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Abstract.	In	this	paper	we	extend	PALPS,	a	process	calculus	proposed	for	the	spatially-explicit	individual-based	modeling	of
ecological	systems,	with	the	notion	of	a	policy.	A	policy	is	an	entity	for	specifying	orderings	between	the	different	activities
within	a	system.	It	is	defined	externally	to	a	PALPS	model	as	a	partial	order	which	prescribes	the	precedence	order	between	the
activities	of	the	individuals	of	which	the	model	is	comprised.	The	motivation	for	introducing	policies	is	twofold:	one	the	one
hand,	policies	can	help	to	reduce	the	state-space	of	a	model;	on	the	other	hand,	they	are	useful	for	exploring	the	behavior	of	an
ecosystem	under	different	assumptions	on	the	ordering	of	events	within	the	system.	To	take	account	of	policies,	we	refine	the
semantics	of	PALPS	via	a	transition	relation	which	prunes	away	executions	that	do	not	respect	the	defined	policy.	Furthermore,	we
propose	a	translation	of	PALPS	into	the	probabilistic	model	checker	PRISM.	We	illustrate	our	framework	by	applying	PRISM	on	PALPS
models	with	policies	for	conducting	simulation	and	reachability	analysis.

1	Introduction

Population	ecology	is	a	subfield	of	ecology	that	deals	with	the	dynamics	of	species	populations	and	their
interactions	with	the	environment.	Its	main	aim	is	to	understand	how	the	population	sizes	of	species	change	over
time	and	space.	It	has	been	of	special	interest	to	conservation	scientists	and	practitioners	who	are	interested	in
predicting	how	species	will	respond	to	specific	management	schemes	and	in	guiding	the	selection	of	reservation
sites	and	reintroduction	efforts,	e.g.	[22,	33].

One	of	the	main	streams	of	today’s	theoretical	ecology	is	the	individual-based	approach	to	modeling	population
dynamics.	In	this	approach,	the	modeling	unit	is	that	of	a	discrete	individual	and	a	system	is	considered	as	the
composition	of	individuals	and	their	environment.	Since	individuals	usually	move	from	one	location	to	another,	it	is
common	in	individual-based	modeling	to	represent	space	explicitly.	There	are	four	different	frameworks	in	which
spatially-explicit	individual-based	models	can	be	defined	[7].	They	differ	in	the	way	space	and	time	are	modeled:
each	can	be	treated	either	discretely	or	continuously.	The	four	resulting	frameworks	have	been	widely	studied	in
Population	ecology	and	they	are	considered	to	complement	as	opposed	to	compete	with	each	other.

In	this	paper,	we	extend	our	previous	work	on	a	process-calculus	framework	for	the	spatially-explicit	modeling
of	ecological	systems.	Our	process	calculus,	PALPS	follows	the	individual-based	modeling	and,	in	particular,	it	falls	in
the	discrete-time,	discrete-space	class	of	Berec’s	taxonomy	[7].	PALPS	associates	processes	with	information	about
their	location	and	their	species.	The	habitat	is	defined	as	a	graph	consisting	of	a	set	of	locations	and	a
neighborhood	relation.	Movement	of	located	processes	is	then	modeled	as	the	change	in	the	location	of	a	process,
with	the	restriction	that	the	originating	and	the	destination	locations	are	neighboring	locations.	In	addition,	located
processes	may	communicate	with	each	other	by	exchanging	messages	upon	channels.	Communication	may	take
place	only	between	processes	which	reside	at	the	same	location.	Furthermore,	PALPS	may	model	probabilistic
events,	with	the	aid	of	a	probabilistic	choice	operator,	and	uses	a	discrete	treatment	of	time.	Finally,	in	PALPS,
each	location	may	be	associated	with	a	set	of	attributes	capturing	relevant	information	such	as	the	capacity	or	the
quality	of	the	location.	These	attributes	form	the	basis	of	a	set	of	expressions	that	refer	to	the	state	of	the
environment	and	are	employed	within	models	to	enable	the	enunciation	of	location-dependent	behavior.

The	extension	presented	in	this	paper	is	related	to	the	issue	of	process	ordering	inside	each	time	unit.	In
particular,	simulations	carried	out	by	ecologists	impose	an	order	on	the	events	that	may	take	place	within	a	model.
For	instance,	if	we	consider	mortality	and	reproduction	within	a	single-species	model,	three	cases	exist:	concurrent
ordering,	reproduction	preceding	mortality	and	reproduction	following	mortality.	In	concurrent	ordering,
individuals	may	reproduce	and	die	simultaneously.	For	reproduction	preceding	mortality,	the	population	first
reproduces,	then	all	individuals,	including	new	offspring,	are	exposed	to	death.	For	reproduction	following
mortality,	individuals	are	first	exposed	to	death	and,	subsequently,	surviving	individuals	are	able	to	reproduce.
Ordering	can	have	significant	implications	on	the	simulation.	Thus,	alternatives	must	be	carefully	studied	before
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conclusions	are	drawn.

In	order	to	capture	process	ordering	in	PALPS,	we	define	the	notion	of	a	policy,	an	entity	that	imposes	an	order	on
the	various	events	that	may	take	place	within	a	system.	Formally,	a	policy,	σ,	is	defined	as	a	partial	order	on	the	set
of	events	in	the	system	where,	by	writing	( β)	∈	σ,	we	specify	that,	whenever	there	is	a	choice	between	executing
the	activities	$andβ,	β	is	chosen.	As	a	result,	a	policy	is	defined	externally	to	a	process	description.	This	implies
that	one	may	investigate	the	behavior	of	a	system	under	different	event	orderings	simply	by	redefining	the	desired
policy	without	redeveloping	the	system’s	description.	To	capture	policies	in	the	semantics	of	PALPS	we	extend	its
transition	relation	into	a	prioritized	transition	relation	which	prunes	away	all	transitions	that	do	not	respect	the
defined	policy.

