b, at time 10n+αi+6 we find the whole structure above
shifted to the first row of cl i|tester , so particularly for λ ∈ Lφ:

cl i|tester |levelx1
| (1, λ) ∈ S10n+αi+6 ⇔ λ is satisfied by ξ1, . . . , ξn.

• From a simple induction on tester levels it follows that

cl i|tester |levelλ| (1, r) ∈ S10n+αi+3κ(λ)+3.

Note that

w10n+αi+3κ(λ)+4w10n+αi+3κ(λ)+5w10n+αi+3κ(λ)+6 = ui,λ

and distinguish the following cases:

• If λ = λi, we have λ ∈ Ci, the part cl i|tester |levelλ is of type INC(λ) and
ui,λ = a3. We also know that λ is satisfied, so

cl i|tester |levelx1
| (1, λ) ∈ S10n+αi+6.

The state above is the only state, from which any path of length 3κ(λ)−3
leads to cl i|tester |levelλ| (1, λ), so we deduce that

cl i|tester |levelλ| (1, λ) ∈ S10n+αi+3κ(λ)+3.

We see that each path labeled by a2 ending in cl i|tester |levelλ| (3, λ) starts
in cl i|tester |levelλ| (1, λ) or in cl i|tester |levelλ| (1, r), but each of the two
states lies in S10n+αi+3κ(λ)+3. So the membership (3) holds.

• If λ /∈ C, the part cl i|tester |levelλ is of type NOTINC(λ) and ui,λ = a3.
Particularly w10n+αi+3κ(λ)+5 = a but no edge labeled by a comes to
cl i|tester |levelλ| (3, λ) and the membership (3) follows trivially.

• If λ 6= λi and λ ∈ Ci, the part cl i|tester |levelλ is of type INC(λ) and
ui,λ = ba2. Particularly

w10n+αi+3κ(λ)+4w10n+αi+3κ(λ)+5 = ba,

but no path labeled by ba comes to cl i|tester |levelλ| (3, λ), so we reach the
same conclusion as in the previous case.

We have proven that cl i|λ lies in Sγ−1. From Claim 8 of Lemma 2.2 it follows
directly that it lies also in Sγ .

We see that within cl i only states from the ABS parts can lie in Sγ−1. Since
wγ−2wγ−1 = a2, no state r1, r2 or out from any ABS part lies in Sγ−1. Now we
easily check that all the states possibly present in Sγ−1 are mapped to s2 by
the word wγ . . . wd = b2ab4n+m+7.

14

2.4. From a Word to an Assignment.

Since now we suppose that there is a reset word w of length

d = 12mn+ 8n−m+ 18.

The following lemma is not hard to verify.

Lemma 2.4.

1. Up to labeling there is a unique pair of paths, both of a length l ≤ d − 2,
leading from cl1|pipe1|s1 and cl2|pipe1|s1 to a common end. They are of
length d− 2 and meet in s2.

2. The word w starts by a2.

Proof.

1. The leading segments of both paths are similar since they stay within the
parts cl1 and cl2:

pipe1|s1
a,b
−→ . . .

a,b
−→ pipe1|s12mn+4n−2m+6

a,b
−→ abs1|in

b
−→

b
−→ abs1|r1

b
−→ abs1|out

a
−→ sp1

b
−→ . . .

b
−→ sp4n+6.

Once the paths leave the parts cl1 and cl2, the shortest way to merge is
the following:

cl1|sp4n+6
b

−→ q1
b

−→ q2
b

−→ . . .
b

−→ qm−1
b

−→ qm
b

−→ s1
b

−→

cl2|sp4n+6
b

−→ q2
b

−→ q3
b

−→ . . .
b

−→ qm
b

−→ s1
b

−→ s2
b

−→
s2

Having the description above it is easy to verify that the length is d − 2
and there is no way to make the paths shorter.

2. Suppose that w1w2 6= a2. Any of the three possible values of w1w2 implies
that

{

cl i|sp3, . . . , cl i|sp4n+6

}

⊆ S2

for each i. It cannot hold that w = w1w2b
d−2, because in such case

all cl ...|cca|sb states would be active in any time t ≥ 3. So the word
w has a prefix w1w2b

ka for some k ≥ 0. If k ≤ 4n + 3, it holds that
cl i|sp4n+6 ∈ Sk+2 and therefore cl i|pipe1|s1 ∈ Sk+3, which contradicts
the first claim. Let k ≥ 4n + 4. Some state of a form cl i|forcer |q1,... or
cl i|forcer |r1,... lies in Sk+2 for each i. This holds particularly for i = 1
and i = 2, but there is no pair of paths of length at most

d− (4n+ 4) ≥ d− k

leading from such two states to a common end.

15

The second claim implies that cl i|pipe1|s1 ∈ S2 for each i ∈ {1, . . . ,m}, so
it follows that

δ (Q,w) = {s2} .

