
HAL Id: hal-01146747
https://hal.science/hal-01146747

Submitted on 29 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Belief merging in Dynamic Logic of Propositional
Assignments

Andreas Herzig, Pilar Pozos Parra, François Schwarzentruber

To cite this version:
Andreas Herzig, Pilar Pozos Parra, François Schwarzentruber. Belief merging in Dynamic Logic of
Propositional Assignments. International Symposium on Foundations of Information and Knowledge
Systems - FolKS 2014, Mar 2014, Bordeaux, France. pp. 981-398. �hal-01146747�

https://hal.science/hal-01146747
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12803

To link to this article : DOI :10.1007/978-3-319-04939-7_19
URL : http://dx.doi.org/10.1007/978-3-319-04939-7_19

To cite this version : Herzig, Andreas and Pozos Parra, Pilar and
Schwarzentruber, François Belief merging in Dynamic Logic of
Propositional Assignments.(2014) In: International Symposium on
Foundations of Information and Knowledge Systems - FolKS 2014, 3
March 2014 - 7 March 2014 (Bordeaux, France).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12803/
http://oatao.univ-toulouse.fr/12803/
http://dx.doi.org/10.1007/978-3-319-04939-7_19
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Belief Merging

in Dynamic Logic of Propositional Assignments

Andreas Herzig1, Pilar Pozos-Parra2, and François Schwarzentruber3

1 Université de Toulouse, CNRS, IRIT, France
2 Universidad Juárez Autónoma de Tabasco, Mexico

3 ENS Rennes, IRISA, France

Abstract. We study syntactical merging operations that are defined semantically

by means of the Hamming distance between valuations; more precisely, we in-

vestigate the Σ-semantics, Gmax-semantics and max-semantics. We work with

a logical language containing merging operators as connectives, as opposed to

the metalanguage operations of the literature. We capture these merging opera-

tors as programs of Dynamic Logic of Propositional Assignments DL-PA. This

provides a syntactical characterisation of the three semantically defined merging

operators, and a proof system for DL-PA therefore also provides a proof system

for these merging operators. We explain how PSPACE membership of the model

checking and satisfiability problem of star-free DL-PA can be extended to the

variant of DL-PA where symbolic disjunctions that are parametrised by sets (that

are not defined as abbreviations, but are proper connectives) are built into the lan-

guage. As our merging operators can be polynomially embedded into this variant

of DL-PA, we obtain that both the model checking and the satisfiability problem

of a formula containing possibly nested merging operators is in PSPACE.

Keywords: belief merging, belief change, dynamic logic.

1 Introduction

To merge a vector of belief bases E = 〈B1, · · · , Bn〉 means to build a new belief base

∆(E). In the literature, E is called a profile, and ∆(E) is sometimes called the fusion of

E. Much efforts were spent on the characterisation of ‘good’ merging operations ∆ by

means of rationality postulates [14–16]. Beyond such families of abstract belief merging

operations satisfying the postulates, several concrete operations were also introduced

and studied in the literature. Some are syntax-based and others are semantic. The former

are also called ‘formula-based’, and the latter are called ‘model-based’ or ‘distance-

based’. An example of the former is the MCS operation [2], where each element Bi of

E is viewed as a set of formulas that is not closed under logical consequence and where

the construction of ∆(E) is based on the extraction of maximal consistent subsets of each

Bi of E. Such operations are syntax dependent: they do not guarantee that the merging

of logically equivalent profiles leads to merged bases that are logically equivalent.1

1 Two profiles E and E′ are logically equivalent if for every Bi in E there is a logically equivalent

B′j in E′ and the other way round, for every B′i in E′ there is a logically equivalent B j in E.

In contrast, syntax independence is guaranteed by the semantic merging operations,

whose most prominent are ∆Σ , ∆max, and ∆Gmax [19, 20]. These operations work on

valuations of classical propositional logic. Indeed, even when the elements of the in-

put profile are presented as formulas or sets thereof, the merging procedure starts by

computing their models. The output set of valuations is sometimes transformed into a

formula characterising the set, which can always be done because these operations are

presented in terms of a finite set of propositional variables.

Contrasting with the existing literature, the present paper studies concrete semantic

merging operations from a syntactic perspective: given a vector of formulas E, our aim

is to obtain a syntactical representation of the merged belief base ∆(E), for ∆ being ∆Σ ,

∆max, or ∆Gmax. As we have already said above, when the language is finite then it is

easy to construct a formula representing ∆(E): it suffices to take the disjunction of the

formulas describing the models of ∆(E), where each of these model descriptions is a

conjunction of literals. Is there a better, more direct way of building a syntactic repre-

sentation? In this paper we propose a powerful yet simple logical framework: Dynamic

Logic of Propositional Assignments, abbreviated DL-PA [1]. DL-PA is a simple instan-

tiation of Propositional Dynamic Logic PDL [7, 8]. Just as PDL, its language is built

with two ingredients: atomic formulas and atomic programs. In both logics, atomic for-

mulas are propositional variables. While PDL has abstract atomic programs, the atomic

programs of DL-PA are assignments of propositional variables to either true or false,

respectively noted p←⊤ and p←⊥. The assignment p←⊤ corresponds to an update by

p, while the assignment p←⊥ corresponds to an update by ¬p. Complex programs π

are built from atomic programs by the standard PDL program operators of sequential

composition, nondeterministic composition, finite iteration (the so-called Kleene star),

and test. Just as PDL, DL-PA has formulas of the form 〈π〉ϕ and [π]ϕ, where π is a

program and ϕ is a formula. The former expresses that ϕ is true after some possible exe-

cution of π, and the latter expresses that ϕ is true after every possible execution of π. For

example, the DL-PA formula 〈p←⊤∪ p←⊥〉ϕ captures the propositional quantification

∃p.ϕ, illustrating that DL-PA naturally captures Quantified Boolean Formulas (QBF).

It is shown in [1] that DL-PA formulas can be reduced to equivalent Boolean formulas.

Just as for QBFs, the original formula is more compact than the equivalent Boolean

formula. Star-free DL-PA has the same mathematical properties as the QBF reasoning

problems; in particular, model checking, satisfiability and validity are all PSPACE com-

plete. We believe DL-PA to be a more natural and flexible tool than QBF to reason about

domains involving dynamics due to its more elaborate account in terms of programs.