Furthermore,	we	present	a	methodology	for	analyzing	models	of	PALPS	with	policies	via	the	probabilistic	model
checker	PRISM	[1].	To	achieve	this,	we	describe	a	method	for	translating	models	of	PALPS	with	policies	into	the	PRISM
language	and	we	prove	its	correctness.	We	then	apply	our	methodology	on	simple	examples	that	demonstrate	the
types	of	analysis	that	can	be	performed	on	PALPS	metapopulation	models	via	the	PRISM	tool.	By	contrasting	our
results	with	our	previous	work	of	[37],	we	observe	that	policies	achieve	a	significant	reduction	in	the	size	of	models
and	may	thus	enable	the	analysis	of	larger	systems.

Various	formal	frameworks	have	been	proposed	in	the	literature	for	modeling	biological	and	ecological	systems.
Similarly	to	ecosystem	modeling,	these	approaches	differ	in	their	treatment	of	time	and	space	and	can	be
considered	as	supplements	as	opposed	to	rivals	of	each	other	as	each	offers	a	distinct	view	and	different
techniques	for	analyzing	systems.	One	strand	is	based,	like	PALPS,	on	process	calculi,	and	constitute	extensions	of
calculi	such	as	CCS	[26],	the	π-calculus	[27]	and	CSP	[24].	Examples	include	WSCCS	of	[43]	which	follows	the	discrete-
time	approach	to	modeling	but	does	not	include	the	notion	of	space.	As	far	as	continuous	time	is	concerned,	there
are	various	proposals	including		[19,	13,	23,	17]	whereas	numerous	process	calculi	have	been	proposed	in	the
literature	to	model	space	including	[11,	39,	12].	A	different	approach	towards	modeling	biological	and	ecological
systems	is	that	of	P	systems	[38].	P	systems	were	conceived	as	a	class	of	distributed	and	parallel	computing
inspired	by	the	compartmental	structure	and	the	functioning	of	living	cells.	P-systems	have	been	extended	in
various	directions	and	they	have	been	applied	to	a	wide	range	of	applications	including	the	field	of
ecology	[34,	35,	8,	14,	9,	31,	15].	Finally,	we	mention	the	calculus	of	looping	sequences	[6],	and	its	spatial
extension	[5]	and	cellular	automata	[21,	16].	Process	calculi	has	been	also	applied	to	the	modeling	of	interactive
music	systems	[55,	61,	50,	60,	2,	56,	51,	30,	48,	45,	47,	49,	4,	54,	46,	52,	53,	44]	and	ecological	systems
[57,	36,	59,	37,	58].

Regarding	the	notion	of	policies	employed	in	PALPS	with	policies,	we	point	out	that	they	are	essentially	a	type	of
priorities	usually	referred	to	in	the	process-algebra	literature	as	static	priority	relations	(see	e.g.	[18])	and	are
similar	to	the	priorities	defined	for	P-Systems.	In	comparison	to	related	works,	as	far	as	we	know,	PALPS	with
policies	is	the	first	spatially-explicit	formalism	for	ecological	systems	that	includes	the	notion	of	priority	and
employs	this	notion	to	experiment	with	different	process	orderings	within	process	descriptions.	Furthermore,	via
the	translation	to	the	PRISM	language	our	framework	enables	to	carry	out	more	advanced	analysis	of	ecological
models	than	just	simulation,	which	is	the	main	approach	adopted	in	the	related	literature.	Possible	analysis
techniques	are	those	supported	by	the	PRISM	tool	and	include	model-checking,	reachability	analysis	as	well	as
computing	expected	behavior	[20].

Structure	of	the	paper.	The	structure	of	the	remainder	of	the	paper	is	as	follows.	In	Section	2	we	present	the
syntax	and	the	semantics	of	PALPS	with	policies.	We	illustrate	the	expressiveness	of	the	calculus	by	providing	models
of	systems	involving	process	ordering	in	Section	2.4.	In	Section	3	we	present	a	translation	of	PALPS	into	the	Markov-
decision-process	component	of	the	PRISM	language.	We	establish	the	correctness	of	the	translation	and	we	overview
the	types	of	analysis	that	this	translation	makes	possible	on	PALPS	models.	We	then	apply	these	techniques	on
simple	examples	and	we	explore	the	potential	of	the	approach	in	Section	4.	Finally,	in	Section	5,	we	conclude	with
a	discussion	of	future	work.

2	The	Process	Calculus

In	our	calculus,	Process	Algebra	with	Locations	for	Population	Systems	(PALPS),	we	consider	a	system	as	a	set	of
individuals	operating	in	space,	each	belonging	to	a	certain	species	and	inhabiting	a	location.	This	location	may	be
associated	with	attributes	which	describe	characteristics	of	the	location	and	can	be	used	to	define	location-
dependent	behavior	of	individuals.	Furthermore,	individuals	who	reside	at	the	same	location	may	communicate
with	each	other	by	communicating	upon	channels,	e.g.	for	preying,	or	they	may	migrate	to	a	new	location	where
they	may	continue	their	computation.	PALPS	may	model	probabilistic	events	with	the	aid	of	a	probabilistic	operator
and	uses	a	discrete	treatment	of	time.

