

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Applied Bounded Model Checking for Interlocking System Designs

Haxthausen, Anne Elisabeth; Peleska, Jan; Pinger, Ralf

Published in:
Software Engineering and Formal Methods. Revised Selected Papers

Link to article, DOI:
10.1007/978-3-319-05032-4_16

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Haxthausen, A. E., Peleska, J., & Pinger, R. (2014). Applied Bounded Model Checking for Interlocking System
Designs. In Software Engineering and Formal Methods. Revised Selected Papers (Vol. 8368, pp. 205–220).
Springer. https://doi.org/10.1007/978-3-319-05032-4_16

https://doi.org/10.1007/978-3-319-05032-4_16
https://orbit.dtu.dk/en/publications/b3787f53-cfdb-47e5-a84a-cdad9993c2bd
https://doi.org/10.1007/978-3-319-05032-4_16

Applied Bounded Model Checking for
Interlocking System Designs

Anne E. Haxthausen1, Jan Peleska2, and Ralf Pinger3

1 DTU Compute, Technical University of Denmark, aeha@dtu.dk
2 Department of Mathematics and Computer Science, Universität Bremen, Germany,

jp@informatik.uni-bremen.de
3 Siemens AG, Braunschweig, Germany, Ralf.pinger@siemens.com

Abstract. In this paper the verification and validation of interlocking
systems is investigated. Reviewing both geographical and route-related
interlocking, the verification objectives can be structured from a perspec-
tive of computer science into (1) verification of static semantics, and (2)
verification of behavioural (operational) semantics. The former checks
that the plant model – that is, the software components reflecting the
physical components of the interlocking system – has been set up in an
adequate way. The latter investigates trains moving through the network,
with the objective to uncover potential safety violations. From a formal
methods perspective, these verification objectives can be approached by
theorem proving, global, or bounded model checking. This paper explains
the techniques for application of bounded model checking techniques, and
discusses their advantages in comparison to the alternative approaches.

Keywords: railways, interlocking systems, formal methods, verification, bounded
model checking, temporal logic

1 Introduction

Formal methods have been applied for years in the railway domain and reached
a level that enables the compilation of the body of knowledge in the form of an
engineering handbook (in the style of [1]), recording case-based “best practices”.
To this end, this paper contributes knowledge concerning verification and valida-
tion (V&V) of interlocking system designs. First we outline the state-of-the-art
of V&V tasks and formal methods for performing them. Then techniques for
applying one of these methods (bounded model checking) are explained in more
detail.

1.1 Interlocking V&V – State-of-the-art

Software controlling interlocking systems has to be verified on two levels. The
first level focuses on the correctness of configuration data specifying how the
topology of the railway network controlled by the interlocking system is re-
flected by re-usable software objects, their interfaces, and their instantiation

data. Correctness of the configuration data ensures that the software has ade-
quate control over the electro-mechanical components of the physical interlocking
system. In terms of computer science, physical railway network layout may be
regarded as formal models conforming to some graph grammar. The associated
software configurations are correct if they conform to a similar grammar where
physical language objects – e.g., a point – have been replaced by language ob-
jects representing software components – e.g., the software instance representing
a point. Apart from grammatical well-formedness, additional rules concerning
proper parameterisation of objects apply. All in all, checking the correctness of
interlocking configurations corresponds to checks of model syntax and static se-
mantics. The second verification level investigates the safety of trains passing
through the controlled network area. The verification objective is to prove the
absence of hazardous situations in the network, provided that all trains follow
the restrictions (signals, speed limitations) imposed by the interlocking system.
Extending the object attributes of the static software configuration by dynamic
state information – e.g., whether trains reside on track elements, or the switch
state of a signal or a point – the object configuration is turned into a model
with both static and behavioural semantics. The latter specifies the potential
dynamic changes of the interlocking system configuration – e.g, a train leaving
one track segment and entering another.

Interlocking systems are designed according to different paradigms [21, Chap-
ter 4]. Two of the most widely used ones are (a) geographical interlocking systems
and (b) route-based interlocking systems using interlocking tables. For design
type (a), routes through the railway network can be allocated dynamically by
indicating the starting and destination points of trains intending to traverse
the railway network portion controlled by the interlocking system under consid-
eration. In the original technology, electrical relay-based circuits were applied,
whose elements and interconnections where designed in one-to-one correspon-
dence with those of the physical track layout. The electric circuit design ensured
dynamic identification of free routes from starting point to destination, the lock-
ing of points and setting of signals along the route, as well as on neighbouring
track segments for the purpose of flank protection. In today’s software-controlled
electronic interlocking systems, instances of software components “mimic” the el-
ements of the electric circuit. Typically following the object-oriented paradigm,
different components are developed, each corresponding to a specific type of
physical track element, such as points, track sections associated with signals,
and others with axle counters or similar devices detecting trains passing along
the track. Similar to connections between electric circuit elements, instances of
these software components are connected by communication channels reflecting
the track network. The messages passed along these channels carry requests for
route allocation, point switching and locking, signal settings, and the associated
responses acknowledging or rejecting these requests. The software components
are developed for re-use, so that novel interlocking software designs can be re-
alised by means of configuration data, specifying which instances of software
components are required, their attribute values, and how their communication

