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Abstract

We present a complete finite axiomatization of the unrdstliamplication problem for inclusion
and conditional independence atoms in the context of deperdlogic. For databases, our result
implies a finite axiomatization of the unrestricted imptioa problem for inclusion, functional, and
embedded multivalued dependencies in the unirelatiorsa.ca

1 Introduction

We formulate a finite axiomatization of the implication pledn for inclusion and conditional indepen-
dence atoms (dependencies) in the dependence logic comtexinput of this problem is given by a
finite set® U {¢} consisting of conditional independence atoms and inafuatoms, and the question
to decide is whether the following logical consequence $old

S E 6. )

Independence logi¢ [12] and inclusion lodic [6] are receariants of dependence logic the semantics
of which are defined over sets of assigments (teams) ratharatsingle assignment as in first-order

logic. By viewing a teamX with domain{z1,...,zx} as a relation schem& [{z1,...,zx}], our
results provide a finite axiomatization for the unrestddtaplication problem of inclusion, functional,
and embedded multivalued database dependenciessdyes, . . ., zx }.
Dependence logi¢ [24] extends first-order logic by depend@tomic formulas
=(x1,...,%n) (2)
the meaning of which is that the valueof is functionally determined by the valuesof;, . .., x,_1.

Independence logic replaces the dependence atoms by imdkspee atoms
ylzZ,

the intuitive meaning of which is that, with respect to aneéiwalue ofz, the variableg/ are totally
independent of the variables Furthermore, inclusion logic is based on inclusion atofrth®form

£y,
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with the meaning that all the values @fappear also as values fgr By viewing a teamX of assign-

ments with domaifz1, ...,z } as a relation schem& [{z1, ...,z }], the atoms=(Z), ¥ C ¥, and
yLzZ correspond to functional, inclusion, and embedded multacddatabase dependencies. Further-
more, the atoma=(z1, . . ., ;) can be alternatively expressed as

TnLay . ap_1%n,

hence our results for independence atoms cover also thewtese dependence atoms are present.

The team semantics of dependence logic is a very flexibledbiamework in which various no-
tions of dependence and independence can be formalize@nBepce logic and its variants have turned
out to be applicable in various areas. For example, Viddnmand Abramsky have recently axiomatized
and formally proved Arrow’s Theorem from social choice theand, certain No-Go theorems from
the foundations of quantum mechanics in the context of inddpnce logic [1]. Also, the pure inde-
pendence atorjil Z and its axioms has various concrete interpretations sustdapendenc&’ 1l Y
between two sets of random variables|[11], and independeneztor spaces and algebraically closed
fields [21].

Dependence logic is equi-expressive with existential séaarder logic (ESO). Furthermore, the
set of valid formulas of dependence logic has the same codiypkes that of full second-order logic,
hence it is not possible to give a complete axiomatizationlegendence logi¢ [24]. However, by
restricting attention to syntactic fragmenits|[25| 13, 17pg modifying the semantic$ [7] complete
axiomatizations have recently been obtained. The axi@a#iin presented in this article is based on the
classical characterization of logical implication betwaependencies in terms of tidaseprocedure
[18]. The novelty in our approach is the use of the so-cdliedteam semantics of independence logic
to simulate the chase on the logical level using only indosind independence atoms and existential
guantification.

In database theory, the implication problems of variougs$ypf database dependencies have been
extensively studied starting from Armstrong’s axiomatiiza for functional dependencies|[2]. Inclu-
sion dependencies were axiomatized[ih [4], and an axioataiz for pure independence atoms is
also known (see [22, 11, 16]). On the other hand, the imptingtroblem of embedded multivalued
dependencies, and of inclusion dependencies and funttiepandencies together, are known to be
undecidable[14, 15/ 5], hence simple axiomatization {faild yield a decision procedure) is deemed
impossible. On the other hand, the unrestricted implicgpimblem of inclusion and functional depen-
dencies has been finitely axiomatized[in][19] using a sceddttribute Introduction Ruleghat allows
new attribute names representing derived attributes totneduced into deductions. These new at-
tributes can be thought of as implicitly existentially gtiied. Our Inclusion Introduction Rulés
essentially equivalent to the Attribute Introduction Rofg19]. It is also worth noting that the chase
procedure has been used to axiomatize the unrestricteitatiph problem of various classes of de-
pendencies, e.glemplate Dependenci¢®3], and Typed Dependencig8]. Finally we note that the
role of inclusion atom in our axiomatization has some siritiks to the axiomatization of the class of
Algebraic Dependencid26].

2 Preliminaries

In this section we define team semantics and introduce deperdindependence and inclusion atoms.
The version of team semantics presented here is the Lax dgally introduced in[[6], which will
turn out to be valuable for our purposes due to its intergimiaf existential quantification.