2.1	The	Syntax

In	this	section	we	formalize	the	syntax	of	PALPS	which	is	built	based	on	the	following	basic	entities:

S:	a	set	of	species	ranged	over	by	s,	s′.
Loc:	a	set	of	locations	ranged	over	by	ℓ,	ℓ′.	The	habitat	of	a	system	is	then	implemented	via	a	relation	Nb,
where	(ℓ,ℓ′)	∈	Nb	exactly	when	locations	ℓ	and	ℓ′	are	neighbors.	For	convenience,	we	use	Nb	as	a	function	and
write	Nb(ℓ)	for	the	set	of	all	neighbors	of	ℓ.
Ch:	a	set	of	channels	ranged	over	by	lower-case	strings.
Ψ:	a	set	of	attributes,	ranged	over	by	ψ,	ψ′.	We	write	ψℓ	for	the	value	of	attribute	ψ	at	location	ℓ.
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Species	and	locations	are	characteristics	associated	with	every	individual	in	a	PALPS	system.	The	species
characteristic	is	static	whereas	the	location	characteristic	is	dynamic:	as	computation	proceeds,	an	individual	may
change	its	location	from	ℓ	to	ℓ′	with	the	restriction	that	(ℓ,ℓ′)	∈	Nb.	In	turn,	attributes	are	characteristics	associated
with	locations	and	they	may	capture	information	such	as	the	capacity,	the	temperature	or	the	quality	of	the
location.	They	form	the	basis	of	the	set	of	expressions	of	the	language	which	is	defined	below.

Expressions.	PALPS	employs	two	sets	of	expressions:	logical	expressions,	ranged	over	by	e,	and	arithmetic
expressions,	ranged	over	by	w.	These	expressions	are	intended	to	capture	environmental	situations	which	may
affect	the	behavior	of	individuals.	Expressions	e	and	w	are	constructed	as	follows:

where	c	is	a	real	number,	 	∈{=,≤,≥},	ℓ⋆	∈	Loc	∪{myloc},	and	op1	and	op2	are	the	usual	unary	and	binary
arithmetic	operations	on	real	numbers.

To	begin	with,	logical	expressions	e	are	built	using	the	propositional	calculus	connectives,	as	well	as
comparisons	between	an	arithmetic	expression	w	and	a	constant	c	(e.g.,	s1@ℓ	+	s2@ℓ	>	1).	Arithmetic	expressions
include	three	special	expressions	interpreted	as	follows:	Expression	ψ@ℓ⋆	is	equal	to	the	value	of	attribute	ψ	at
location	ℓ⋆.	Expression	s@ℓ⋆	is	equal	to	the	number	of	individuals	of	species	s	at	location	ℓ⋆,	and	expression	@ℓ⋆

denotes	the	total	number	of	individuals	of	all	species	at	location	ℓ⋆.

Location	ℓ⋆	can	be	an	arbitrary	location	or	the	special	location	myloc.	This	latter	label	is	employed	to	bestow
individuals	with	the	ability	to	express	conditions	on	the	status	of	their	current	location	no	matter	where	that	might
be,	as	computation	proceeds.	Specifically,	myloc	refers	to	the	actual	location	of	the	individual	in	which	the
expression	appears	and	it	is	instantiated	to	this	location	when	the	condition	needs	to	be	evaluated	(see	rule	(Cond)
in	Table	3).	In	conclusion,	arithmetic	expressions	are	the	set	of	all	expressions	formed	by	arbitrary	constants	c,
quantities	ψ@ℓ⋆,	s@ℓ⋆,	@ℓ⋆,	and	the	usual	unary	and	binary	arithmetic	operations.	Logical	expressions	and
arithmetic	expressions	are	evaluated	within	a	system	environment	(as	defined	in	Tables	1	and	2).

Processes.	The	syntax	of	PALPS	is	given	at	three	levels:	(1)	the	individual	level	ranged	over	by	P	,	(2)	the	species
level	ranged	over	by	R,	and	(3)	the	system	level	ranged	over	by	S.	Their	syntax	is	defined	via	the	following	BNFs:

where	L	⊆	Ch,	I	is	an	index	set,	pi	∈	(0,1]	with	∑	i∈Ipi	=	1,	e1,…,en,	are	logical	expressions	such	that	e1	∨…	∨	en	=
true,	C	ranges	over	a	set	of	process	constants	 ,	each	with	an	associated	definition	of	the	form	C P	,	and

Beginning	with	the	individual	level,	P	can	be	one	of	the	following:	Process	0	represents	the	inactive	individual,
that	is,	an	individual	who	has	ceased	to	exist.	Process	∑	i∈Iηi.Pi	describes	the	nondeterministic	choice	between	a	set
of	action-prefixed	processes:	it	can	execute	any	of	the	activities	ηi	and	proceed	as	the	respective	Pi.	We	write	η1.P1
+	η2.P2	to	denote	the	binary	form	of	this	operator.	In	turn,	an	activity	η	can	be	an	input	action	on	a	channel	a,
written	simply	as	a,	a	complementary	output	action	on	a	channel	a,	written	as	a,	a	movement	action	with
destination	ℓ,	go ℓ,	or	the	time-passing	action,	written	as	√.	Actions	of	the	form	a,	and	a,	a	∈	Ch,	are	used	to	model
arbitrary	activities	performed	by	an	individual;	for	instance,	eating,	preying	and	reproduction.

The	tick	action	√	measures	a	tick	on	a	global	clock.	These	time	steps	are	abstract	in	the	sense	that	they	have	no
defined	length	and,	in	practice,	√	is	used	to	separate	the	rounds	of	an	individual’s	behavior.