channels shall be connected. The geographical approach to interlocking system
design induces a separate verification and validation (V&V) step which is called
data validation. Its objective is to check whether the instantiation of software
components is complete, each component is equipped with the correct attribute
values, and whether the channel interconnections are adequate. The data val-
idation objectives are specified by means of rules, and the rules collection is
usually quite extensive (several hundred), so that manual data validation is a
cumbersome, costly, and error-prone task. Moreover, the addition of new rules
often required expensive extensions of manually programmed checking software.
Data validation investigates only the static semantics of the network of software
components. A second V&V step is required to check whether the design will
ensure the safety properties required, so that – at least under certain boundary
conditions stating that train engine drivers have to respect signals and speed
restrictions, as far as not automatically enforced by the underlying technology
– trains moving concurrently through the railway network are protected against
derailing and collisions.

Route-based interlocking (system type (b)) is less flexible than geographical
interlocking, since it fixes all train routes through the railway network a priori,
using route tables specifying the sequences of track segments to be allocated
for each route. This loss of flexibility is compensated by the advantage that
configuration data is considerably simpler. The route table is complemented by
interlocking tables specifying the point positions and signal states to be enforced
when allocating routes. The interlocking tables fix these positions both for the
track elements which are part of the actual route, and the elements which are
outside the route, but contribute to its safety by guaranteeing flank protection.
Finally, a route conflict table identifies the routes which may never be simultane-
ously allocated, due to utilisation of common track elements [17]. Route-related
interlocking offers simpler means for data validation, since the control software
does not need to to be based on communicating software instances related to
each track element. Instead, a control algorithm monitors a dynamic plant model
(each track element with its free/occupied status, and the locked/unlocked states
of points). Route allocation decisions can made by means of these element states
and their compatibility with the interlocking table restrictions. Data validation is
only concerned with choosing the proper software components (e.g., the correct
types of signals and points), and their consistency with the physical network.
V&V of the dynamic behaviour now has the objective to verify both the cor-
rectness of the control algorithm and the correctness of the interlocking tables.
Even in presence of a completely correct algorithm, a safety violation may occur
if these tables are not adequately specified; e.g., if a conflict between two routes
has not been properly documented in the tables. As a consequence, the data
validation activities concerning static semantics of the software components is
simpler and less critical than in the case of geographical interlocking systems,
but only V&V of the dynamic behaviour can verify the crucial safety properties
of the interlocking tables.

1.2 State-of-the-art Formal Methods for Interlocking V&V

The European CENELEC standards applicable for the development of software
in railway control systems require the application of formal specification and de-
sign models and formalised, justified V&V activities to be performed for software
of the highest criticality, as applicable for interlocking systems [9]. The objec-
tive of such formalizations is to ensure that potential safety breaches caused by
invalid configuration data or erroneous control algorithms can be identified in
a systematic way. If formal methods application can also be “mechanised” by
means of suitable tools, it contributes to the efficiency of V&V for interlocking
system designs in a considerable way. As of today, three methods are applied
for formal interlocking V&V: formal verification by theorem proving, by global
model checking, or by bounded model checking (BMC). Each of these meth-
ods depends on the existence of models describing the static semantics of the
interlocking systems, and their dynamic behaviour in combination with trains
traversing the railway network.

While – just like theorem proving – global model checking may result in com-
plete correctness proofs of data correctness and safety properties, experience (see
for instance [12]) has shown that complex interlocking systems cannot be veri-
fied by means of global model checking, since this would lead to state explosions
for all but the simplest interlocking systems. In contrast to this, bounded model
checking investigates model properties in the vicinity of a given state only, and
can therefore be applied to models of considerable size. In this contribution
we describe first how BMC is applied to data validation. This is performed by
checking the compliance of the data with correctness rules that may be expressed
formally by some temporal logic. Next, for the verification of safety properties,
BMC can be combined with inductive reasoning, and again, this results in a
global proof of the desired safety properties. The bounded model checking tech-
niques to be applied are sufficiently mature today to be applied in an industrial
context.