2.1 Team semantics

The semantics is formulated using sets of assignmentsidalens instead of single assignments. Let
M be a model with domair/. An assignmens of M is a finite mapping from a set of variables into
M. A teamX over M with domain DonfX) = V is a set of assignments frointo M. For a subset
W of V, we write X | W for the team obtained by restricting all the assignment¥ o6 the variables
in W.

If s is an assignment; a variable, and € A, thens[a/z] denotes the assignment (with domain
Dom(s)U{x}) that agrees with everywhere except that it mapg$o a. For an assignment and a tuple
of variablest = (1, ..., z,,), we sometimes denote the tuglz, ), ..., s(z,,)) by s(Z). For a formula
¢, Var(¢) and F(¢) denote the sets of variables that appeat and appear free i, respectively. For
a finite set of formula& = {¢1,..., ¢, }, we write VaKX) for Var(¢,) U ... U Var(¢,,), and define
Fr(X) analogously. When using set operatians i andz \ ¢ for sequences of variablésandy, then
these sequences are interpreted as the sets of elemergseftguences.

Team semantics is defined for first-order logic formulas devis:

Definition 3 (Team semantics)Let M be a model and IeX be any team over it. Then

e If ¢is afirst-order atomic or negated atomic formula, then=x ¢ if and only if forall s € X,
M =5 ¢ (in Tarski semantics).

e M Ex yV@ifandonlyifthere ar& andZ suchthatX = Y UZ andM =y ¢ andM =z 6.
e MExyAfifandonlyif M Ex ¢ andM Ex 6.

e M =x vy if and only if there is a functio’ : X — P(M)\{0} such thatM =x(p/.) ¥,
whereX [F/v] = {s[m/v] : s € X, m € F(s)}.

o M =x Yoy ifand only if M =x(ar/0) ¥, whereX [M/v] = {sm/v] : s € X,m € M}.
The following lemma is an immediate consequence of DefiniBo

Lemma 4. Let M be a model X ateam andix; ... 3x,¢ a formula in team semantics setting where
x1,...,T, IS asequence of variables. Then

M Ex Fzy ... Fw,¢ iff for some functionF” : X — P(M™) \ {0}, M Ex(r/ay..0) ¢
whereX[F/x1...xz,) := {s[a1/x1] ... [an/xn] | (a1,...,a,) € F(s)}.

If M Ex ¢, then we say thak satisfiesp in M. If ¢ is a sentence (i.e. a formula with no free
variables), then we say thatis true in M, and write M |= ¢, if M =g, ¢ where{()} is the team
consisting of the empty assignment. Note th@} is different from theempty teanf) containing no
assignments.

In the team semantics setting, formulas alogical consequencef ¢, written ¢ = 1, if for all
modelsM and teamsX, with Fr(¢) U Fr(y)) C Dom(X),

M|Zx¢7$/\/l)=xw

Formulasp andt) are said to béogically equivalenif ¢ = ¢ andy = ¢. Logics£ and£’ are said to
be equivalentf = £/, if every £L-sentence is equivalent to som£’-sentence), and vice versa.



2.2 Dependencies in team semantics
Dependence, independence and inclusion atoms are givéolltheing semantics.

Definition 5. Let # be a tuple of variables anga variable. Then=(Z, y) is adependence atomith
the semantic rule

o M =x=(&,y) ifand only if for anys, s’ € X with s(Z) = §'(Z), s(y) = §'(y).

LetZ, iy andz be tuples of variables. Thehl z z'is aconditional independence atonith the semantic
rule

e M Ex ¢ Lz Zifand only if for anys, s’ € X with s(¥) = §'(Z) thereis as” € X such that
s"(Z) = s(7), s"(§) = s(§) ands”(2) = ' (2).

Furthermore, we will write? | ¢/ as a shorthand fa¥ Ly 4, and call it apure independence atom
Let Z# andy be two tuples of variables of the same length. Thien i/ is aninclusion atonwith the
semantic rule

e M =x & C gifandonlyif foranys € X thereis as’ € X such that(Z) = /(7).

Note that in the definition of an inclusion atafhC 7/, the tuplest andy may both have repeti-
tions. Also in the definition of a conditional independentamay |z Z, the tuplest, i andz are not
necessarily pairwise disjoint. Thus any dependence atd® y) can be expressed as a conditional
independence atom |z . Also any independence atahl z Z can be expressed as a conjunction of
dependendence atoms and an independenceg@tang z* wherez, ¢ andz™ are pairwise disjoint.
For disjoint tuples?, i and Z, independence atom | z Z’ corresponds to the embedded multivalued
dependency — g]Z. Hence the class of conditional independence atoms camespto the class of
functional dependencies and embedded multivalued depeiedan database theory.