Our main contributions are polynomial embeddings of semantic belief merging op-

erators into DL-PA: to every profile E and merging operation ∆ we associate a DL-PA

formula ϕ(∆, E), and we prove that the merged profile ∆(E) has the same models as

ϕ(∆, E). Then ϕ(∆, E) may then be reduced to a Boolean formula, thus providing a

syntactical representation of ∆(E) in propositional logic. A further contribution of our

paper is a presentation of merging in terms of a recursive language with several merging

operators ∆σ in the object language, one operator per semantics σ. This contrasts with

the usual presentations in terms of metalanguage operations (where we systematically

use the term operator for connectives in the object language, while we reserve the term

operation for functions from the metalanguage).

The paper is organized as follows. In Section 2 we give the basic notation for propo-

sitional logic and recall the semantic definitions of the concrete merging operations ∆Σ ,

∆Gmax, and ∆max. In Section 3 we take a more syntactical stance: instead of viewing ∆

as an operation in the metalanguage, we introduce a recursive language with families

of n-ary merging operators in the object language and reformulate the above concrete

merging operations in that language. In Section 4 we recall DL-PA. In Section 5 we

embed the three merging operations into DL-PA. Section 6 concludes.

2 Background

We recall some standard notations and conventions for propositional logic, in particular

distances between its valuations, as well as the definitions of the three concrete Boolean

merging operators we are interested in.

2.1 Propositional Logic

Boolean formulas are built by means of the standard connectives ¬, ∨, etc. from a

countable set of propositional variables P = {p, q, . . .}. We will in particular use the

exclusive disjunction ⊕. We denote them by letters such as A, B, C; in particular, we

use B, B1, B2, etc. for Boolean belief bases, which we identify with Boolean formulas.

Contrasting with that, modal formulas—to be defined in the next section—will be

denoted by ϕ, ψ, etc. For a given Boolean formula A, the set of variables occurring in A

is noted PA. For example, Pp∨¬q = {p, q}.

A valuation associates a truth value to each propositional variable. We identify valu-

ations with subsets of P and use v, v1, v2, etc. to denote them. The set of all valuations is

V = 2P. Sometimes it will be convenient to view v as a function from Boolean formulas

into the set of truth values {0, 1} and to write v(p) = 1 when p ∈ v and v(p) = 0 when

p � v.

Given a valuation v and a Boolean formula A, the truth value v(A) ∈ {0, 1} is de-

termined in the usual way. When v(A) = 1 then we say that v is an A-valuation. For

example, {p, q} is a ¬p∨¬r valuation. The set of all A-valuations is denoted ||A||. For

example, ||p|| = {v ∈ V : p ∈ v} and ||p ∨ q|| = {v ∈ V : p ∈ v or q ∈ v} = ||p|| ∪ ||q||.

2.2 Distances

The Hamming distance between two valuations v1 and v2 is the cardinality of the sym-

metric difference between v1 and v2:

dH(v1, v2) = card
(

(v1 \ v2) ∪ (v2 \ v1)
)

= card
(

{p ∈ P : v1(p) � v2(p)}
)

.

So dH(v1, v2) is the number of all those p such that v1(p) � v2(p). For example, the

Hamming distance between ∅ and {p, q} is card
(

∅ ∪ {p, q}
)

= 2, and the Hamming

distance between {p, q} and {q, r, s} is card
(

{r, s} ∪ {p}
)

= card
(

{p, r, s}
)

= 3. Note that

the Hamming distance might be infinite; for instance, dH(∅, P) = ∞.

The definition of Hamming distance can be extended to a distance between a valua-

tion v and a set of valuations V ⊆ V as follows:

dH(v,V) =















0 if V = ∅

min({dH(v, v′) : v′ ∈ V}) otherwise

This leads to the definition of the Hamming distance between a valuation and a

Boolean formula as dH(v, B) = dH(v, ||B||). For example:

dH({p, q}, p∧¬p) = 0

dH({p, q}, p∧q) = 0

dH({p, q},¬p∨q) = 0

dH({p},¬p∨q) = 0

dH({p, q},¬p∨¬q) = 1

dH({p, q},¬p∧¬q) = 2

dH({p, q},¬p∨¬r) = 0

dH({p, q}, (¬p∨¬r)∧¬q) = 1

Lemma 1. For every valuation v, dH(v, B) ≤ card(PB).

Proof. Let v be a valuation. If ||B|| = ∅ then dH(v, B) = dH(v, ||B||) = dH(v, ∅) = 0 and

the lemma is correct. Otherwise, let v′ ∈ ||B||. Without loss of generality, we can assume

that for all p � PB, v(p) = v(p′). Thus, dH(v, v′) ≤ card(PB). By definition of dH(v, B)

we have dH(v, B) = dH(v, ||B||) ≤ dH(v, v′) ≤ card(PB).

Finally, the Hamming distance between a valuation v and a vector of Boolean belief

bases 〈B1, . . . , Bn〉 is defined to be the vector of the distances:

dH(v, 〈B1, . . . , Bn〉) = 〈dH(v, B1), · · · , dH(v, Bn)〉

For example:

dH({p}, 〈¬p∨¬q〉) = 〈1〉

dH({p, q}, 〈¬p∨¬r, (¬p∨¬r)∧¬q〉) = 〈0, 1〉

dH({p, q}, 〈¬p∨q,¬p∨¬q,¬p∧¬q〉) = 〈0, 1, 2〉

2.3 Various Merging Operations

A profile, typically noted E, is a vector of belief bases: E = 〈B1, · · · , Bn〉. The traditional

definition of a belief merging operation is as a mapping ∆ associating to every profile

E a new belief base ∆(E). Such operations have been defined in several different ways

and that is why we indicate a particular definition σ by a superscript and write ∆σ(E).

Throughout the present paper we suppose that there is no preference between the belief

bases of a profile: we assume that ∆σ(ϕ1, · · · , ϕn) is equivalent to ∆σ(ϕk1
, · · · , ϕkn

), for

every permutation 〈ϕk1
, · · · , ϕkn

〉 of 〈ϕ1, · · · , ϕn〉. The reader may therefore view the

vector as a set. We stick to the vector notation for two reasons: first, it is common

in the merging literature, and second, it better fits the object language operators to be

introduced in the next section.