1.3 BMC as Best Practice for Interlocking V&V

The bounded model checking solution to data validation is explained for geo-
graphical interlocking systems, since there the requirements for this validation
are far more complex than for route-related interlocking. We describe how the
software components instantiated according to the given configuration data can
be formalised by means of a Kripke Structure whose state space is given by
the software component instances, where the transition relation is induced by
the communication channels connecting neighbouring objects, and the labelling
function specifies the attributes associated with each instance. It is explained
how typical pattern of data validation rules can be expressed by means of Lin-
ear Temporal Logic (LTL) including existential quantification of specific variable
values. A trace of states fulfilling such a formula identifies a witness for a vio-
lation of the validation rule. Application of LTL model checking allows for easy

extendability of the rule base, by simply adding new LTL formulae represent-
ing violations of the new rules. No further software extensions are required, as
long as a sufficiently powerful bounded model checker for LTL exists. We further
describe how the BMC approach can be rightfully applied, because each data
validation rule only applies to a finite trace through the Kripke structure (while
LTL property checking in general refers to infinite computations). A bounded
LTL property checking algorithm is sketched which can be efficiently applied for
performing the data validation activities.

In [16] we have described a formal, model-driven method for efficient develop-
ment and verification of product lines of re-configurable route-related interlock-
ing systems. This method is based on many years of research of which the most
recent publications include [17] and [14, 15]. According to this method the devel-
opment and verification of an interlocking system should be made in a number of
steps including the following ones: (1) Specify application-specific parameters in
a domain-specific railway language, and (2) from the domain-specific specifica-
tion, generate a formal, behavioural model of the interlocking system and formal
specification of the required safety properties. This generation should be fully
automated by tools developed for the purpose. For this setting we describe how
BMC may be applied in combination with inductive reasoning, in order to verify
global safety properties of the interlocking system software and configuration
data generated from these models. This combination of BMC and induction is
well-established today in many domains, and it is known to scale up for complex
“real-world” applications.

1.4 Related Work

An overview of trends in formal methods applications to railway signalling can be
found in [5, 11]. Many other research groups have been using model-checking for
the verification of interlocking systems. In [12] a systematic study of applicability
bounds of the symbolic model-checker NuSMV and the explicit model checker
SPIN showed that these popular model checkers could only verify small rail-
way yards. Several domain-specific techniques to push the applicability bounds
for model checking interlocking systems have been suggested. Here we will just
mention some of the most recent ones. In [25] Winter pushes the applicability
bounds of symbolic model checking (NUSMV) by optimizing the ordering strate-
gies for variables and transitions using domain knowledge about the track layout.
Fantechi suggests in [10] to exploit a distributed modelling of geographical in-
terlocking systems and break the verification task into smaller tasks that can
be distributed to multiple processors such that they can be verified in parallel.
In [20], it is suggested to reduce the state space using abstraction techniques
reducing the number of track sections and the number of trains.

For the alternative approach to interlocking V&V based on theorem proving,
the B-Method and its variants, such as Event-B, seem to be the formal methods
most strongly favoured for railway control applications in Europe. The formal
verification of behavioural properties is described, and the methods’ applicabil-
ity on an industrial scale has been established, for example, in [2]. In [6, 18],

the application of Event-B to data validation is described. Further verification
approaches using theorem proving have been based on the RAISE method, as
described in [13].

An introduction into LTL can be found in [7]. The existential quantifica-
tion operator for LTL, which plays a crucial role in our concept of automated
data validation, has been originally introduced in [19]. Its adaptation to finite
trace semantics has been performed by the authors. The original semantics and
algorithms for verifying LTL formulae against finite trace segments have been
devised in [3, 4]. On these finite segments only a subclass of LTL formulae can be
verified, this class has been identified in [24]. Fairness properties, for example,
which can be expressed in the complete LTL with infinite computations as mod-
els, are not part of this class. Our data validation properties, however, as well
as the safety properties to be fulfilled by the behavioural interlocking system
semantics, are all part of the so-called Safety LTL subset which is expressible on
finite trace segments.

1.5 Paper Overview

Sections 2 and 3 describe our methods for data validation and for verifying
system safety, respectively. In Section 4, the presented methods are discussed.

2 Data Validation

2.1 Kripke Structure Encodings of Static Plant Model

As sketched above, the software controlling geographical interlocking systems
consists of instances communicating over channels, each instance representing a
physical track element in the plant model. A subset of these channels – called
primary channels in the following – reflect the physical interconnection between
neighbouring track elements which are part of possible routes, to be dynamically
allocated when a request for traversal from some starting point to a destination
is given (Fig. 1). Other channels – called secondary channels – connect certain
elements s1 to others s2, such that s1 and s2 are never neighbouring elements
on a route, but s2 may offer flank protection to s1, when some route including
s1 should be allocated. Since geographical interlocking is based on request and
response messages, each channel for sending request messages from some instance
s1 connected to an instance s2 is associated with a “response channel” from s2
to s1. Primary channels are subsequently denoted by variable symbols a, b, c, d,
while secondary channels are denoted by e, f, g, h.

All software instances are associated with a unique id. Depending on the
track element type they are representing in the plant model, software instances
carry an element type t. Depending on the type, a list of further attributes
a1, . . . , ak may be defined for each software instance. By using a default value 0
for attributes that are not used for a certain component type, each element can
be associated with the same complete list of attributes, where the ones which are

1

2

3

11

21
12

22

32

3

2

1

32

22

12

21

11

1

2

13

23

24

13

23

24

a a

c

b

a

b a

b

a

b

a

e

a

b

b b

a

a

a

a

b

b

d

Fig. 1. Physical layout, associated software instances and channel connections.

not applicable are set to 0. Each valuation of a channel variable contains either
a default value 0, meaning “no connection on this channel”, or the instance
identification id > 0 of the destination instance of the channel.