Proposition 6 ([8]). Lety Lz Z be a conditional independence atom wh&rej and Z are tuples of
variables. Ifg* lists the variables inj — # U Z, 2* lists the variables i — ¥ U ¢, and @ lists the
variables iny N 2’ — Z, then
MExjlsZe MEx T Lz 2N \ =(Fu).
ueEU

The extension of first-order logic by dependence atoms,itiondl independence atoms and inclu-
sion atoms is calledependence logiFO(=(. . .))), independence logiFO(_L.)) andinclusion logic
(FO(Q)), respectively. The fragment of independence logic cairigionly pure independence atoms
is calledpure independence logiwritten FO(_L). For a collection of atom§ C {=(...), L., C}, we
will write FO(C) (omitting the set parenthesis 6J for first-order logic with these atoms.

We end this section with a list of properties of these logics.

Proposition 7. For C = {=(...), L, C}, the following hold.
1. (Empty Team Property) For all modeld and formulasy € FO(C)

Mg 6.
2. (Locality [6]) If ¢ € FO(C) is such that F(¢) C V, then for all models\t and teams¥X,,

MEx ¢ & MExv o



3. [6] An inclusion atom¢ C 7 is logically equivalent to the pure independence logic folam
VUl’UgE((g# f/\g#f)\/(’l}l 751)2/\27537)\/((’1}1 :vg\/Z:gj')/\Z'ivlvg))
wherev;, v, andZ are new variables.

4. [10] Any independence logic formula is logically equiMatl to some pure independence logic
formula.

5. [24,[12] Any dependence (or independence) logic senteniselogically equivalent to some
existential second-order senteng® and vice versa.

6. [9] Any inclusion logic sentencgis logically equivalent to some positive greatest fixpabgid
sentencey*, and vice versa.

3 Deduction system

In this section we present a sound and complete axiomatizédr the implication problem of inclu-
sion and independence atoms. The implication problem isngy a finite sek U {¢} consisting of
conditional independence and inclusion atoms, and thetigues to decide whethext = ¢.

Definition 8. In addition to the usual introduction and elimination rufesconjunction, we adopt the
following rules for conditional independence and inclusatoms.

1. Reflexivity:
ZC 7
2. Projection and Permutation:
ifz1...20 Cyr...yn, thenz;, ...z, Cysy oo Uiy s
for each sequendg, .. ., i\ of integers from{1,...,n}.
3. Transitivity:
if ZC§AGHCZ thent C 7.
4. Identity Rule:
if ab C cc A ¢, theng,

whereg’ is obtained fromp by replacing any number of occurrencesidfy b.

5. Inclusion Introduction:
if @ C b, thendz C be,

wherez is anewvariable.

6. Start Axiom: ~
ac CarANb Lz T ANdx Cdc

whereZ is a sequence of pairwise distinetwvariables.

7. Chase Rule:
if y Lz ZAabC zy Aadc C 27z, thenabe C ryz.



8. Final Rule: . B B .
if acCarANb_ Lz ¥ N adbx C abe, thenb L c.

In an application of Inclusion Introduction, the variables called the new variable of the deduction
step. Similarly, in an application of Start Axiom, the vdnlies of # are called the new variables of the
deduction step. A deduction froRiis a sequence of formuldsy, . . ., ¢,) such that:

1. Eachy; is either an element df, an instance of Reflexivity or Start Axiom, or follows fromen
or more formulas oE U {¢1, ..., ¢;—1 } by one of the rules presented above.

2. If ¢; is an instance of Start Axiom (or follows froB U {¢1, ..., ¢;—1} by Inclusion Introduc-
tion), then the new variables af(or the new variable’) must not appear i& U {¢1, ..., $i—1}.

We say thatp is provable fromX, written 3 + ¢, if there is a deductiofig, . .., ¢,) from X with
¢ = ¢, and such that no variablesdnare new ing,, ..., ¢,.

4 Soundness

First we prove the soundness of these axioms. Identity RdeSaart Axiom are sound if we interpret
all the new variables as existentially quantified.

Lemma 9. Let (¢4,...,¢,) be a deduction fronkt, and lety list all the new variables of the de-
duction steps. LetM and X be such thatM =x ¥ and Va(X,) \ ¥ € DomX) whereX,, :=
YU{¢1,...,0n}. Then

M x 37 \ Sn.

Proof. We show the claim by induction on. So assume that the claim holds for any deduction of
lengthn. We prove that the claim holds for deductions of lenght 1 also. Let(¢1,...,¢,+1) be a
deduction fron®, and lety andZ'list all the new variables of the deduction steps. . . , ¢, andeg,,+1,
respectively. Note thab,,,; might not contain any new variables in which cass empty. Assume
that M =x X for someM and X, where VatX, ;1) \ ¥Z € Dom(X). By Propositiori LR we may
assume that V@E,, 1) \ 7 = Dom(X). We need to show that

M =x 337 \ Snpa.
By the induction assumption,
M =x 37 \ S
when by Lemm&l4 there is a functidh: X — P (M7 \ {}} such that

whereX’ := X[F/{]. It suffices to show that

M Ex 37 \ Zapa.