Perhaps the best starting point is the merging operation that is based on minimisation

of the sum of the Hamming distances to each belief base Bi of E, abbreviated ∆Σ . It

associates to every profile E the set of valuations such that the sum of the distances to

the elements of E is minimal. Formally:

∆Σ(E) =
{

v ∈ V : there is no v′ ∈ V such that
∑

dH(v′, E) <
∑

dH(v, E)
}

.

For example:

∆Σ(p,¬p∨q) = {v : p, q ∈ v} = ||p ∧ q||

∆Σ(p∧q,¬p∧¬q) = 2P = ||⊤||

Beyond ∆Σ we consider other concrete merging operations: the Gmax merging op-

eration ∆Gmax and the max merging operator ∆max. Their definitions are based on other

minimisations. We do not give them here; instead, they will be presented in the next

section in terms of object language operators.

Merging can also be done under integrity constraints. This leads to more general

operations ∆σ
ψ

(E) where the formula ψ is an integrity constraint that the merged belief

base should satisfy. The unconstrained ∆σ(E) can then be identified with ∆σ⊤(E). Then

the ∆Σ operation becomes:

∆Σψ(E) =
{

v ∈ ||ψ|| : there is no v′ ∈ ||ψ|| such that
∑

dH(v′, E) <
∑

dH(v, E)
}

.

For example, ∆Σ¬r(p,¬p∨q) = ||p ∧ q ∧ ¬r|| and ∆Σp (p∧q,¬p∧¬q) = ||p||.

Observe that in the above definitions ∆C(E) is a set of valuations. In contrast, the

merging postulates to be given below are defined in terms of formulas: as already men-

tioned, papers on merging operations typically identify the set ∆C(E) with the Boolean

formula characterising it.

2.4 The Postulates for Merging with Integrity Constraints

We briefly recall the principles for merging operations that were introduced by

Konieczny and Pino Pérez. We here present the version of [14], in a slightly adapted

version because there, belief bases are considered to be finite sets of formulas (which

are however often identified with their conjunction).

Let ∆ be an mapping assigning to each belief profile E and integrity constraint C

a belief base ∆C(E). ∆ is a merging operation if and only if it satisfies the following

postulates.

(IC0) ∆C(E)→ C is valid.

(IC1) If C is satisfiable then ∆C(E) is satisfiable.

(IC2) If C ∧ (
∧

E) is satisfiable then ∆C(E)↔
∧

E is valid.

(IC3) For E = 〈B1, · · · , Bn〉 and E′ = 〈B′
1
, · · · , B′n〉, if C ↔ C′ and Bi ↔ B′

i
are valid

for 1≤i≤n then ∆C(E)↔ ∆C′ (E
′) is valid.

(IC4) If ∆C

(

〈B, B′〉
)

∧ B is satisfiable then ∆C

(

〈B, B′〉
)

∧ B′ is satisfiable.

(IC5) ∆C(E) ∧C′ → ∆C∧C′ (E) is valid.

(IC6) If ∆C(E) ∧C′ is satisfiable then ∆C∧C′ (E)→ ∆C(E) is valid.

In the above postulates, ‘satisfiable’ means ‘propositionally satisfiable’ and ‘valid’

means ‘propositionally valid’.

The operations ∆Σ and ∆Gmax satisfy all the postulates, while the max merging oper-

ator ∆max does not. Nonetheless, many authors in the literature consider that the latter is

an interesting merging operator.

3 A Modal Framework for Merging Operators

The ∆σ are not logical connectives of the object language: they are part of the metalan-

guage. We highlight that by saying that they are operations. The merging operators to

be introduced now are connectives of the object language, just as the Boolean operators

¬ and ∨ are.2 For that reason we also write them differently as �σ: for each semanticsσ

we have an object language operator �σ.3 It is an advantage of such a move that many

things can then be proved in a formal, rigorous way inside a logical system, as opposed

to lines of argument in natural language texts. Moreover, it also allows to take advantage

of mathematical results such as complexity upper bounds and theorem proving methods

for the logic.

If merging operators are in the object language, we have enough flexibility to nest

merging operators and even talk about different semantics in the same formula, as illus-

trated by the well-formed formula �
σ1

�
σ2 (p,q)

(p, p∨q). To motivate this, consider a com-

pany whose productivity is declining and whose shareholders desire to implement a

motivation policy in order to change the workers’ conditions. They then have to merge

the desires of every worker, while preserving several kinds of integrity constraints: job

security, working environment, salary costs, job satisfaction. These different criteria

have to be merged in their turn.

Formulas involving one or more kinds of merging operators may be given as an input

to a reasoner. Observe that when we define the length of the input for the reasoner then

one occurrence of a merging operator counts for 1 and certainly not for the length of

the disjunction describing the corresponding set of valuations (as would be the case in

the metalinguistic presentation).

3.1 Language

Our logical language L� is defined by the following grammar:

ϕ� p | ¬ϕ | ϕ∨ϕ | �σϕ (ϕ, · · · , ϕ)

2 While the term ‘merging operator’ is customary in the literature, our terminology is in line

with that of abstract algebra.
3 More precisely, we do not have a single operator but a family of operators �σ,n(.) that is

parametrized by the length n of the profile vector. We abstract away from this here.

where p ranges over the set of propositional variables P and where σ ranges over the set

of symbols {Σ,Gmax,max}. The informal reading of the formula �σ
ψ

(E) is “the profile

E has been merged (with merging semantics σ) under the constraint ψ”.

Abusing language a bit, when the profile is E = 〈ϕ1, . . . , ϕn〉 then instead of �σ
ψ

(E)

we write �σ
ψ

(ϕ1, · · · , ϕn).

The function P. associating to a formula the set of its propositional variables naturally

extends to our language; in particular we have P�σ
ψ

(ϕ1,··· ,ϕn) = Pψ ∪
(⋃

1≤i≤n Pϕi

)

.

In the rest of the present section we introduce the truth conditions for the three merg-

ing operators �Σ , �Gmax, and �max. Clearly, when the profile E = 〈B1, . . . , Bn〉 and the

constraint C are Boolean then we expect the interpretation of the merging operator �σ

under semantics σ to coincide with the merging operation ∆σ defined in Section 2.3. In

formulas, we expect the equality ∆σ
C

(E) = ||�σ
C

(E)|| to hold for Boolean C and E.