Process	∙∑	i∈Ipi:Pi	represents	the	probabilistic	choice	between	processes	Pi,	i	∈	I.	The	process	randomly	selects
an	index	i	∈	I	with	probability	pi,	and	then	evolves	to	process	Pi.	We	write	p1:P1	⊕	p2:P2	for	the	binary	form	of	this
operator.	The	conditional	process	cond (e1	⊴	P1,…,en	⊴	Pn)	presents	the	conditional	choice	between	a	set	of
processes:	it	behaves	as	Pi,	where	i	is	the	smallest	integer	for	which	ei	evaluates	to	true.	Note	that	this	choice	is
deterministic.	Finally,	process	constants	provide	a	mechanism	for	including	recursion	in	the	calculus.

Moving	on	to	the	species	level,	we	employ	the	special	species	process	R	defined	as	!rep.P	.	This	process	is	a
replicated	process	which	may	always	receive	input	through	channel	rep	and	create	new	instances	of	process	P	,
where	P	is	a	new	individual	of	species	R.	Such	inputs	will	be	provided	by	individuals	in	the	phase	of	reproduction
via	the	complementary	action	rep.

Finally,	population	systems	are	built	by	composing	in	parallel	located	individuals	and	species.	An	individual	is
defined	as	P:⟨s,ℓ⟩,	where	s	and	ℓ	are	the	species	and	the	location	of	the	individual,	respectively.	A	species	is	given
by	R:⟨s⟩,	where	s	is	the	name	of	the	species.	Finally,	S\L	models	the	restriction	of	the	use	of	channels	in	set	L
within	S.	As	a	syntactic	shorthand,	we	will	write	P:⟨s,ℓ,n⟩	for	the	parallel	composition	of	n	copies	of	process	P:⟨s,ℓ⟩.

2.2	The	Unprioritized	Semantics
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The	semantics	of	PALPS	is	defined	in	terms	of	a	structural	operational	semantics	given	at	the	level	of	configurations
of	the	form	(E,S),	where	E	is	an	environment	and	S	is	a	population	system.	The	environment	E	is	an	entity	of	the
form	E	⊂	Loc	×	S	×	ℕ,	where	each	pair	ℓ	and	s	is	represented	in	E	at	most	once	and	where	(ℓ,s,m)	∈	E	denotes	the
existence	of	m	individuals	of	species	s	at	location	ℓ.	The	environment	E	plays	a	central	role	in	evaluating
expressions.

The	satisfaction	relation	for	logical	expressions	 	is	defined	inductively	on	the	structure	of	a	logical	expression,
as	shown	in	Table	1.	It	depends	on	the	evaluation	function	for	arithmetic	expressions	val (E,w)	defined	in	Table	2.

Table	1:	The	satisfaction	relation	for	logical	expressions

E true always
E ¬e if	and	only	if ¬(E e)
E e1	∧	e2 if	and	only	if E e1	∧	E e2
E w e if	and	only	if val (E,w) e

Table	2:	The	evaluation	relation	for	arithmetic	expressions

val (E,c) = c
val (E,ψ@ℓ) = ψℓ

val (E,s@ℓ) = n,	(ℓ,s,n)	∈	E
val (E,s@ℓ) = 0,	(ℓ,s,n)	⁄∈	E
val (E,	@ℓ) = ∑	s∈Sval (E,s@ℓ)
val (E,op1(w)) = op1(val (E,w))
val (E,op2(w1,w2)) = op2(val (E,w1),val (E,w2))

Before	we	proceed	to	the	semantics	we	define	some	additional	operations	on	environments	that	we	will	use	in
the	sequel:

Definition	1.		Consider	an	environment	E,	a	location	ℓ	and	a	species	s.

E	⊕	(s,ℓ)	increases	the	count	of	individuals	of	species	s	at	location	ℓ	in	environment	E	by	1:

E	⊖	(s,ℓ)	decreases	the	count	of	individuals	of	species	s	at	location	ℓ	in	environment	E	by	1:

We	may	now	define	the	unprioritized	semantics	of	PALPS,	presented	in	Tables	3	and	4.	This	semantics	will	then	be
refined	into	the	prioritized	semantics	which	takes	into	account	the	notion	of	policies	in	Section	2.3.	The
unprioritized	semantics	is	given	in	terms	of	two	transition	relations:	the	non-deterministic	relation	 n	and	the
probabilistic	relation	 p.	A	transition	of	the	form	(E,S) n(E′,S′)	means	that	a	configuration	(E,S)	may	execute
action	μ	and	become	(E′,S′).	A	transition	of	the	form	(E,S) p(E′,S′)	means	that	a	configuration	(E,S)	may	evolve
into	configuration	(E′,S′)	with	probability	w.	Whenever	the	type	of	the	transition	is	irrelevant	to	the	context,	we
write	(E,S) (E′,S′)	to	denote	either	(E,S) n(E′,S′)	or	(E,S) p(E′,S′).	Action	μ	appearing	in	the	non-
deterministic	relation	may	have	one	of	the	following	forms:

aℓ,s	and	aℓ,s	denote	the	execution	of	actions	a	and	a	respectively	at	location	ℓ	by	an	individual	of	species	s.
τa,ℓ,s′	denotes	an	internal	action	that	has	taken	place	on	channel	a,	at	location	ℓ,	and	where	the	output	on	a	was
carried	out	by	an	individual	of	species	s.	This	action	may	arise	when	two	complementary	actions	take	place	at
the	same	location	ℓ	or	when	a	move	action	take	place	from	location	ℓ.	Note	that	this	information	was	not
included	in	the	semantics	of	PALPS	as	presented,	e.g.,	in	[37].	It	is,	however,	necessary	in	PALPS	with	policies	in
order	to	accommodate	the	enunciation	of	policies.