If ¢,,11 is aninstance of Start Axiom, or follows froRy, by Inclusion Introduction, then by Lemrhh 4 it
suffices to find & : X’ — P(M/#)\ {0}, such thatM = x/(¢/z ¢ni1. For this note that no variable
of Zis in Var(¥,), and hence by Propositi@ii VA = x/(c/z . follows from (10). Otherwise, if'is
empty, then it suffices to show thl =x/ ¢y, 11.



The cases wherg,,; is an instance of Reflexivity, or follows fro,, by a conjunction rule,
Projection and Permutation, Transitivity or Identity ateaghtforward. We prove the claim in the
cases where one of the last four rules is applied.

e Inclusion Introduction: Thew,,,; is of the formadz C be whered@ - bis in Y, Lets € X',
SinceM Ex/ @ C bthereis as’ € X' such thats(a@) = s'(b). We letG(s) = {s’(¢)}. Since
x ¢ Dom(X') we conclude that |= x (/4] dx C be.

e Start Axiom: Theng,,.; is of the formaz C @z A b Lz ¥ A aZ C ac. We defineG : X' —
P(MI#)\ {0} as follows:

G(s)={s(@) | s’ € X', §'(a) = s(a)}.
Again, sincer does not list any of the variables in DOXY), it is straightforward to show that

TAb Ls @ AaGE C ac

U

M Exa/q a¢ C

ST

e Chase Rule: Then,,; is of the formaggg ZyZ where

§LlzZAabC FGAGEC 7€ X,
Lets € X’'. SinceM |=x @b C & A @¢ C #Z there ares’, s € X’ such thats' () = s(ab)
ands”(¥Z) = s(dac). Sinces'(¥) = s'(¥) andM =x/ i Lz Z, there is asgp € X’ such that
s0(#yZ) = s(abé) which shows the claim.

e Final Rule: Thenp, . is of the formb L; &where
GeC arAb Ly TAGT C abl e L,.

Lets,s’ € X' be such thas(d) = s'(d). SinceM [=x. a¢ C @z there is asp € X' such
that ' (@¢) = so(@f). SinceM k=x: b Lz Z ands(@) = so(@) there is as; € X’ such
that s, (@Z) = s(a@b)so(¥). And sinceM |=x. @bF C a@bé there is as” € X’ such that
s (@he) = s1(abT). Thens” (@b&) = s(ab)s'(¢) which shows the claim and concludes the proof.

o
This gives us the following soundness theorem.

Theorem 11. LetXU{¢} be afinite set of conditional independence and inclusiomatoThert = ¢
if X F ¢.

Proof. Assume tha®: + ¢. Then there is a deductid@s, ..., ¢,) from X such thatp = ¢,, and
no variables inp are new ings, ..., ¢,. Let M andX be such that VA& U {¢}) C Dom(X) and
M Ex ¥. We need to show tha! |=x ¢. Lety list all the new variables sy, . . ., ¢,,, and letZ list
all the variables in V4p2,,) \ 7 which are notin DorfiX). We first letX’ := X[0/z] for some dummy
sequenc® when by TheorefllZl2M |=x+ . Then by TheoremlaM = 37 A\ ¥, implying there
exists aF : X’ — P(M7)\ {p} suchthatM |=x~ ¢, for X" := X'[F/7]. SinceX” = X[0/Z][F /7]
and no variables of or Z appear inp, we conclude by Theoreni .2 th&t = x ¢.

O



5 Completeness

In this section we will prove that the set of axioms and rulesspnted in Definitiof]8 is complete
with respect to the implication problem for conditional @mendence and inclusion atoms. For this
purpose we introduce a graph characterization for the gaptin problem in subsectignb.1. This char-
acterization is based on the classical characterizatidheoimplication problem for various database
dependencies using the chase procedure [18]. The comesstenoof is presented in subsecfiod 5.2.

5.1 Graph characterization

We will consider graphs consisting of vertices and edgesléabby (possibly multiple) pairs of vari-
ables. The informal meaning is that a vertice will corregptinan assignment of a team, and an edge
betweens ands’, labeled byuw, will express thak(u) = s’(w). The graphical representation of the
chase procedure is adapted frami[20].

Definition 12. Let G = (V, E) be a graph wher& consists of non-directed labeled eddesw)s
whereab is a pair of variables, and for every pdir, w) of vertices there can be severdl such that
(u,w)qp € E. Then we say that andw areab-connected, writtem ~;, w, if w = w anda = b, or if
there are verticesy, . . ., v,, and variables, .. ., x,, such that

(u, UO)a:cm (U07 Ul):co:clv R (Unflv Un):cn,lxnv (Una w)xnb ek

Next we define a grapi's; » in the style of Definitio IR for a sét U {¢} of conditional indepen-
dence and inclusion atoms.