Let us denote
d = 12mn+ 4n− 2m+ 11

and
w = w1 . . . wd.

The following lemma holds because no edges labeled by a are available for final
segments of the paths described in the first claim of Lemma 2.4.

Lemma 2.5.

1. The word w can be written as w = wb4n+m+7 for some word w.
2. For any t ≥ d, no state from any cl ... part lie in St, except for the sp...

states.

Proof.

1. Let us write w = w1w2w
′. From Lemma 2.4 it follows that

δ (cl1|pipe1|s1, w
′) = δ (cl2|pipe1|s1, w

′)

and w′ have to label some of the paths determined up to labeling in Lemma
2.4(1). The final 4n+m+7 edges of the paths lead from cl1|sp1 and cl2|sp1

to s2. All the transitions used here are necessarily labeled by b.
2. The claim is easy to observe, since the first claim implies that St is a

subset of
S′ =

{

s ∈ Q | (∃d ∈ N) δ
(

s, bd
)

= s2
}

.

The next lemma is based on properties of the parts cl ...|forcer but to prove
that no more a follows the enforced factor a2n+1 we also need to observe that
each cl ...|cca|out or each cl ...|cci |out lies in S2n+4.

Lemma 2.6. The word w starts by ua2n+1b for some u of length 2n+ 6.

Proof. At first we prove that w starts by ua2n+1. Lemma 2.4(2) implies that
cl1|pipe2|s1 ∈ S2, so obviously some of the states cl1|forcer |q1,0 and cl1|forcer |r1,0
lies in S2n+6. If w2n+6+k = b for some k ∈ {1, . . . , 2n+ 1}, it holds that
cli|forcer |qk,2 or cli|forcer |rk,2 lies in S2n+6+k. From such state no path of
length at most 2n+ 3 − k leads to cl i|pipe8|s1 and therefore no path of length
at most

(2n+ 3− k) + (αi + 6n− 1) + (6n− 2) + βi + 3 = d− (2n+ 6 + k)

leads into S′, which contradicts Lemma 2.5(2). It remains to show that there
is b after the prefix ua2n+1. Lemma 2.4(2) implies that both cl1|cca|in and
cl1|cci |in lie in S2n+1, from which it is not hard to deduce that cl1|cca|out or
cl1|cci |out lies in S2n+4 and therefore cl1|q or cl1|r lies in S4n+7. Any path of
length d− (4n+ 7) leading from cl1|q or cl1|r into S starts by an edge labeled
by b.

16

Now we are able to write the word w as

w = ua2n+1b (v1v
′

1c1) . . . (vmv′mcm)wd−2wd−1wd,

where |vk| = 6n − 2, |v′k| = 6n − 1 and |ck| = 1 for each k and denote di =
10n+αi+6. At time 2n+5 the parts cl ...|pipe6 and cl ...|pipe7 record mutually
inverse sequences. Because there is the factor a2n+1 after u, at time di we find
the information pushed to the first rows of testers:

Lemma 2.7. For each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} it holds that

cl i|tester |levelx1
| (1, xj) ∈ Sdi

⇔

cl i|tester |levelx1
| (1,¬xj) /∈ Sdi

⇔ w2n−2j+2 6= w2n−2j+3.

Proof. From the definition of CCA and CCI it follows that at time 2n + 5 the
parts pipe6 and pipe7 record the sequences B(2n+3) . . . B(2) and B′

(2n+3) . . . B
′

(2)

respectively, where

B(k) =

{

1 if wk = wk+1

0 otherwise
B′

(k) =

{

0 if wk = wk+1

1 otherwise.

Whatever the letter w2n+6 is, Lemma 2.6 implies that

cl i|xj ∈ S4n+7 ⇔ cl i|¬xj /∈ S4n+7 ⇔ w2n−2j+2 6= w2n−2j+3,

from which the claim follows easily using Lemma 2.6 again.

Let us define the assignment ξ1, . . . , ξn ∈ {0,1}. By Lemma 2.7 the defini-
tion is correct and does not depend on i:

ξj =

{

1 if cl i|tester |levelx1
| (1, xj) /∈ Sdi

0 if cl i|tester |levelx1
| (1,¬xj) /∈ Sdi

.

The following lemma holds due to cl ...|limiter parts.

Lemma 2.8. For each i ∈ {1, . . . ,m} there are at most two occurrences of b in
the word v′i.

Proof. It is easy to see that cl i|limiter |s1,0 ∈ S10n+αi+6 and to note that

v′i = w10n+αi+7 . . . w16n+αi+5.

Within the part cl i|limiter no state except for s6n−2,0 can lie in S16n+αi+5,
because from such states there is no path of length at most

d− (16n+ αi + 5) = βi + 4

leading into S′.
The shortest paths from s1,0 to s6n−2,0 have length 6n − 3 and each path

from s1,0 into S′ uses the state s6n−2,0. So there is a path P leading from s1,0
to s6n−2,0 labeled by a prefix of v′. We distinguish the following cases:

17

• If P is of length 6n− 3, we just note that such path is unique and labeled
by a6n−3. No b occurs in v′ except for the last two positions.