Rules	for	individuals.	The	rules	of	Table	3	prescribe	the	semantics	of	located	individuals	in	isolation.	The	first
four	rules	define	non-deterministic	transitions.	The	fifth	axiom	defines	a	probabilistic	transition,	and	the	last	two
rules	refer	to	both	the	non-deterministic	and	the	probabilistic	case.	All	rules	are	concerned	with	the	evolution	of
the	individual	in	question	and	the	effect	of	this	evolution	to	the	system’s	environment.	A	key	issue	in	the
enunciation	of	the	rules	is	to	preserve	the	compatibility	of	P	and	E	as	transitions	are	executed.	We	consider	each
rule	separately:

Table	3:	Transition	rules	for	individuals

(E,	0:⟨s,ℓ⟩) n(E,	0:⟨s,ℓ⟩)
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(Nil)
(Tick) (E,√.P:⟨s,ℓ⟩) n(EP,s,ℓ,P:⟨s,ℓ⟩)

(Act) (E,η.P:⟨s,ℓ⟩ n(EP,s,ℓ,P:⟨s,ℓ⟩) η≠go ℓ′,√

(Go) (E,go ℓ′.P:⟨s,ℓ⟩) n(((EP,s,ℓ,ℓ′,P:⟨s,ℓ′⟩) (ℓ,ℓ′)	∈	Nb

(NSum)

(PSum) (E,∙∑	i∈Ipi:Pi:⟨s,ℓ⟩) p(EPi,s,ℓ,P	i:⟨s,ℓ⟩)

(Const) 	 C P

(Cond)

					where	EP,s,ℓ	=	

						EP,s,ℓ,ℓ′	=	((E	⊖	(s,ℓ))	⊕	(s,ℓ′))P,s,ℓ′

Axiom	(Nil)	specifies	that	the	0	process	may	execute	the	time	consuming	action	√.	This	axiom	allows	for	time-
progress	in	a	system	with	inactive	individuals.
Axiom	(Tick)	specifies	that	a	√-prefixed	process	will	execute	the	time	consuming	action	√	and	then	proceed	as
P	.	The	state	of	the	new	environment	depends	on	the	state	of	P	.	If	P	=	0	then	the	individual	has	terminated	its
computation	and	it	is	removed	from	E	(see	the	definition	of	EP,s,ℓ).	If	P≠0	then	E	remains	unchanged.
Axiom	(Act)	specifies	that	η.P	executes	action	ηℓ,s	and	evolves	to	P	.	Note	that	the	action	is	decorated	by	the
location	and	the	species	of	the	individual	executing	the	transition	to	enable	synchronization	of	the	action	with
complementary	actions	taking	place	at	the	same	location	(see	rule	(Par2),	Table	4).	This	axiom	excludes	the
cases	of	η	=	go ℓ	and	η	=	√	which	are	treated	in	separate	axioms.
According	to	Axiom	(Go),	an	individual	may	change	its	location.	This	gives	rise	to	action	τgo,ℓ,s	and	has	the
expected	effect	on	the	environment	E.	As	we	have	already	mentioned,	the	label	go,	the	location	ℓ	and	the
species	s	are	recorded	to	enable	the	enunciation	of	policies.
Rule	(NSum)	describes	the	behavior	of	a	nondeterministic	choice:	any	of	the	available	summands	may	be
selected	and	executed.
Rule	(PSum)	expresses	the	semantics	of	probabilistic	choice:	a	process	is	chosen	probabilistically	leading	to
the	appropriate	continuation.	If	the	resulting	state	of	the	individual,	namely	Pi,	is	equal	to	0,	then	the
individual	is	removed	from	the	environment	E.
Rule	(Const)	expresses	the	semantics	of	process	constants	in	the	expected	way.
Finally,	rule	(Cond)	stipulates	that	a	conditional	process	may	perform	an	action	of	continuation	Pi	assuming
that	ei 	↓ ℓ	evaluates	to	true	and	all	ej 	↓ ℓ,	j	<	i	evaluate	to	false.	Note	that	we	write	e 	↓ ℓ	for	the	expression	e
with	all	occurrences	of	myloc	substituted	by	location	ℓ.

Rules	for	systems.	We	may	now	move	on	to	Table	4	which	defines	the	semantics	of	system-level	operators.	The
first	two	rules	define	the	semantics	for	the	replication	operator,	the	next	five	rules	define	the	semantics	of	the
parallel	composition	operator,	and	the	last	rule	deals	with	the	restriction	operator.

According	to	rules	(R_Tick)	and	(R_Rep),	a	species	process	may	idle	or	it	may	engage	in	action	repℓ,s	for	any
location	ℓ	and	create	a	new	individual	P:⟨s,ℓ⟩.

Table	4:	Transition	rules	for	systems

(R_Tick)

(R_Rep)

(Par1)

(Par2)

(Par3)

(Par4)

(Time)

(Res)
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Rules	(Par1)	-	(Par4)	specify	how	the	actions	of	the	components	of	a	parallel	composition	may	be	combined.
Note	that	the	symmetric	versions	of	these	rules	are	omitted.	We	point	out	that,	according	to	rule	(Par2),	if	the
parallel	components	may	execute	complementary	actions	at	the	same	location,	then	they	may	synchronize	with
each	other	producing	action	τa,ℓ,s.	Note	that	the	internal	action	is	decorated	by	the	channel,	the	location,	and	the
species	of	the	individual	that	produced	an	output	on	the	channel	during	the	synchronization.	If	both	components
may	execute	probabilistic	transitions	then	they	proceed	together	with	probability	the	product	of	the	two	distinct
probabilities	(rule	(Par3)).	If	exactly	one	of	them	enables	a	probabilistic	transition	then	this	transition	takes
precedence	over	any	non-deterministic	transitions	of	the	other	component	(rule	(Par4)).