3.2 The Σ-Semantics

The interpretation of �Σ is the set of valuations such that the sum of the distances to the

elements of E is minimal. Formally:

||�Σψ(E)|| =
{

v ∈ ||ψ|| : there is no v′ ∈ ||ψ|| such that
∑

dH(v′, E) <
∑

dH(v, E)
}

.

The definition of the Hamming distance dH is as in Section 2.2. The function || · || is

the interpretation we are currently defining by induction over the formulas of L�. The

integer
∑

dH(v, E) is the sum of the elements of the vector dH(v, E).

For example, ||�Σ⊤(p∧q,¬p∧¬q)|| = ||⊤|| = 2P.

3.3 The Gmax-Semantics

The interpretation of �Gmax is as follows:

||�Gmax
ψ (E)|| =

{

v ∈ ||ψ|| : there is no v′ ∈ ||ψ|| such that dsort
H (v′, E) <lex dsort

H (v, E)
}

where dsort
H

(v, E) = sort(d(v, ϕ1), . . . , d(v, ϕn)) is the list that is obtained from the vector

〈d(v, ϕ1), . . . , d(v, ϕn)〉 by sorting it in descending order and where <lex is the lexico-

graphical order between sequences of integers of the same length.

For example, ||�Gmax
⊤ (p∧q,¬p∧¬q)|| = {v : v(p) � v(q)} = ||p⊕q|| because

dsort
H (v, 〈p∧q,¬p∧¬q〉) =















〈2, 0〉 if v(p) = v(q)

〈1, 1〉 otherwise.

3.4 The max-Semantics

The interpretation of �max is as follows:

||�max
ψ (E)||max =

{

v ∈ ||ψ|| : there is no v′ ∈ ||ψ|| such that max dH(v′, E) < max dH(v, E)
}

where max dH(v, E) is the maximum of all the distances dH(v, ϕi) between v and the

elements ϕi of E.

For example, ||�max
⊤ (p∧q,¬p∧¬q)|| = {v : v(p) � v(q)} = ||p⊕q|| because for

the valuations v such that v(p) � v(q) we have that dH(v, 〈p∧q,¬p∧¬q〉) equals 〈1, 1〉

(and therefore the maximum of that vector is 1), while for the v such that v(p) = v(q)

the distance dH(v, 〈p∧q,¬p∧¬q〉) is either 〈0, 2〉 or 〈2, 0〉 (and therefore the maximum

is 2).

We recall that the max-semantics does not satisfy Konieczny and Pino Pérez’s merg-

ing postulates. We also note that for the empty integrity constraint we have ||�Gmax
⊤ (E)|| ⊆

||�max
⊤ (E)|| for every profile E.

4 DL-PA: Dynamic Logic of Propositional Assignments

In this section we define syntax and semantics of dynamic logic of propositional as-

signments DL-PA and state complexity results. The star-free fragment of DL-PA was

introduced in [9], where it was shown that it embeds Coalition Logic of Propositional

Control [10–12]. The full logic with the Kleene star was further studied in [1].

4.1 Language

The language of DL-PA is defined by the following grammar:

π � p←⊤ | p←⊥ | π; π | π∪π | ϕ? | π∗

ϕ� p | ⊤ | ⊥ | ¬ϕ | ϕ∨ϕ | 〈π〉ϕ

where p ranges over the set of propositional P. So the atomic programs of the language

of DL-PA are of the form p←⊤ and p←⊥. The operators of sequential composition

(“;”), nondeterministic composition (“∪”), unbounded iteration (“(.)∗”, the so-called

Kleene star), and test (“(.)?”) are familiar from Propositional Dynamic Logic PDL.

The length of a formula ϕ, denoted |ϕ|, is the number of symbols used to write down

ϕ, without “〈”, “〉”, parentheses and commas. For example, |q∧r| = |¬(¬q∨¬r)| = 6 and

|〈q←⊤〉(q∧r)| = 2+6 = 8. The length of a program π, denoted |π|, is defined in the same

way. For example, |p←⊥; p?| = 5.

We abbreviate the logical connectives ∧, →,↔, and ⊕ in the usual way. Moreover,

[π]ϕ abbreviates ¬〈π〉¬ϕ. Several program abbreviations are familiar from PDL. First,

skip abbreviates ⊤? (“nothing happens”). Second, the loop “while A do π” can be ex-

pressed as the DL-PA program (A?; π)∗;¬A?. Third, for n ≥ 0, the n-th iteration of π is

defined inductively as:

π0 = skip

πn+1 = πn; π

Let us now introduce the assignment of literals to variables by means of the following

abbreviations that are proper to DL-PA:

p←q = (q?; p←⊤) ∪ (¬q?; p←⊥)

p←¬q = (q?; p←⊥) ∪ (¬q?; p←⊤)

The former assigns to p the truth value of q, while the latter assigns to p the truth value

of ¬q. The length of p←q is (2+ 1+ 3)+ 1+ (3+ 1+ 3) = 14. That of p←¬q is 14, too.

The star-free fragment of DL-PA is the subset of the language made up of formulas

without the Kleene star “(.)∗”.

4.2 Semantics of DL-PA

DL-PA programs are interpreted by means of a (unique) relation between valuations.

The atomic programs p←⊤ and p←⊥ update valuations in the obvious way, and com-

plex programs are interpreted just as in PDL by mutual recursion. Table 1 gives the

interpretation of the DL-PA connectives.

Table 1. Interpretation of the DL-PA connectives

||p←⊤|| = {〈v1, v2〉 : v2 = v1 ∪ {p}}

||p←⊥|| = {〈v1, v2〉 : v2 = v1 \ {p}}

||π; π′|| = ||π|| ◦ ||π′ ||

||π ∪ π′|| = ||π|| ∪ ||π′ ||

||π∗|| =
⋃

k∈N0

(||π||)k

||ϕ?|| = {〈v, v〉 : v ∈ ||ϕ||}

||p|| = {v : p ∈ v}

||⊤|| = V = 2P

||⊥|| = ∅

||¬ϕ|| = 2P \ ||ϕ||

||ϕ∨ψ|| = ||ϕ|| ∪ ||ψ||

||〈π〉ϕ|| =
{

v : there is v1 s.t. 〈v, v1〉 ∈ ||π|| and v1 ∈ ||ϕ||
}

Two formulas ϕ1 and ϕ2 are formula equivalent if ||ϕ1|| = ||ϕ2||. Two programs π1 and

π2 are program equivalent if ||π1|| = ||π2||. In that case we write π1 ≡ π2. For example,

the program equivalence π; skip ≡ π holds. A formula ϕ is DL-PA valid if it is formula

equivalent to ⊤, i.e., if ||ϕ|| = 2P. It is DL-PA satisfiable if it is not formula equivalent

to ⊥, i.e., if ||ϕ|| � ∅. For example, the formulas 〈p←⊤〉⊤ and 〈p←⊤〉ϕ↔ ¬〈p←⊤〉¬ϕ

are DL-PA valid. Other examples of DL-PA validities are 〈p←⊤〉p and 〈p←⊥〉¬p.