• If P is of length 6n − 2, it uses an edge of the form sk,0
b

−→ sk+1,1.
Such edges preserve the distance to s6n−2, so the rest of P must be a
shortest path from sk+1,1 to s6n−2,0. Such paths are unique and labeled
by a6n−2−k. Any other b can occur only at the last position.

• If P is of length 6n−1, it is labeled by whole v′. Because any edge labeled
by b preserves or increases the distance to s6n−2, the path P can use at
most two of them.

Now we choose any i ∈ {1, . . . ,m} and prove that the assignment ξ1, . . . , ξn
satisfies the clause

∨

λ∈Ci
λ. Let p ∈ {0, 1, 2, 3} denote the number of unsatisfied

literals in Ci.
As we claimed before, all tester columns corresponding to any λ ∈ Lφ have

to be deactivated earlier than other columns. Namely, if cl i|tester |levelx1
| (1, λ)

is active at time di, which happens if and only if λ is not satisfied by ξ1, . . . , ξn,
the word v′ici must not map it to cl i|pipes3|s1,µ(λ). If cl i|tester |levelλ is of
type INC(λ), the only way to ensure this is to use the letter b when the border
of inactive area lies at the first row of cl i|tester |levelλ. Thus each unsatisfied
λ ∈ Ci implies an occurrence of b in corresponding segment of v′i:

Lemma 2.9. There are at least p occurrences of the letter b in the word v′i.

Proof. Let λ1, . . . , λp be the unsatisfied literals of Ci. From Lemma 2.7 it follows
easily that

cl i|tester |levelλk
| (1, λk) ∈ Sdi+3κ(λk)

for each k ∈ {1, . . . , p}. The part cl i|tester |levelλk
is of type INC(λk), which

implies that any path of the length
(

d− 3
)

− (di + 3κ(λk))

starting by a takes cl i|tester |levelλk
| (1, λk) to the state cl i|λ, which lies outside

Sd−3, as it is implied by Lemma 2.5(2). We deduce that wdi+3κ(λk)+1 = b.

By Lemma 2.8 there are at most two occurrences of b in v′i, so we get p ≤ 2
and there is at least one satisfied literal in Ci.

References

References

[1] Bonizzoni, P., Jonoska, N., 2011. Regular splicing languages must have a
constant. In: Mauri, G., Leporati, A. (Eds.), Developments in Language
Theory. Vol. 6795 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 82–92.

18

[2] Černý, J., 1964. Poznámka k homogénnym experimentom s konečnými au-
tomatmi. Matematicko-fyzikálny časopis 14 (3), 208–216.

[3] Eppstein, D., 1990. Reset sequences for monotonic automata. SIAM J.
Comput. 19 (3), 500–510.

[4] Grech, M., Kisielewicz, A., 2013. The Černý conjecture for automata re-
specting intervals of a directed graph. Discrete Mathematics & Theoretical
Computer Science 15 (3), 61–72.

[5] Martyugin, P., 2009. Complexity of problems concerning reset words for
some partial cases of automata. Acta Cybern. 19 (2), 517–536.

[6] Martyugin, P., 2011. Complexity of problems concerning reset words for
cyclic and eulerian automata. In: Bouchou-Markhoff, B., Caron, P., Cham-
parnaud, J.-M., Maurel, D. (Eds.), Implementation and Application of Au-
tomata. Vol. 6807 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 238–249.

[7] Olschewski, J., Ummels, M., 2010. The complexity of finding reset words
in finite automata. In: Proceedings of the 35th international conference on
Mathematical foundations of computer science. MFCS’10. Springer-Verlag,
Berlin, Heidelberg, pp. 568–579.

[8] Steinberg, B., 2011. The Černý conjecture for one-cluster automata with
prime length cycle. Theoret. Comput. Sci. 412 (39), 5487 – 5491.

[9] Trahtman, A. N., 2011. Modifying the upper bound on the length of mini-
mal synchronizing word. In: FCT. pp. 173–180.

[10] Travers, N., Crutchfield, J., 2011. Exact synchronization for finite-state
sources. Journal of Statistical Physics 145 (5), 1181–1201.

[11] Volkov, M., 2008. Synchronizing automata and the Černý conjecture. In:
Martín-Vide, C., Otto, F., Fernau, H. (Eds.), Language and Automata
Theory and Applications. Vol. 5196 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 11–27.

19

	1 Introduction and Preliminaries
	2 Main Result
	2.1 Proof Outline
	2.2 Description of the Graph G
	2.3 From an Assignment to a Word
	2.4 From a Word to an Assignment.