Definition 13. Let ¥ U {¢} be a finite set of conditional independence and inclusiomatoWe let
Gz, = (Unen Vi, Upen En) whereG,, = (V,,, E,,) is defined as follows:

o If pish Lz @ thenVy := {v", v~} andEy := {(v",v )aa | @ € @}. If pisa@ C b, then
Vo := {v} andEy := 0.

e Assume thats,, is defined. Then forevery € V,, andxy ...z C 1 ... yx € X we introduce a
new verteXvpe,, and new edgey, vnew )a;y:» for 1 < i < k. Also for everyu, w € V,,, u # w,
andy Lz Z € ¥ whereu ~,, w, for x € Z, we introduce a new vertex,.,, and new edges
(U, Unew)yys (W, Vnew )22, fOry € gy andz € £z. We letV,, andE,, ., be obtained by adding
these new vertices and edges to the §gtandF,,.

Note thatGs, » = Gy if £ = 0.

This gives us a characterization of the following form. &at of writingM =x ¢ we will now
write X |= ¢, since the satisfaction of an atom depends only on the f€am

Theorem 14. LetX U {¢} be a finite set of conditional independence and inclusiomato
1 If¢isar...ar Cby...bg, thenX = ¢ < Jw € Vi 4 (v ~gp, wforall 1 <i <k).
2. Ifgisb Lg @ thend = ¢ < Jv € Vi 4 (v ~pp vandv™ ~. v forall b € @b ande € aé).

Proof. We deal with case$ and2 simultaneously. First we will show the direction from rigbtleft.
So assume that the right-hand side assumption holds. WetblaoW = ¢. Let X be a team such that

X E . We show thatX |= ¢. For this, lets, s' € X be such thas(@) = s'(@). If ¢ isb Lz &, then



we need to find a” such thats” (@b¢) = s(a@b)s'(¢). If pisas ...ax C by ... by, then we need to find
as” such thats(a; ...ax) = s” (b1 ... bx). We will now define inductively, for each natural numhber

a functionf,, : V,, — X such thatf,(u)(z) = fn(w)(y) if (u,w)zy € E,. This will suffice for the

claim as we will later show.

e Assume that = 0.

1. if¢isay...ar Cby...bg, thenVy = {v} andE, = (), and we letfy(v) := s.

2. Ifpisbh Lz thenVy = {vt, v} andEy = {(vF, v )aa | a € @}. We let fo(vT) := s
andfo(v™) :=s". Thenf(v*)(a) = f(v~)(a), fora € @, as wanted.

e Assume that = m+ 1, and thatf,,, is defined so thaf,,, (v)(z) = fi(w)(y) if (4, w)zy € Enm.
We let fr11(u) = fi(u), foru € V,,. Assume thaby,ew € Vint1 \ Vin and that there are
u € Vi, andzy...ax; C yi...y € X such that(u, vnew)aiy; € Emy1 \ Em, forl < i < 1.
SinceX E z1...2; C y1...y, thereis asy € X such thatf,,+1(u)(x;) = so(y:), for
1<i<l. Weletf,+1(tnew) := so Whenf,i1(u)(x;) = frt1(Vnew) (i), forl <i <1, as
wanted.

Assume then that,ey, € Vi41 \ Vi, and that there are, w € V,,,, u # w, andy Lz Z € ¥ such
that (u, Unew)yy, (W, Unew )22 € Emy1 \ Em, fory € Zyandz € £z. Thenu ~g, w in G, for

x € Z. This means that there are vertiegs. . . ,v,, and variabley, ..., z,, for z € &, such
that
(U5 00) w05 (V05 V1)zomrs - - -5 (Vn—15Vn)zn 1205 (U, W)zpz € B
By the induction assumption then
fm()(x) = fm(vo)(w0) = ... = fm(va)(xn) = fm(w)(2).

Hence, sinceX | ¢ Lz Z, there is asy such thatso(Z452) = fi(u)(ZY) fm(w)(Z). We
let fry1(vnew) 1= so and conclude thaf,, 1 (u)(y) = frri(Vnew)(y) and frp1(w)(2) =
fm+1(vnew)(2), fory € £y andz € ZZ. This concludes the construction.