In DL-PA, all the program operators can be eliminated: for every formula ϕ there

is a formula equivalent ϕ′ such that no program operator occurs in ϕ′ [1, Theorem 1].

For example, 〈p←⊤∗〉r is equivalent to p∨〈p←⊤〉r and 〈p←⊤; q←⊤〉r is equivalent to

〈p←⊤〉〈q←⊤〉r. This contrasts with PDL, where this is not the case. Once all the pro-

gram operators have been eliminated, modal operators only contain atomic programs.

The latter are both serial and deterministic modal operators and therefore distribute over

negation and disjunction. They can finally be eliminated when they face a propositional

variable, according to the following equivalences:

〈p←⊤〉q↔















⊤ if q = p

q otherwise

〈p←⊥〉q↔















⊥ if q = p

q otherwise

All together, we have a complete set of reduction axioms: every formula reduces to a

Boolean formula [1, Theorem 2].

Theorem 1. For every DL-PA formula ϕ there is a Boolean formula ϕ′ such that ϕ↔ ϕ′

is DL-PA valid.

For example, for different propositional variables r and p, the formula 〈p←q〉(p ∨ r) is

successively equivalent to 〈p←q〉p ∨ 〈p←q〉r and to q ∨ r.

It is proved in [9] that both model and satisfiability checking are PSPACE complete

for the star-free fragment of DL-PA.

Observe that if p does not occur in ϕ then both ϕ→ 〈p←⊤〉ϕ and ϕ→ 〈p←⊥〉ϕ are

valid. This is due to the following semantical property that we will use later.

Proposition 1. Suppose Pϕ ∩ P = ∅, i.e., none of the variables in P occurs in ϕ. Then

v ∪ P ∈ ||ϕ|| iff v \ P ∈ ||ϕ||.

In the rest of the paper we write ||ϕ||DL-PA in order to distinguish the interpretation of

DL-PA formulas from the interpretation of the merging language.

4.3 Some Useful DL-PA Expressions

Table 2 collects some DL-PA expressions that are going to be convenient abbreviations.4

The program vary(P) nondeterministically changes the truth value of some of the

variables in P. Its length is linear in the cardinality of P. So the program vary(PA); A?

accesses all A-valuations that preserve the values of all those variables not occurring in

A. Satisfiability of the Boolean formula A can be expressed in DL-PA by the formula

〈vary(PA); A?〉⊤ or the equivalent 〈vary(PA)〉A. The program flip1(P) changes the truth

value of exactly one of the variables in P. The programs flip≤m(P) flip the truth value of

at most m of the variables in P. The lengths of flipm(P) and flip≤m(P) are quadratic in n.

The formula H(ϕ,≥d) is true in all those valuations whose Hamming distance to ϕ is d.

4 An expression is a formula or a program. When we say that two expressions are equivalent

we mean program equivalence if we are talking about programs, and formula equivalence

otherwise.

Table 2. Some useful DL-PA expressions, for P = {p1, . . . , pn}, where m ≤ n in flipm(P) and

flip≤m(P), and where d ≤ card(Pϕ) in H(ϕ, d)

vary(P) = (p1←⊤ ∪ p1←⊥); · · · ; (pn←⊤ ∪ pn←⊥)

flipm(P) =















skip if m = 0
(

p1←¬p1∪· · ·∪pn←¬pn

)

; flipm−1(P) if m ≥ 1

flip≤m(P) =















skip if m = 0
(

skip∪flip1(P)
)

; flip≤m−1(P) if m ≥ 1

H(ϕ, d) =















ϕ if m = 0

¬
〈

flip≤d−1(Pϕ)
〉

ϕ ∧
〈

flipd(Pϕ)
〉

ϕ if m ≥ 1

For example:

H(p, 1) = ¬〈flip≤0({p})〉p ∧ 〈
(

flip1({p})
)

〉p

↔ ¬p ∧ 〈p←¬p〉p

↔ ¬p ∧ ¬p

↔ ¬p

H(¬p∨q, 0)↔ ¬p∨q

H(¬p∨q, 1)↔ ¬(¬p∨q) ∧ 〈p←¬p〉(¬p∨q)

↔ p ∧ ¬q ∧ (p∨q)

↔ p ∧ ¬q

H(¬p∨q, 2) = ¬〈(skip ∪ p←¬p); skip〉(¬p∨q) ∧ 〈p←¬p; p←¬p〉(¬p∨q)

↔ ¬
(

(¬p∨q) ∨ (p∨q)
)

∧ (¬p∨q)

↔ ⊥

Lemma 2. The following hold:

1. 〈v1, v2〉 ∈ ||vary(P)|| iff (v1 \ v2) ∪ (v2 \ v1) ⊆ P.

2. 〈v1, v2〉 ∈ ||flip1(P)|| iff 〈v1, v2〉 ∈ ||vary(P)|| and card(v1−̇v2) = 1.

3. 〈v1, v2〉 ∈ ||flip≤m(P)|| iff 〈v1, v2〉 ∈ ||vary(P)|| and card(v1−̇v2) ≤ m.

4. v ∈ ||H(ϕ, d)|| iff dH(v, ϕ) = d.

Note that flipm(P) is nothing but the m-th iteration of flip1(P), so one variable might

be switched twice and therefore 〈v1, v2〉 ∈ ||flipm(P)|| does not in general imply that the

Hamming distance between v1 and v2 is m.