We will now formalise the static design of geographical interlocking sys-
tems as a Kripke Structure K = (S, S0, R, L,AP), with state space S, set of
initial states S0 ⊆ S, transition relation R ⊆ S × S and labelling function
L : S → 2AP , where AP is a set of atomic propositions and 2AP denotes its
power set [7]. To this end, define a set V of variable names as introduced above,
V = {id, t, a, b, c, d, e, f, g, h, a1, . . . , ak}. The state space S consists of one val-
uation function s : V → N0 for each software component. Each function maps
the variables to integers identifying the associated software component (id is
mapped to its unique id, t to its type, etc.). The set of initial states S0 is defined
to be the set of all states S. This allows us to start data validations at arbitrary
track elements. The transition relation R defines each instance s2 reachable from
some instance s1 via any of the channels a, . . . , h to be a possible post-state of
s1.

R = {(s1, s2) | s1(v) = s2(id) ∧ v ∈ {a, . . . , h}} (1)

The set of atomic propositions AP is defined as the collection of all propo-
sitions stating equality of some attribute v ∈ V to one of its possible values,
AP = {v = ξ | v ∈ V ∧ ξ ∈ N0}. The labelling function L maps each state s to
the set L(s) of propositions which hold true in s, that is, ∀s ∈ S : L(s) = {v =
s(v) | v ∈ V }.

Now the violation of any data validation rule may be defined as a LTL formula
specifying witnesses of such an unwanted sequence of neighbouring elements.
This will be illustrated in the following by a collection of validation examples.

2.2 LTL Syntax

The LTL formulae specifying witnesses for rule violations use symbols from V
as free variables. The atomic propositions involved may consist of arithmetic
expressions and comparison operators =, <,>,≤,≥, 6=. The valid LTL formulae
are constructed according to the following rules.

– Every atomic proposition is a LTL formula.
– If ϕ,ψ are LTL formulae, then4 ¬ϕ, φ∧ψ, φ∨ψ, (∃b : ϕ), Fϕ, Gϕ, Xϕ, (ϕUψ)

are LTL formulae. It is assumed that bound variable symbol b is not con-
tained in V .

2.3 Bounded Trace Semantics for LTL

The semantic rules for evaluating LTL formulae on finite trace segments si . . . sk
are specified using notation 〈ϕ〉ki . The recursive rules for evaluating the truth
value of 〈ϕ〉ki can be directly transformed into an algorithm unrolling 〈ϕ〉ki into a
proposition no longer involving any temporal operators (F,G,X,U), but refer-
ring to variable valuations in states si, si+1 . . . , sk and Boolean operators ¬,∧,∨
only. Observe that we omit the semantics for G here, because our witnesses vi-
olating data rules are always represented by finite trace segments si.si+1 . . . sk
without loops, whereas Gϕ only holds true if the trace segment has a lasso shape,
where previous state on the segment is re-visited, thereby creating a cycle. The
BMC semantics of G is discussed in detail in [3, 4].

The remaining transformation rules applicable for data validation are (sym-
bols p denote atomic propositions)

〈ϕ〉ki = false if i > k (2)

〈p〉ki iff p[si(v)/v | v ∈ var(p)] (3)

〈¬ϕ〉ki iff ¬ 〈ϕ〉ki (4)

〈ϕ ∧ ψ〉ki iff 〈ϕ〉ki ∧ 〈ψ〉ki (5)

〈ϕ ∨ ψ〉ki iff 〈ϕ〉ki ∨ 〈ψ〉ki (6)

〈(∃b : ϕ)〉ki iff 〈ϕ〉ki ∧
k−1∧
j=i

(sj(b) = sj+1(b)) (7)

〈ϕUψ〉ki iff 〈ψ〉ki ∨ (〈ϕ〉ki ∧ 〈ϕ[b′/b | b ∈ bound(ϕ)]Uψ〉ki+1) (8)

〈Xϕ〉ki iff 〈ϕ〉ki+1 (9)

〈Fϕ〉ki iff

k∨
j=i

〈ϕ〉kj (10)

In this specification of semantic transformations, Equation (2) describes a termi-
nation condition: if i > k, the formula is evaluated on an empty trace segment,

4 We do not need to consider the weak until operator W, or the release operator R.

and this is false by definition. Equation (3) associates truth value true with an
atomic proposition if it evaluates to true after having replaced all variables v
by their actual value si(v) in the initial state si of the trace segment under
consideration. In Equation (7) it is shown how a formula using existential quan-
tification with bound variable b is transformed into a proposition. Note that b
occurs free in right-hand side formula, and extends domain of sj , sj+1, . . . , sk by
b. The conjunction over terms sj(b) = sj+1(b) specifies that, once the value of b
has been fixed for some state sj , the same value has to be used in all states along
the trace segment. The recursive definition of the until operator in Equation (8)
requires to use fresh bound variable symbols in each transformation step of the
formula. This is illustrated in Example 1.