Note	that	in	case	that	the	components	proceed	simultaneously	then	the	environment	of	the	resulting
configuration	should	take	into	account	the	changes	applied	in	both	of	the	constituent	transitions	(rules	(Par2),
(Par3)	and	(Time)	as	follows:

Rule	(Time)	defines	that	parallel	processes	must	synchronize	on	√	actions.	This	allows	one	tick	of	time	to	pass
and	all	processes	to	proceed	to	their	next	round.	Finally,	rule	(Res)	defines	the	semantics	of	the	restriction
operator	in	the	usual	way.

Initial	configuration.	Based	on	this	machinery,	the	semantics	of	a	system	S	is	obtained	by	applying	the	semantic
rules	to	the	initial	configuration.	The	initial	configuration,	(E,S),	is	such	that	(ℓ,s,m)	∈	E	if	and	only	if	S	contains
exactly	m	individuals	of	species	s	located	at	ℓ	of	the	form	P:⟨s,ℓ⟩,	where	P≠0.	In	general,	we	say	that	E	is
compatible	with	S	whenever	(ℓ,s,m)	∈	E	if	and	only	if	S	contains	exactly	m	active	(non-0)	individuals	of	species	s
located	at	ℓ.	It	is	possible	to	prove	that	the	defined	semantics	preserves	compatibility	of	configurations	[3]:

Lemma	1.	Whenever	(E,S) (E′,S′)	and	E	is	compatible	with	S,	then	E′	is	also	compatible	with	S′.

2.3	Policies	and	Prioritized	Semantics

We	are	now	ready	to	define	the	notion	of	a	policy	and	refine	the	semantics	of	PALPS	accordingly.	A	policy	σ	is	a
partial	order	on	the	set	of	PALPS	non-probabilistic	actions.	By	writing	( β)	∈	σ	we	imply	that	action	β	has	higher
priority	than	$andwheneverthereisachoicebetween$	and	β,	β	should	always	be	selected.	For	example,	the	policy	σ
=	{(reproduceℓ,s,disperseℓ,s)|ℓ	∈	Loc}	specifies	that,	at	each	location,	dispersal	actions	of	species	s	should	take
place	before	reproduction	actions.	On	the	other	hand	σ	=	{(reproduceℓ1,s,disperseℓ1,s),(disperseℓ2,s,reproduceℓ2,s)}
specifies	that,	while	dispersal	should	proceed	reproduction	at	location	ℓ1,	the	opposite	should	hold	at	location	ℓ2.

To	achieve	this	effect	the	semantics	of	PALPS	needs	to	be	refined	with	the	use	of	a	new	non-deterministic
transition	system.	This	new	transition	relation	prunes	away	all	process	executions	that	do	not	respect	the	priority
ordering	defined	by	the	applied	policy.	Precisely,	given	a	PALPS	system	S	and	a	policy	σ	then,	the	semantics	of	the
initial	configuration	(E,S)	under	the	policy	σ	is	given	by	 p	∪ σ	where	the	prioritized	nondeterministic
transition	relation	 σ	is	defined	by	the	following	rule:

2.4	Examples

Example	1.		We	consider	a	simplification	of	the	model	presented	in		[42]	which	studies	the	reproduction	of	the
parasitic	Varroa	mite.	This	mite	usually	attacks	honey	bees	and	it	has	a	pronounced	impact	on	the	beekeeping
industry.	In	this	system,	a	set	of	individuals	reside	on	an	n	×	n	lattice	of	resource	sites	and	go	through	phases	of
reproduction	and	dispersal.	Specifically,	the	studied	model	considers	a	population	where	individuals	disperse	in
space	while	competing	for	a	location	site	during	their	reproduction	phase.	They	produce	offspring	only	if	they	have
exclusive	use	of	a	location.	After	reproduction	the	offspring	disperse	and	continue	indefinitely	with	the	same
behavior.	In	PALPS,	we	may	model	the	described	species	s	as	R !rep.P0,	where

We	point	out	that	the	conditional	construct	allows	us	to	determine	the	exclusive	use	of	a	location	by	an	individual.
The	special	label	myloc	is	used	to	denote	the	actual	location	of	an	individual	within	a	system	definition.
Furthermore,	note	that	P1	models	the	probabilistic	production	of	one	or	two	children	of	the	species.	During	the
dispersal	phase,	an	individual	moves	to	a	neighboring	location	which	is	chosen	equiprobably	among	the	neighbors
of	its	current	location.	A	system	that	contains	two	individuals	at	a	location	ℓ	and	one	at	location	ℓ′	can	be	modeled
as
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In	order	to	refine	the	system	so	that	during	each	cycle	of	the	individuals’	lifetime	all	dispersals	take	place	before
the	reproductions,	we	may	employ	the	policy	{(τrep,ℓ,s,τgo,ℓ′,s)|ℓ,ℓ′∈	Loc}.	Then,	according	to	the	PALPS	semantics,
possible	executions	of	System	have	the	form:

for	some	probability	w	and	locations	ℓ1,ℓ2,ℓ3,	where,	in	the	final	state	of	the	above	execution,	no	component	will	be
able	to	execute	the	rep	action	before	all	components	finish	executing	their	movement	actions.