5 Embedding Merging Operators into DL-PA

In this section, we define a translation tr(.) by induction over the formulas of our merg-

ing languageL�. To every formula ϕ of our merging languageL� we associate a DL-PA

formula tr(ϕ). The Boolean part is translated as follows:

tr(p) = p

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)

In the following three subsections we give the inductive cases of the definition of tr(.)

for �Σ , �Gmax and �max. We then prove that the translation is correct and that it gives

us an algorithm to reason in L� from an algorithm to reason in DL-PA. The reader may

observe that our encodings are not particularly sophisticated and follow the semantic

definitions in a fairly straightforward manner.

5.1 Embedding the Σ-Semantics

Let us define the translation for the �Σ as follows. Given a profile E = 〈ϕ1, . . . , ϕn〉, we

define:

tr(�Σψ(E)) = tr(ψ) ∧
∨

〈d1,...,dn〉,dk≤card(Pϕk
)

((
∧

i≤n

H(tr(ϕi), di)
)

∧

¬〈vary(PE)〉
(

tr(ψ) ∧
∨

〈d′
1
,...,d′n〉,

∑

k≤n(d′
k
)<
∑

k≤n(dk)

∧

i≤n

H(tr(ϕi), d
′
i)
))

.

Intuitively, the translation does the following: first, the integrity constraint is required

to be true (by tr(ψ)), second, it is checked that there is some vector 〈d1, . . . , dn〉 of inte-

gers such that the Hamming distance from the present valuation to each tr(ϕi)-valuation

is di (by H(tr(ϕi), di)) and such that one cannot go to another valuation (by ¬〈vary(PE)〉)

satisfying the constraint and whose sum of distances to the tr(ϕi)-valuations is smaller.

As we are going to show, every model of the formula tr(�Σψ(E)) is indeed a model of

the merged profile.

For example, tr(�Σ⊤(p,¬p∨q)
)

) is

⊤ ∧
(

(

H(p, 0) ∧ H(¬p∨q, 0) ∧ ¬〈vary({p, q})〉
(

⊤ ∧ ⊥
)

∨
(

H(p, 0) ∧ H(¬p∨q, 1) ∧ ¬〈vary({p, q})〉
(

⊤ ∧ H(p, 0) ∧ H(¬p∨q, 0)
)

∨
(

H(p, 1) ∧ H(¬p∨q, 0) ∧ ¬〈vary({p, q})〉
(

⊤ ∧ H(p, 0) ∧ H(¬p∨q, 0)
)

∨

(

H(p, 1) ∧ H(¬p∨q, 1) ∧ ¬〈vary({p, q})〉
(

⊤ ∧ ((H(p, 0) ∧ H(¬p∨q, 0)) ∨ · · ·)
)

)

which is equivalent to

(p ∧ (¬p ∨ q) ∧ ⊤) ∨

(p ∧ (p ∧ ¬q) ∧ ⊥) ∨

(¬p ∧ (¬p ∨ q) ∧ ⊥) ∨

(¬p ∧ (p ∧ ¬q) ∧ · · ·),

i.e., to p ∧ q.

Here is another example:

tr(�Σ⊤(p∧q,¬p∧¬q))↔ ⊤ ∧
(

H(p∧q, 0) ∧ H(¬p∧¬q, 2)
)

∨

↔ ⊤∧
(

H(p∧q, 1) ∧ H(¬p∧¬q, 1)
)

∨

↔ ⊤∧
(

H(p∧q, 2) ∧ H(¬p∧¬q, 0)
)

↔ (p∧q) ∨

↔ (¬p∧q) ∨ (p∧¬q) ∨

↔ (¬p∧¬q)

↔ ⊤

5.2 Embedding the Gmax-Semantics

The embedding of the Gmax-operator is in the same spirit as that of the previous oper-

ator. Given a profile E = 〈ϕ1, . . . , ϕn〉, we define:

tr(�Gmax
ψ (E)) = tr(ψ) ∧

∨

〈d1,...,dn〉, dk≤card(Pϕk
)

((
∧

i≤n

H(tr(ϕi), di)
)

∧

¬〈vary(PE)〉
(

tr(ψ) ∧
∨

〈d′
1
,...,d′n〉,sort(d′

1
,...,d′n)<lexsort(d1,...,dn)

∧

i≤n

H(tr(ϕi), d
′
i)
))

.

Intuitively, the translation checks the integrity constraints and checks for the vector

characterising the Hamming distances to the ϕi-valuations that there exists no other

valuation tr(ψ) whose distance vector is smaller according to the sorted lexicographic

ordering.

Table 3 contains an example. Another example is tr(�Gmax
⊤ (p∧q,¬p∧¬q)), which

reduces to p↔ q.

5.3 Embedding the max-Semantics

In a first try we have:

tr(�ψ(E)) = tr(ψ) ∧
∨

〈d1,...,dn〉, dk≤card(Pϕk
)

((
∧

i≤n

H(tr(ϕi), di)
)

∧

¬〈vary(PE)〉
(

tr(ψ) ∧
∨

〈d′
1
,...,d′n〉,maxk≤n(d′

k
)<maxk≤n(dk)

∧

i≤n

H(tr(ϕi), d
′
i)
)

)

.

This can actually be made more concise, and our official definition of the translation is

as follows:

tr(�ψ(E)) = tr(ψ) ∧
∨

d, d≤maxk≤n(card(Pϕk
))

((
∧

i≤n

〈

flip≤d(Pϕi
)
〉

tr(ϕi)
)

∧

¬〈vary(PE)〉
(

tr(ψ) ∧
∧

i≤n

〈

flip≤d−1(Pϕi
)
〉

tr(ϕi)
)

.

Table 3. Example: translation of the Gmax merging of the profile 〈p, p,¬p〉 under the empty

integrity constraint ⊤

tr(�Gmax
⊤ (p, p,¬p))

= ⊤ ∧
(

H(p, 0) ∧ H(p, 0) ∧ H(¬p, 0) ∧ ¬〈vary({p})〉(⊤ ∧ ⊥)
)

∨

⊤ ∧
(

H(p, 0) ∧ H(p, 0) ∧ H(¬p, 1) ∧ ¬〈vary({p})〉(⊤ ∧ H(p, 0) ∧ H(p, 0) ∧ H(¬p, 0))
)

∨

⊤ ∧
(

H(p, 0) ∧ H(p, 1) ∧ H(¬p, 0) ∧ ¬〈vary({p})〉(· · ·)
)

∨

⊤ ∧
(

H(p, 0) ∧ H(p, 1) ∧ H(¬p, 1) ∧ ¬〈vary({p})〉(· · ·)
)