Example 1. Consider the BMC evaluation of property (∃b : y = b ∧ X(y =
b + 1))U(x > 10) on trace segment s0.s1.s2, that is 〈(∃b : y = b ∧ X(y =
b+ 1))U(x > 10)〉20. Applying the rules above, this is unrolled to

〈(∃b : y = b ∧X(y = b+ 1))U(x > 10)〉20 ≡
〈(x > 10)〉20 ∨
(〈(∃b : y = b ∧X(y = b+ 1))〉20 ∧
〈(∃b′ : y = b′ ∧X(y = b′ + 1))U(x > 10)〉21) ≡
(s0(x) > 10) ∨
(〈(y = b) ∧X(y = b+ 1))〉20 ∧∧1

j=0 (sj(b) = sj+1(b)) ∧
〈(∃b′ : y = b′ ∧X(y = b′ + 1))U(x > 10)〉21) ≡
(s0(x) > 10) ∨
((s0(y) = s0(b)) ∧ (s1(y) = s1(b) + 1)) ∧∧1

j=0 (sj(b) = sj+1(b)) ∧
((s1(x) > 10) ∨
(s1(y) = s1(b′) ∧ s2(y) = s2(b′) + 1) ∧ (s1(b′) = s2(b′)) ∧
〈(∃b′′ : y = b′′ ∧X(y = b′′ + 1))U(x > 10)〉22) ≡
(s0(x) > 10) ∨
((s0(y) = s0(b)) ∧ (s1(y) = s1(b) + 1)) ∧∧1

j=0 (sj(b) = sj+1(b)) ∧
((s1(x) > 10) ∨
((s1(y) = s1(b′)) ∧ (s2(y) = s2(b′) + 1) ∧ (s1(b′) = s2(b′)) ∧
((s2(x) > 10) ∨ ((s2(y) = s2(b′′)) ∧ false)))

2.4 Data Validation by Bounded Model Checking

Bounded model checking in general is concerned with the solution of so-called
bounded model checking instances, that is , constraints of the form

J(s0) ∧
k∧

i=1

R(si−1, si) ∧G(s0, . . . , sk) (11)

For solving these constraints, SMT solvers are used. When applied in the context
of BMC, J(s0) is a proposition specifying the starting state from where a witness

should be found within a bounded number of steps k. For the purpose of data
validation, J(s0) admits any track element – respectively, its software instance
– s0 as a starting point, since all validation rules have to be applied to track
segments starting at any element s0 in the interlocking system area. Therefore
J(s0) can be expressed by

J(s0) ≡
∨
s∈S

(∧
v∈V

s0(v) = s(v)

)
(12)

This initial condition states that any initial valuation5 of variables v ∈ V must
coincide with any of the software instances s ∈ S representing track elements.

Proposition G(s0, . . . , sk) specifies the unwanted property of the trace seg-
ment of length k to be found, that is, a sequence of track element-related soft-
ware instances s0, . . . , sk violating some validation rule ¬G. As described in
Section 2.5, such an unwanted property G to be uncovered will be specified in
LTL. Therefore bounded LTL model checkers parse the original LTL formulae
and apply the transformation rules specified in formulae (2 — 10), in order
to produce an equivalent propositional formula G, as illustrated in Example 1
above.

The conjuncts R(si−1, si) enforce that only solutions of G(s0, . . . , sk) are
considered that correspond to trace segments whose elements are related by the
transition relation. For our purpose of data validation this means, that each pair
(si−1, si) of a solution trace s0, . . . , sk is connected by some primary or secondary
channel a, . . . , h. Therefore the conjunction is expressed by (see Equation (13))

k∧
i=1

R(si−1, si) ≡
k∧

i=1

 ∨
c∈{a,...,h}

si−1(c) = si(id)

 (13)

Summarising, data validation for geographical interlocking requires to solve
BMC instances of the form

∨
s∈S

(∧
v∈V

s0(v) = s(v)

)
∧

k∧
i=1

 ∨
c∈{a,...,h}

si−1(c) = si(id)

 ∧ Trans(φ) (14)

where φ specifies a violation of some validation rule in LTL, and Trans(φ) denotes
the transformation of LTL formulae into propositional formulae according to the
rules specified in formulae (2 — 10).