Now, in casdl there isa € Vs, such that™ ~p, v andv™ ~.. v forall b € @b andc € ac
Let n be such that each path witnessing this isdp. We want to show that choosing as f,,(v),
s"(@bé) = s(ab)s'(¢). Recall thats = f,(vT) ands’ = f,(v™). First, letb € @b. The case where
v = vt is trivial, so assume that # v in which case there are vertices, . . . ,v,, and variables
Zo,. .., T, Such that

(U+; UO)bzoa (U07 Ul)I0Z1) ey (Un—h ’Un)zn,lwn; ('Unz U)J)n,b S En

when by the constructiony,,(v*)(b) = fn(v)(b). Analogouslyf,(v™)(c) = fn.(v)(c), forc € ¢,
which concludes this case.

In casé P s” is found analogously. This concludes the proof of the dioadirom right to left.

For the other direction, assume that the right-hand sidenasson fails inGy, 4. Again, we deal
with both cases simultaneously. We will now construct a téasuch thatX = ¥ andX (= ¢. We let
X :={s, | u € V& 4} where each, : Var(X U {¢}) — P(Vx 4V 1ol s defined as follows:

su(z) == H {we Ve g | u gy wh.
yevar(Zu{eé})

We claim thats, (z) = su(y) © u ~4y w. Indeed, assume that~,, w. If now v is in the set with
the indexz of the producs,,(z), thenu ~, v. Sincew ~,, u, we have thatv ~,, v. Thusv is in the



set with the index of the product,, (y). Hence by symmetry we conclude that(z) = s,,(y). For
the other direction assume that(x) = s, (y). Then consider the set with the indgf the product
sw(y). Sincew ~, w by the definition, the vertew is in this set, and thus by the assumption it is in
the set with the indey of the products,, (z). It follows by the definition that, ~, w which shows
the claim.

Next we will show thatX = ¥. So assume that Lz Z € ¥ and thats,,, s,, € X are such that
su (%) = sw(Z). We need to find &, € X such thats, (Z92) = 5, (Z¥))sw(Z). Sinceu ~z; w, for
x € &, thereis a € Gy 4 such tha(u, v),,, (w,v).. € Ex 4, fory € Zyandz € £z. Thens, (7y) =
s, (Zy) ands,, (¥2) = s,(ZZ), aswanted. Incase, ...2; Cy1.. €S, X Fx1...x; Cyr...y
is shown analogously.

It suffices to show thak [~ ¢. Assume first that isb Ly ¢ Thens,+ (@) = s,-(d), but by the
assumption there is ne € Vs, ,, such thaw™ ~, v andv™ ~.. v forall b € @b andc € @ Hence
there is nos, € X such thats, (@b) = s, (@b) ands, (@) = s,- (@é) whenX b~ b Lz é In casep is
ai...ap Cby...bg, X £ ¢is shown analogously. O

5.2 Completeness proof

We are now ready to prove the completeness. Let us first dejine sotation needed in the proof. We
will write « = y for syntactical identityy = y for an atom of the form:y C zz implying the identity

of z andy, andZ = ¢ for an conjunction the forn;l\iﬂﬂ pr,(Z) = pr,(y). LetZ = (z1,...,2,) bea
sequence listing VAE U {¢}). If T, is a vector of lengthz| (representing vertex of the graptGs. ,),
andp = (z;,, ..., ;) is a sequence of variables fraththen we writep,, for

(Pr, (Z0), - -, Pr;, (£0))-
Theorem 15. LetX U {¢} be a finite set of conditional independence and inclusiomator herk + ¢
if ¥ = ¢.

Proof. Let ¥ and¢ be such thaE | ¢. We will show that® - ¢.
We have two cases: either

foralll <k <m,or

1. ¢iswi ...z, C xj ...x;, and, by Theorem 14, there isac Vs 4 such thaw ~a oz, W

2. ¢is b 1z cand, by Theoremn 14, there imae Vx ¢4 suchthat™ ~, ., vandv™ ~, ., v forall
z; € @b andz; € ac,
Using this we will show how to create a deductionydiom . We writeX -* 4 if 1) appears as a step

in the deduction. Recall that the new variables introducetthé deduction steps previously must not
appear inp but may appear inp. We will introduce for eachv € V5, 4 a sequenceg,, of lengthn (and

—

possibly with repetitions) such that-* z,, C Z. For each(u, w).,.;, € Ex 4 we will also show that
S pr(#,) = pr;(Z. ). We do this inductively fol;, and £, as follows:

e Assume that: = 0. Then we have two cases:

1. Assume that is z;, ...x;,, C zj, ...xz;, whenV, := {v} andEj, := (. Then we let
¥, := ¥ in which case we can derivg, C & by Reflexivity.