∨

⊤ ∧
(

H(p, 1) ∧ H(p, 0) ∧ H(¬p, 0) ∧ ¬〈vary({p})〉(· · ·)
)

∨

⊤ ∧
(

H(p, 1) ∧ H(p, 0) ∧ H(¬p, 1) ∧ ¬〈vary({p})〉(· · ·)
)

∨

⊤ ∧
(

H(p, 1) ∧ H(p, 1) ∧ H(¬p, 0) ∧ ¬〈vary({p})〉(· · ·)
)

∨

⊤ ∧
(

H(p, 1) ∧ H(p, 1) ∧ H(¬p, 1) ∧ ¬〈vary({p})〉(· · ·)
)

↔ (p ∧ p ∧ ¬p ∧ ¬⊥) ∨

(p ∧ p ∧ p ∧ ¬⊥) ∨

(p ∧ ¬p ∧ ¬p ∧ ¬⊥) ∨

(p ∧ ¬p ∧ p ∧ ¬⊥) ∨

(¬p ∧ p ∧ ¬p ∧ ¬⊥) ∨

(¬p ∧ p ∧ p ∧ ¬⊥) ∨

(¬p ∧ ¬p ∧ ¬p ∧ ¬⊤) ∨

(¬p ∧ ¬p ∧ p ∧ ¬⊥)

↔ p

Intuitively, the integrity constrained is enforced and it is checked for some integer d

that first, each ϕi in the profile has distance at most d and second, that there is no other

valuation that both satisfies the integrity constraint and is strictly less than d away from

each ϕi.

5.4 Correction of the Translations

Theorem 2. Let ϕ be an L� formula. Then ||ϕ|| = ||tr(ϕ)||DL-PA.

Proof. The proof is by induction on the form of ϕ. The only interesting case is that of

merging operators. Let us consider the case of �Σ . We prove in detail that ||�Σψ(E)|| =

||tr(�Σψ(E))||DL-PA.

Let v ∈ V be a valuation. We have v ∈ ||�Σψ(E)|| iff v ∈ ||ψ|| and there is no other

ψ-valuation v′ such that
∑

dH(v′, E) <
∑

dH(v, E). The latter is the case iff v ∈ ||ψ|| and

there are 〈d1, . . . , dn〉 such that

1. dH(v, ϕi) = di for every i, and

2. there is no ψ-valuation v′ and vector 〈d′
1
, · · · , d′n〉 such that dH(v′, ϕi) = d′

i
for every

i and
∑

di <
∑

d′
i
.

By induction hypothesis, v ∈ ||ψ|| iff v ∈ ||tr(ψ)||DL-PA and v ∈ ||ϕi|| iff v ∈ ||tr(ϕi)||DL-PA.

Therefore H(ϕi, di) equals H(tr(ϕi), di).

We note that by Lemma 1 it is in order to only consider the di such that di ≤ card(Pϕi
).

By Lemma 2, Item 1 means that v ∈ ||H(tr(ϕi), di)||DL-PA for every i.

Item 2 means that the formula

∨

〈d′
1
,··· ,d′n〉,

∑

k(d′
k
)<
∑

k(dk)

∧

i≤n

H(tr(ϕi), d
′
i)

is unsatisfiable. According to Lemma 2 and Proposition 1, all the relevant valuations

are accessed by the program vary(PE). Therefore Item 2 is equivalent to

v ∈ ||¬〈vary(PE)〉
(

tr(ψ) ∧
∨

〈d′
1
,··· ,d′n〉,

∑

k≤n(d′
k
)<
∑

k(dk)

∧

i≤n

H(tr(ϕi), d
′
i)
)

||DL-PA.

Putting things together, items 1 and 2 are equivalent to v ∈ ||tr(�Σψ(ϕ1, · · · , ϕn))||DL-PA.

It follows from the above theorem that the merging of the Boolean profile 〈B1, · · · ,

Bn〉 under the Boolean constraint C equals ||tr(�σ
C

(B1, · · · , Bn))||DL-PA.

The length of tr(ϕ) is however exponential in the length of ϕ. Nevertheless, if we

consider ‘big disjunctions’ such as
∨

〈d1,...,dn〉,dk≤card(Pϕk
),
∨

〈d′
1
,...,d′n〉,

∑

k(d′
k
)<
∑

k(dk) etc. to be

connectives of the object language—i.e., as symbolic disjunctions that are parametrised

by sets and that are not defined as abbreviations, but are proper connectives—then the

length of tr(ϕ) is still polynomial in the length of ϕ. For instance, the length of

∨

〈d′
1
,··· ,d′n〉,

∑

k(d′
k
)<
∑

k(dk)

∧

i≤n

H(ϕΣi , d
′
i)

is O(n) plus the length of H(ϕΣ
i
, d′

i
).

Corollary 1. Both model checking and satisfiability checking of L�-formulas is in

PSPACE.

Proof. First we give the argument why both model and satisfiability checking are

PSPACE-complete for the star-free fragment of DL-PA if we allow symbolic disjunc-

tions in DL-PA formulas. We do so by adapting the proof of PSPACE membership of [9]:

in order to check whether
∨

〈d′
1
,...,d′n〉,

∑

k(d′
k
)<
∑

k(dk) ψ is true at a valuation v we backtrack

and test all the choices 〈d′
1
, . . . , d′n〉 such that

∑

k(d′
k
) <
∑

k(dk). This backtrack process

can be implemented as an algorithm that only uses a polynomial amount of memory.

By Theorem 2 we then reduce polynomially model (satisfiability) checking of L∆ for-

mulas to model (satisfiability) checking of a DL-PA-formulas, where ‘big disjunctions’

are viewed as being symbolic.

Note that the language of DL-PA is more succinct than that of Boolean formulas: al-

though every formula of DL-PA is equivalent to a Boolean formula, equivalent Boolean

formulas can be exponentially bigger. So SAT techniques for propositional logic do not

provide interesting decision procedures for L�.

6 Conclusion

We have defined a single language L� in which all merging operators are in the object

language: they are considered to be modal operators and can be nested. This differs with

other approaches such as [18] and [5]. As far as we know, the only similar approach

is [17], where the merging operator (as well as the comma separating the elements of

profiles) are considered to be in the object language.