Example	2.	Let	us	now	extend	the	previous	example	into	a	two-species	system.	In	particular,	consider	a	competing
species	s′	of	the	Varroa	mite,	such	as	the	pseudo-scorpion,	which	preys	on	s.	To	model	this,	we	may	define	the
process	R !rep′.Q0,	where

An	individual	of	species	s′	initially	has	a	choice	between	preying	or	producing	an	offspring.	If	it	succeeds	in
locating	a	prey	then	it	preys	on	it.	If	it	fails	then	it	makes	another	attempt	in	the	next	cycle.	If	it	fails	again	then	it
dies.

To	implement	the	possibility	of	preying	on	the	side	of	s,	its	definition	must	be	extended	with	complementary
input	actions	on	channel	prey	at	the	appropriate	places:

In	this	model	it	is	possible	to	define	an	ordering	between	the	actions	of	a	single	species,	between	the	actions	of	two
different	species	or	even	between	actions	on	which	individuals	of	the	two	different	species	synchronize.	For
instance,	to	specify	that	preying	takes	place	in	each	round	before	individuals	of	species	s	disperse	and	before
individuals	of	species	s′	reproduce	we	would	employ	the	policy

Furthermore,	to	additionally	require	that	reproduction	of	species	s	precedes	reproduction	of	species	s′,	we	would
write	σ	∪{(τrep′,ℓ,s′,τrep,ℓ,s)|ℓ	∈	Loc}.

Example	3.	As	a	final	example,	we	consider	a	model	inspired	by	[7]	concerning	the	possible	ordering	of	the
activities	of	reproduction,	mortality	and	dispersal	within	a	single-species	individual-based	model.	In	particular,	let
us	assume	a	species	in	which	individuals	may	go	through	reproduction	and	mortality	before	dispersing	in	each
cycle	of	their	life.	In	this	species,	it	is	possible	to	distinguish	three	cases	in	which	this	behavior	may	take	place:
reproduction	and	mortality	may	take	place	concurrently	within	a	model,	reproduction	may	proceed	mortality	for
every	individual,	or	reproduction	may	follow	mortality,	for	every	individual.	We	may	model	this	species	in	PALPS	as
follows:

According	to	this	definition,	an	individual	of	the	species	may	initially	nondeterministically	select	between	the
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activities	of	mortality	(Pm
1)	and	reproduction	(Pr

1).	It	then	goes	through	two	phases	for	executing	the	two	activities
according	to	the	chosen	order,	where	pm	is	the	probability	of	mortality	and	pr	the	probability	of	reproduction.	Note
that	there	are	two	species	processes,	namely,	S1	and	S2.	They	are	distinguished	by	whether	new	offspring	is
exposed	to	death	during	the	first	cycle	of	their	life,	as	specified	in	the	reproduction	before	mortality	process
ordering	(process	S2).

We	may	now	see	that	the	three	orderings	discussed	above	can	be	implemented	via	the	policies:	σ0	=	∅	for	the
concurrent	ordering,

for	the	mortality-before-reproduction	ordering	and

for	the	mortality-follows-reproduction	ordering.	The	intuition	is	that	σ0	does	not	impose	any	order	between	the	two
activities,	thus,	individuals	of	the	species	may	concurrently	engage	in	reproduction	and	mortality	whereas	in	σ1	and
σ2	one	activity	takes	priority	over	another.

3	Translating	PALPS	into	PRISM

In	this	section	we	turn	to	the	problem	of	model	checking	PALPS	models	extended	with	policies.	As	is	the	case	of	PALPS
without	policies,	the	operational	semantics	of	PALPS	with	policies	gives	rise	to	transition	systems	that	can	be	easily
translated	to	Markov	decision	processes	(MDPs).	We	recall	that	Markov	decision	processes	are	a	type	of	transition
systems	that	combine	probabilistic	and	non-deterministic	behavior.	As	such,	model	checking	approaches	that	have
been	developed	for	MDPs	can	also	be	applied	to	PALPS	models.

PRISM	is	one	such	tool	developed	for	the	analysis	of	probabilistic	systems.	Specifically,	it	is	a	probabilistic	model
checker	for	Markov	decision	processes,	discrete	time	Markov	chains,	and	continuous	time	Markov	chains.	Using
PRISM	it	is	also	possible	to	generate	random	sample	paths	of	execution	for	simulation.	For	our	study	we	are
interested	in	the	MDP	support	of	the	tool.	In	[37]	we	defined	a	translation	of	PALPS	into	the	MDP	subset	of	the	PRISM
language	and	we	explored	the	possibility	of	employing	the	probabilistic	model	checker	PRISM	to	perform	analysis	of
the	semantic	models	derived	from	PALPS	processes.	In	this	paper,	we	refine	the	translation	of	[37]	for	taking	into
account	the	notion	of	policies.

In	the	remainder	of	this	section,	we	will	give	a	brief	presentation	of	the	PRISM	language,	present	an	encoding	of
(a	subset	of)	PALPS	with	policies	into	PRISM	and	prove	its	correctness.