2. Assume thab isb Lz @whenVy := {vt, v~} andEy := {(vt, v )y,a, | 2; € @}. First
we use Start Axiom to obtain

@@ C ac* Ab Lz & Naet Cac (16)
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wherec* is a sequence of pairwise distinct new variables. Then usirigsion Introduction
and Projection and Permutation we may deduce

ad (17)

from @z C ac whered lists 7 \ @¢ andb**d* is a sequence of pairwise distinct new
variables. By Projection and Permutation and Identity Rugemay assume thab* & d*
has repetitions exactly whe@cd has. Therefore we can list the variablesibfe*d* in a
sequencé’,- of length|Z| where

&'E*E*Cﬁ - (pr“ (fv*)v cey pril (f’Uf))?

for @béd = (z4,,...,x;). Thend,-b,-c,-d,- = ab*é*d*, and we can derive,- C ¥
from (I7) by Projection and Permutation. We alsoiigt := & Whena + b,+Cy+dy+ =
abcd. Thend,+ = d,- and#,+ C ¥ are derivable by Reflexivity which concludes the case
n=0.

e Assume that: = m + 1 and for eachu € V,, there is a sequencg, such thats +* ¥, C ¥
and for eacl{u, w)y,.; € Ep, alsoX ¥ pr(Z,) = pr;(Zy). Assume thatnew € Vi1 \ Vin
is such that there are € V,,, andz;, ...x;, C xj, ...z, € X for which we have added new
edges(u,vnew)zikxjk_ to Vipg1, for 1 < k < I. We will introduce a sequencg,, .. such that
Y E* Ty, CTandE B pr, (Zy) = prj, (To,., ), forl <k <1

By Projection and Permutation we deduce first
pr;, (Zu) - - pr;, (Zy) C x4y .y, (18)

from Z, C Z. Then we obtain

pry, (Zu) ... pr, (Zu) C zj, .. .25 (19)
from (18) andz;, ... x;, C zj, ... xj, by Transitivity.

Then by Reflexivity we may deduce,pfz.,) C pr; (Z.) from which we derive by Inclusion
Introduction

pl’il(fu)yl c pr;, (fu)pril(fu) (20)
wherey; is a new variable. Then frori (1L9) aid [20) we derive by IdgRitle
y1pr;, (2 ). pr, (%) Cxjy ...z, (22)

Iterating this procedurktimes leads us to a formula

/\ pri, (Zu) =Yk Ayr-..y1 C xj, ... 2, (22)
1<k<I
wherey, ...,y are pairwise distinct new variables. Lef, ,...,z;, listZ\ {z;,,...,z;}.
Repeating Inclusion Introduction for the inclusion atonfZ&) gives us a formula
yr--yr STy, (23)
wherey;.1, ...,y are pairwise distinct new variables. Lighow denote the sequenge. ..y
when
A P (@) =P ) AT C -, (24)

1<k<l
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is the formula obtained froni_(22) by replacing its inclusatom with [23). By Projection and
Permutation and Identity Rule we may assume thatir= pr,. (¢) if and only if j, = ji, for

1 < k <!'. Analogously to the case = 0, we can then order the variablesipas a sequence
Ty,.,, Of length|Z| such that py (Zo,...) = pr. (), for1 <k <1’. Then

A P (E0) =P, (Fone) AP, (Foner,) P, (Fone,) € 2, -, (25)

1<k<I

is the formula[(24). By Projection and Permutation we can deducer,, . C & from the

inclusion atom in[(25). Hencg,,., is such thats -* 7, C ZandX +* pr, (Z,) =
pr;, (Lo, ), for 1 < k& < 1. This concludes the case for inclusion.

Assume then that,cw, € Vi1 \ Vi is such thatthere arg w € V;,, v # w, andgq Lz 7 € 3 for
which we have added new edges vnew )z, (W, Unew)z;z; 10 Ving1, for z; € pgandz; € pr.
We will introduce a sequencg,, . such that: -* %, . C &, andX -* pr,(Z,) = pr;(@u,... )
and¥ =" pr;(Zy) = pr;(o,., ), for z; € pgandz; € pi. The latter means that

o > o o oo S ~
Y PuGu = Popew Qonew N PwTw = Prpen Tonew -

First of all, we know that. ~, », w in G,, for all z;, € p. Thus there are vertices, ..., v, €
V.» and variables;, ..., x;, such that
(’LL, 'UO)zkin; ('U07 ’Ul)zmzil ) ('Un—la ’Un)%'n,liin ) (Un; w)zinwk € En,.