If the bounded model checker is able to calculate a witness, that is, a solution
of Formula (14) within k steps, an error has been found, so the bounded model

5 Recall from Section 2.1 that V contains the variable symbols for element identifica-
tion (id), element type (t), channels connecting to neighbouring elements (a, . . . , h),
and additional type-specific attributes (a1, . . . , ak). For some v ∈ V , notation s0(v)
denotes the value of variable v to be determined by the SMT solver for the initial
state s0.

checker is a valuable tool for bug finding. If, however, no witness can be found
within k steps, it remains to be determined whether some witness might be
found if k is increased. This question has been answered for the general case of
arbitrary Kripke Structures and LTL formulae in [4, 3]. If k corresponds to the
so-called diameter of the Kripke Structure under consideration, and no solution
could be found for this k, bounded model checking provides a global proof of
non-existence for such a witness. While the diameter is often too large to be
applied for BMC in practice, it is of feasible size in the case of data validation,
because it roughly corresponds to the maximal length of track segments from
some element to the boundary of the interlocking system area.

2.5 Applications

We will now describe several examples illustrating the expressiveness of LTL for
the verification of data validation rules.

Example 2. The simplest validation rules state that instances representing el-
ements of a certain type t = τ must have certain attributes with values in a
specific range, such as ai ∈ [x0, x1]. A violation of this property is readily ex-
pressed by LTL formula F(t = τ ∧ (ai < x0 ∨ x1 < ai)).

Example 3. The following rule checks the correctness of channel connections. “If
there exists a channel from s1 to s2, there must exist a channel in the reversed
direction”. A violation of this rule can be specified in natural language as “There
exists an instance s1 which is not the auxiliary initial state, so that s1 is con-
nected to some instance s2, but all channels emanating from s2 lead to instances
different from s1”. In LTL this is expressed as

F(∃i : id = i ∧ id > 0 ∧X(a 6= i ∧ b 6= i ∧ . . . ∧ h 6= i))

A witness for such a rule violation reaches an element s with positive id (so
it does not equal s0) and at least one of its reachable neighbours (which, by
definition of R, are only reachable if there is a connecting channel from s to this
neighbour) has no channel with destination s.

Example 4. The following rule pattern frequently occurs when checking config-
uration data with respect to software component instances representing illegal
sequences of track elements along a route. “Following a track element of type τ1
along its a-channel, and only regarding primary channel connections, an element
of type τ2 must occur, before an element of type τ3 is found”. The violation of
this rule is specified by “Find a track element of type τ1 and follow it along its
a-channel, so that only elements of type t 6= τ2 may be found along its primary
channel directions, until an element of type τ3 is encountered”.

F(t = τ1 ∧ ∃x : (a = x ∧X(id = x ∧ ((t 6= τ2 ∧
∃y : ((a = y ∨ b = y ∨ c = y ∨ d = y) ∧X(id = y)))

U(t = τ3)))))

2.6 Tool Support

In principle, data validation by means of LTL can be performed with any LTL
model checker that is able to encode the Kripke Structure representing the static
semantics of the geographical interlocking system as described in Section 2.1. A
reference implementation has been performed by the authors using the model-
based testing and bounded model checking tool RT-Tester, described in more
detail in [22]. RT-Tester performs automated test data generation or calculation
of BMC witnesses by solving constraints of the form specified in Equation (11),
with the help of the SONOLAR SMT solver described in [23].

Kripke structure Mstatic sw design

Informal data rules LTL assertions
for rule violations

φ

BMC checker
rules violated or not

Fig. 2. Tool support for data validation work flow.

Figure 2 shows the data validation work flow and indicates the interaction
between tool components.

– The static software design of the geographical interlocking system is rep-
resented by encodings s ∈ S of software instances corresponding to track
elements. In the reference implementation described here, this is encoded in
XML.

– A parser front-end of RT-Tester developed for this XML encoding reads
the design and transforms it into the internal model representation of the
tool. This is an abstract syntax tree data structure that allows for syntac-
tic representation of a wide variety of formalisms, such as UML/SysML,
Matlab/Simulink, process algebras, and the proprietary interlocking system
format described here.

– RT-Tester allows for utilisation of different transition relation generators,
associated with the semantics of each supported modelling formalism. One of
these generators creates the initial state condition and transition relation for
the Kripke Structure introduced in Section 2.1, according to equations (12)
and (13).

– The data validation rules are transformed by experts into LTL formulae φ
representing rule violation.

– The LTL parser of RT-Tester reads the formulae, and they are transformed
by the tool into propositional formulae.

– The diameter k of the track network is determined.

– The SMT solver tries to find a solution for the BMC instance shown in
Equation (14). If a solution can be found, a violation of rule ¬φ has been
uncovered. If no solution can be found, it has been proven that this rule is
nowhere violated, because k is the diameter of the network.

3 Verification of System Safety

This section describes our method for formally verifying safety of an interlocking
system.

3.1 Formalization of the Verification Task

According to our method, the input of this verification step should consist of:
(1) a formal, state-based, behavioural model M of the interlocking system and
its physical environment and (2) safety conditions Φ expressed as a conjunction
of propositions over the state variables in M. The verification goal is then to
verify that the safety conditions Φ hold for any reachable state in M.