We have then embedded this language into Dynamic Logic of Propositional Assign-

ments, DL-PA. This has enabled us to give syntactic counterparts to the most popular

semantically defined merging operations. Using the reduction principles of DL-PA we

can therefore rewrite formulas to Boolean formulas. As our examples show, such for-

mulas may be quite long; in particular, they typically contain a lot of disjunctions. They

can however often be simplified by means of standard syntactical operations. This pro-

vides interesting syntactical representations of merged belief bases.

The logic DL-PA actually provides a sort of assembler language for merging opera-

tors. Its use avoids the design of specific tools implementing merging operators. Unfor-

tunately, no efficient reasoning mechanisms for DL-PA exist up to now, and it would be

interesting to have such tools. (It could also be based on Binary Decision Diagrams as

in [5].) As we have seen, if we want the embeddings to be polynomial then such tools

should be able to handle ‘big disjunctions’ and ‘big conjunctions’.

The star-free fragment of DL-PA into which we have mapped various merging op-

erators has PSPACE complexity (both model checking and satisfiability). This induces

a result for our merging language L�, which is new because L� authorizes arbitrary

nesting of merging operators. It is possible that the translated formulas however have

patterns that are less complex.

As to future work, a first perspective is to study the mathematical properties of merg-

ing operators in more detail. One example is the behaviour of iterated merging operators

(which is a research project similar to that for iterated belief revision, see e.g. [3].) Rea-

soning should be considerably facilitated by the help of a DL-PA reasoner. For instance,

suppose we want to know whether the operator �max
⊤ is associative. We may run the fol-

lowing experimental protocol: first, choose some Boolean formulas A, B,C and write

down the formula �max
⊤ (A,�max

⊤ (B,C)) ↔ �max
⊤ (�max

⊤ (A, B),C); second, translate this

formula into DL-PA; third, run a DL-PA reasoner. Note however that one cannot use the

theorem proving procedure for DL-PA because it only works for formula instances and

not for formula schemas. (This is related to the fact that the rule of uniform substitution

does not preserve validity in DL-PA, which generally fails in dynamic logics).

Our embeddings are somewhat simpler than the embeddings of belief change opera-

tions into QBF as done in [4] since DL-PA is a logic of programs. The same argument

applies to embeddings of merging problems into MSO. Our approach may also be useful

to capture semantics of merging: one may think in particular of new semantics requiring

loops, which can be directly captured in DL-PA by the Kleene-star operator, whereas

the encoding as a QBF will most probably be trickier.

A second perspective is to focus on embeddings of other existing operations. We did

not succeed yet in embedding other approaches to merging such as [13] and syntax-

based operations such as MCS of [2]. Note that in principle this might however be

feasible: while the Hamming distance is a semantical notion, the function Pϕ is purely

syntactic.

There exist also tentatives to define merging operations in first order logic [6]. In the

long run, we may plan to extend DL-PA with first order constructions in order to capture

those merging operations.

Acknowledgements. We wish to thank the three FOIKS reviewers for their critical

comments and pointers to relevant work that we had not considered at the time of the

submission.

References

1. Balbiani, P., Herzig, A., Troquard, N.: Dynamic logic of propositional assignments: A well-

behaved variant of PDL. In: Kupferman, O. (ed.) Logic in Computer Science (LICS), New

Orleans, June 25-28, IEEE (2013), http://www.ieee.org/

2. Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge bases consisting

of first-order theories. Computational Intelligence 8, 45–71 (1992)

3. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelligence 89(1),

1–29 (1997)

4. Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: On computing belief change operations

using quantified boolean formulas. Journal of Logic and Computation 14(6), 801–826 (2004)

5. Gorogiannis, N., Hunter, A.: Implementing semantic merging operators using binary decision

diagrams. International Journal of Approximate Reasoning 49(1), 234–251 (2008)

6. Gorogiannis, N., Hunter, A.: Merging first-order knowledge using dilation operators. In:

Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 132–150. Springer,

Heidelberg (2008)

7. Harel, D.: Dynamic logic. In: Gabbay, D.M., Günthner, F. (eds.) Handbook of Philosophical

Logic, vol. II, pp. 497–604. D. Reidel, Dordrecht (1984)

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)

9. Herzig, A., Lorini, E., Moisan, F., Troquard, N.: A dynamic logic of normative sys-

tems. In: Walsh, T. (ed.) International Joint Conference on Artificial Intelligence (IJCAI),

IJCAI/AAAI, Barcelona, pp. 228–233 (2011), Erratum at

http://www.irit.fr/˜Andreas.Herzig/P/Ijcai11.html

10. van der Hoek, W., Walther, D., Wooldridge, M.: On the logic of cooperation and the transfer

of control. J. of AI Research (JAIR) 37, 437–477 (2010)

11. van der Hoek, W., Wooldridge, M.: On the dynamics of delegation, cooperation and control:

A logical account. In: Proc. AAMAS 2005 (2005)

12. van der Hoek, W., Wooldridge, M.: On the logic of cooperation and propositional control.

Artif. Intell. 164(1-2), 81–119 (2005)

13. Konieczny, S.: On the difference between merging knowledge bases and combining them.

In: KR, pp. 135–144 (2000)

14. Konieczny, S., Pérez, R.P.: Logic based merging. Journal of Philosophical Logic 40(2),

239–270 (2011)

15. Konieczny, S., Pérez, R.P.: On the logic of merging. In: Proc. 6th Int. Conf. on Principles

of Knowledge Representation and Reasoning (KR 1998), pp. 488–498. Morgan Kaufmann

(1998)

16. Konieczny, S., Pino Pérez, R.: Merging with integrity constraints. In: Hunter, A., Parsons, S.

(eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 233–244. Springer, Heidelberg (1999)

17. Lang, J., Marquis, P.: Reasoning under inconsistency: A forgetting-based approach. Artificial

Intelligence 174(12), 799–823 (2010)

18. Liberatore, P., Schaerf, M.: Brels: A system for the integration of knowledge bases. In: KR,

pp. 145–152. Citeseer (2000)

19. Lin, J., Mendelzon, A.: Knowledge base merging by majority. In: Pareschi, R., Fronhoefer,

B. (eds.) Dynamic Worlds: From the Frame Problem to Knowledge Management, Kluwer

Academic (1999)

20. Revesz, P.Z.: On the semantics of theory change: arbitration between old and new infor-

mation. In: Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, PODS 1993, pp. 71–82. ACM, New York (1993)