Hence by the induction assumption and Identity Rule, thex&.aand,, suchthat: -* 7, C ¥
andX +* %, C #, andX F* pr,(Z,) = pry(Zw), for z;, € p. In other words,

SH Py = Dw- (26)

By Projection and Permutation we first derive

Pudu € PG (27)
and

PuwTw C DT (28)
fromz, C ¥ and¥,, C %, respectively. Then we derive

Pulw C PF (29)
from p,, = p,, and [28) by Identity Rule. By Chase Rule we then derive

PuduTw € DT (30)

from ¢ L; 7, (Z4) and[(2P). Now it can be the case thate pg andz; € 7, but pr(Z,) #
pr,(Zw). Then we can derive
pr; (Zu)pr; (Zw) C ziws (31)

from (30) by Projection and Permutation, and

PuuTu (PT;(Z0) /P (Tw)) € PG (32)

12



from (31) and[(3D) by Identity Rule. Let now be obtained fron¥,, by replacing, for each
x; € pgN 7, the variable p(Z,,) with pr,(Z,,). Iterating the previous derivation gives us then

7= Tw A PuGu”™ S PqT- (33)

Let § list the variables in? \ pgr. From the inclusion atom i .(83) we derive by Inclusion
Introduction

Pufut™ §" C pars (34)
wheres™* is a sequence of pairwise distinct new variables. Thigh ™ s* has repetitions at least

—

wherepgrs has, and hence we can defing_, as the sequence of lengtf| where

Pudul™ 8" = (pl‘il (fvnew )y pr;, (fvnew ) (35)
for pgrs = (ziy, ..., xi,). TheNDy, . Gonow Tonew Svmew = Pudu’ 8%, and we can thus derive
Tppew CT (36)

from (34) by Projection and Permutation. Moreover,

Pones Qonew = Pudu (37)
can be derived by Reflexivity, and

Ponew Tonew = PuTw (38)
is derivable sincd(38) is the conjunctiongf = p,, in (26) and™ = 7, in (83). Hencer,_, is
such that

Y Toper € TN Popen Gonew = Pul N Popery Tonew = Puwlw-
This concludes the case= m + 1 and the construction.
Assume now first thap is @ C b whered := Ty - Ti,, andb := Zj, ...xj,. Thenthereis a

w € Vy 4 such thaw ~agz, W for1 < k < m. Letn be such that all the witnessing paths aré&-in
and letl < k < m. We first show that

SEpr (7,) = pr;, (Zw)- (39)
If w = v andi, = jg, then [39) holds by Reflexivity. lfv # v or i # ji, then there are vertices
vo, ...,V € V, and variables;,, . .., z;, such that
('U; UO)wikwloa (UO; 'Ul)wlowll gty (Up—la ’UP)J«'LT),liElp’ (Up; w)zzpzjk S En

Then by the previous construction,
YR pr;, (Ty) = P, (o) Ao A pr, (Ty,) = pr;, (Zw) (40)

whenX =* pr; (Z,) = pr;, (7.) by Identity Rule. Therefore we conclude that

Jk
S Gy = by (41)

SinceX H* Z,, C Z by the construction, then by Permutation and Projection

Y by C b (42)

13



Now 7, = 7 as defined in case of stepn = 0, and thereforé,, = a. Thus we geti C b from (@)
and [42) using repeatedly Identity Rule. Since no new véghbppear iri C b, we conclude that
SHach.

Assume then thap ing_;i ¢whenthereis a € Vs 4 such thav™ ~,,,, v andv™ ~g i, v for
all z; € @b andz; € ac. Analogously to the previous case, we can now find a sequénsach that

SHZ,CF (43)
and B B
Y Gyby = Gy byt A GyCy = @y-Cp—. (44)
By Projection and Permutation we may deduce
ayby, Gy C abé (45)
from (43), and using repeatedly Projection and Permutatimhldentity Rule we get
Gyt byt €, C @b (46)
from (44) and[(4b). Note that,: b, ¢,- = abc* and that we have already derived C dc* and

b Lz ¢* with Start Axiom (see case of stepn = (). Therefore we can derive Lz ¢ with one
application of Final Rule. Since no new variables appeéarin; ¢, we concludethat b 1z O

By Theoreni Il and Theordm]15 we now have the following.

Corollary 47. LetXU{¢} be afinite set of conditional independence and inclusiomatdrherk + ¢
if and only ifX |= ¢.

The following example shows how to deduce , ¢t ¢ 1,bandb L, cd-b 1, c.

Example 48.

ebl,ckcl,b:

1l.abCab Ae Ly b Aab C ab (Start Axiom)

2. ac C ac (Reflexivity)
.blgenab CabAac Cact abc C abe (Chase Rule)
. ab'c C abe F ach/ C acb (Projection and Permutation)
.abCab Ne Ly b Aach! Cacht ¢ L, b (Final Rule)

cd-bl,c

S|

ac Cacd ANb L, c Nacd C ac(Start Axiom)

ac’d’ C acd (Inclusion Introduction)

. ab C ab (Reflexivity)

.blycdNabCabAadd Cacdt abdd C abed (Chase Rule)
. abc’ C abe (Projection and Permutation)

.acCacd ANb Ly d ANabd Cabet b 1, ¢ (Final Rule)

O A WNR P oobrow

»

Our results shows that for any consequeﬁdgi ¢ of 3 there is a deduction starting with an appli-
cation of Start Axiom and ending with an application of FiRaile.
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