As will be explained below, a model checker tool should be used for auto-
mated verification of such a goal. Therefore, the model M and the formula Φ
should be expressed in the input language of the chosen model checker.

3.2 Verification Strategy

There is an established approach to apply bounded model checking in combina-
tion with inductive reasoning, in order to prove global system properties; this
approach is called k-induction. For proving that safety condition Φ holds for all
reachable states of M, this method proceeds as follows.

1. First prove that Φ∧Ψ holds for the k > 0 first execution cycles after initial-
isation, i.e. Φ∧Ψ holds for k > 0 successive6 states σ0, . . . , σk−1 of which σ0
is the initial state of M.

2. Next prove the following for an arbitrary execution sequence of k+ 1 succes-
sive states σt, . . . , σt+k of which the first σt is an arbitrary state (reachable or
not from the initial state σ0): if Φ∧Ψ holds in the k first states σt, . . . , σt+k−1,
then Φ ∧ Ψ must also hold for the k + 1st state σt+k.

Here Ψ is an auxiliary property that holds for reachable states. (Note that Ψ is
simultaneously proven by the given induction principle.) The proofs of the base
case and the induction step should be performed by a bounded model checker
tool. An example of such a tool is described in [8]. This tool treats the two
proof obligations by exploring corresponding propositional satisfiable problems
and solving these by a SAT solver. Note that the induction steps argue over an
execution sequence of k+1 states of which the first state, σt, may be unreachable,

6 Two states σi and σi+1 are successive, if there is a transition from σi to σi+1 ac-
cording to M.

although it would have been sufficient only to consider sequences for which σt
is reachable. For sequences starting at an unreachable state, the induction step
may fail and the property checker produces a false negative. To avoid this, the
desired property Φ is strengthened with auxiliary property Ψ that is false for
those unreachable states, σt, for which the induction step would otherwise fail.

S22

G24.2

W118

W100

TRAMWAY MAIN ROUTES:
 1: S20−G21 (NORTH−SOUTH)
 3: S21−G23 (SOUTH−NORTH)

ROUTE 4: S21−G25

ROUTE 5: S22−G23

ROUTE 2:
S20−G25

ROUTE 6:
S22−G21

ROUTE 3
S21−G23

G22.1

G22.0

G22.3

G25.0 G25.1

G23.1

G23.0

G21.1

G21.0

S20

S21

G24.0G24.1

G24.3

G22.2

S20−G21
ROUTE 1:

G20.0

G20.1

G20.2 G20.3

W102

TRAM MAINTENANCE SITE

Fig. 3. A tramway network.

3.3 Case Study

A reference publication for this verification technique has been published in [8].
It describes a real-world route-related tramway control system. For the network
in Figure 3, the model of the tramway control system was verified to be safe,
using k-induction. The safety conditions Φ was a conjunction of 15 conditions
ensuring no collisions and no derailments of trams, and the auxiliary condition Ψ
was a conjunction of conditions expressing state relations needed as assumptions
in the induction step, in order to rule out unreachable states that would have
given rise to false negatives otherwise. It turned out that a value of k = 3 sufficed
to carry out the induction. The proofs of the base case and the induction step
were performed by a bounded model checker, which used 392 seconds to perform
the proofs. For more details about the case study, see e.g. [8, 17].

4 Conclusion

In this paper the application of bounded model checking for verification and
validation of interlocking systems has been described. In contrast to global model
checking which usually leads to state space explosions when applied to complex
interlocking systems, bounded model checking allows for application in large and

complex interlocking system layouts. It has been shown how the technique can be
applied on two levels. First, in the form of LTL property checking, for the purpose
of configuration data validation. Next, in combination with inductive reasoning,
for the purpose of verifying safety properties for the dynamic behaviour of trains
traversing the track network. Tool applications and measurements show that
both application scenarios scale up for application in an industrial context.

Acknowledgments The first author has been supported by the RobustRailS
project funded by the Danish Council for Strategic Research. The second and
third authors have been supported by the openETCS project funded by the
European ITEA2 organisation.

References

1. Guide to the software engineering body of knowledge. Tech-
nical report, IEEE Computer Society, 2004. Available under
http://www.computer.org/portal/web/swebok/htmlformat.

2. Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. Météor:
A successful application of b in a large project. In J. Wing, J. Woodcock, and
J. Davies, editors, FM’99 – Formal Methods, volume 1708 of Lecture Notes in
Computer Science, pages 369–387, Berlin Heidelberg, 1999. Springer.

3. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without bdds. In Proceedings of the 5th International Conference
on Tools and Algorithms for Construction and Analysis of Systems, TACAS ’99,
pages 193–207, London, UK, UK, 1999. Springer-Verlag.

4. Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and Viktor Schuppan.
Linear encodings of bounded LTL model checking. Logical Methods in Computer
Science, 2(5):1–64, 2006.

5. D. Bjørner. New Results and Current Trends in Formal Techniques for the Devel-
opment of Software for Transportation Systems. In Proceedings of the Symposium
on Formal Methods for Railway Operation and Control Systems (FORMS’2003),
Budapest/Hungary. L’Harmattan Hongrie, May 15-16 2003.

6. Mathieu Clabaut, Christophe Metayer, and Eric Morand. 4B-2 formal data vali-
dation – formal techniques applied to verification of data properties. In Embedded
Real Time Software and Systems ERTS, 2010.

7. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, Cambridge, Massachusetts, 1999.

8. R. Drechsler and D. Große. System level validation using formal techniques. IEE
Proc.-Comput. Digit. Tech., 152(3):393–406, May 2005.

9. European Committee for Electrotechnical Standardization. EN 50128:2011 – Rail-
way applications – Communications, signalling and processing systems – Software
for railway control and protection systems. CENELEC, Brussels, 2011.

10. Alessandro Fantechi. Distributing the Challenge of Model Checking Interlock-
ing Control Tables. In Tiziana Margaria and Bernhard Steffen, editors, Leverag-
ing Applications of Formal Methods, Verification and Validation. Applications and
Case Studies, volume 7610 of Lecture Notes in Computer Science, pages 276–289.
Springer Berlin Heidelberg, 2012.

11. Alessandro Fantechi, Wan Fokkink, and Angelo Morzenti. Some Trends in Formal
Methods Applications to Railway Signaling. In Formal Methods for Industrial
Critical Systems, pages 61–84. John Wiley & Sons, Inc., 2012.

12. Alessio Ferrari, Gianluca Magnani, Daniele Grasso, and Alessandro Fantechi.
Model Checking Interlocking Control Tables. In E. Schnieder and G. Tarnai, edi-
tors, Proceedings of Formal Methods for Automation and Safety in Railway and Au-
tomotive Systems (FORMS/FORMAT 2010), Braunschweig, Germany. Springer,
2011.

13. A. E. Haxthausen and J. Peleska. Formal Development and Verification of a Dis-
tributed Railway Control System. IEEE Transaction on Software Engineering,
26(8):687–701, 2000.

14. Anne E. Haxthausen. Towards a Framework for Modelling and Verification of
Relay Interlocking Systems. In 16th Monterey Workshop: Modelling, Development
and Verification of Adaptive Systems: the Grand Challenge for Robust Software,
number 6662 in Lecture Notes in Computer Science, pages 176–192. Springer, 2011.

15. Anne E. Haxthausen. Automated Generation of Safety Requirements from Railway
Interlocking Tables. In 5th International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation (ISOLA’2012), Part II, number
7610 in Lecture Notes in Computer Science, pages 261–275. Springer, 2012.

16. Anne E. Haxthausen and J. Peleska. Efficient Development and Verification of
Safe Railway Control Software. In Railways: Types, Design and Safety Issues,
pages 127–148. Nova Science Publishers, Inc., 2013.

17. Anne E. Haxthausen, Jan Peleska, and Sebastian Kinder. A Formal Approach for
the Construction and Verification of Railway Control Systems. Formal Aspects of
Computing, 23(2):191–219, 2011.

18. Thierry Lecomte, Lilian Burdy, and Michael Leuschel. Formally checking large
data sets in the railways. CoRR, abs/1210.6815, 2012.

19. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

20. Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider, and Helen
Treharne. Defining and Model Checking Abstractions of Complex Railway Models
using CSP‖B. In Armin Biere, Amir Nahir, and Tanja Vos, editors, Hardware
and Software: Verification and Testing, volume 7857 of Lecture Notes in Computer
Science, pages 193–208. Springer Berlin Heidelberg, 2013.

21. Jörn Pachl. Railway Operation and Control. VTD Rail Publishing, January 2002.
22. Jan Peleska. Industrial-strength model-based testing - state of the art and current

challenges. In Alexander K. Petrenko and Holger Schlingloff, editors, Proceedings
Eighth Workshop on Model-Based Testing, Rome, Italy, 17th March 2013, volume
111 of Electronic Proceedings in Theoretical Computer Science, pages 3–28. Open
Publishing Association, 2013.

23. Jan Peleska, Elena Vorobev, and Florian Lapschies. Automated test case gener-
ation with SMT-solving and abstract interpretation. In Mihaela Bobaru, Klaus
Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, Nasa Formal Methods,
Third International Symposium, NFM 2011, volume 6617 of LNCS, pages 298–312,
Pasadena, CA, USA, April 2011. Springer.

24. A. P. Sistla. Liveness and fairness in temporal logic. Formal Aspects of Computing,
6(5):495–512, 1994.

25. Kirsten Winter. Optimising ordering strategies for symbolic model checking of
railway interlockings. In 5th International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation (ISOLA’2012), Part II, number
7610 in Lecture Notes in Computer Science, pages 246–260. Springer, 2012.