3.1	The	PRISM	language

The	PRISM	language	is	a	simple,	state-based	language,	based	on	guarded	commands.	A	PRISM	model	consists	of	a	set
of	modules	which	can	interact	with	each	other	on	shared	actions	following	the	CSP-style	of	communication.	Each
module	possesses	a	set	of	local	variables	which	can	be	written	by	the	module	and	read	by	all	modules.	In	addition,
there	are	global	variables	which	can	be	read	and	written	by	all	modules.	The	behavior	of	a	module	is	described	by
a	set	of	guarded	commands.	When	modeling	MDPs	these	commands	take	the	form:

[act]	guard		p1	:	u1	+	...	+	pm	:um;

where	act	is	an	optional	action	label,	guard	is	a	predicate	over	the	set	of	variables,	pi	∈	(0,1]	and	ui	are	updates	of
the	form:

(x′1	=	ui,1)	&	...	&	(x′k		=	ui,k)

where	ui,j	is	a	function	over	the	variables.	Intuitively,	such	an	action	is	enabled	in	global	state	s	if	s	satisfies	guard.	If
a	command	is	enabled	then	it	may	be	executed	in	which	case,	with	probability	pi,	the	update	ui	is	performed	by
setting	the	value	of	each	variable	xj	to	ui,j(s)	(where	xj′	denotes	the	new	value	of	variable	xj).

A	model	is	constructed	as	the	parallel	composition	of	a	set	of	modules.	The	semantics	of	a	complete	PRISM	model
is	the	parallel	composition	of	all	modules	using	the	standard	CSP	parallel	composition.	This	means	that	all	the
modules	synchronize	over	all	their	common	actions	(i.e.,	labels).	For	a	transition	arising	from	synchronization
between	multiple	processes,	the	associated	probability	is	obtained	by	multiplying	those	of	each	component
transition.	Whenever,	there	is	a	choice	of	more	than	one	commands,	this	choice	is	resolved	non-deterministically.
We	refer	the	reader	to	[1]	for	the	full	description	and	the	semantics	of	the	PRISM	language.

3.2	Encoding	PALPS	with	policies	into	the	PRISM	language

As	observed	in	[29],	the	main	challenge	of	translating	a	CCS-like	language	(like	PALPS)	into	PRISM	is	how	to	map	binary
CCS-style	communication	over	channels	to	PRISM’s	multi-way	(CSP	style)	communication.	Our	approach	for	dealing
with	this	challenge	in	[37],	similarly	to	[29],	was	to	introduce	a	distinct	action	for	each	possible	binary,	channel-
based,	communication	which	captures	the	channel	as	well	as	the	sender/receiver	pair.	The	two	other	actions	in
PALPS,	namely	the	tick	action	and	the	movement	action,	were	easily	handled	via	the	synchronous	communication	of
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PRISM,	in	the	case	of	the	tick	action,	and	via	a	single	PRISM	command,	in	the	case	of	the	movement	action.

In	PALPS	with	policies	the	translation	becomes	more	complex	because,	at	any	point,	we	need	to	select	actions	that
are	not	preempted	by	other	enabled	actions.	For	example,	suppose	that	according	to	our	policy	σ,	( β)	∈	σ.	This
implies	that,	at	any	point	during	computation,	we	must	have	information	as	to	whether	β	is	enabled.	To	implement
this	in	PRISM,	we	employ	a	variable	nβ	which	records	the	number	β’s	enabled.	To	begin	with,	this	variable	is
initialized	with	the	relevant	values	as	given	rise	to	by	the	model.	Subsequently,	it	is	updated	as	computation
proceeds:	once	a	β	is	executed	then	nβ	is	decreased	by	1	and	when	a	new	occurrence	becomes	enabled	it	is
increased	by	1.	For	example,	given	the	process	η1.P1	+	η2.P2,	if	action	η1	is	executed	and	if	additionally	η2	=	β,	then
nβ	should	be	decreased	by	1	and,	if	P1	enables	β	then	nβ	should	be	increased	accordingly.	Finally,	we	point	out	that,
if	( β)	∈	σ,	execution	of	action	$inanymoduleofamodelshouldhaveasapreconditionthatn_β	=	0.

To	translate	PALPS	into	the	PRISM	language,	we	translate	each	process	into	a	module.	The	execution	flow	of	a
process	is	captured	with	the	use	of	a	local	variable	within	the	module	whose	value	is	updated	in	every	command	in
such	as	way	as	to	guide	the	computation	through	the	states	of	the	process.	Then,	each	possible	construct	of	PALPS	is
modeled	via	a	set	of	commands.	For	example,	the	probabilistic	summation	is	represented	by	encoding	the
probabilistic	choices	into	a	PRISM	guarded	command.	Non-deterministic	choices	are	encoded	by	a	set	of
simultaneously	enabled	guarded	commands	that	capture	all	nondeterministic	alternatives,	whereas	the	conditional
statement	is	modeled	as	a	set	of	guarded	commands,	where	the	guard	of	each	command	is	determined	by	the
expressions	of	the	conditional	process.

Unfortunately,	the	replication	operator	cannot	be	directly	encoded	into	PRISM	since	the	PRISM	language	does	not
support	the	dynamic	creation	of	modules.	To	overcome	this	problem,	we	consider	a	bounded	replication	construct
of	the	form	!mP	in	which	we	specify	the	maximum	number	of	P	’s,	namely	m,	that	can	be	created	during
computation.	We	note	that,	in	practice,	the	value	of	m	can	be	selected	by	estimating	a	bound	of	the	maximum	size
of	the	population,	or	it	can	be	determined	by	the	size	of	the	state-space	of	the	resulting	model.

We	now	consider	the	main	ideas	of	translating	PALPS	into	the	PRISM	language	via	an	example.

Example	4.		Consider	a	habitat	consisting	of	four	patches	{1,2,3,4},	where	Nb	is	the	symmetric	closure	of	the	set
{(1,2),(1,3),(2,4),(3,4)}.	Let	s	be	a	species	residing	on	this	habitat	defined	according	to	the	bounded	replication	R:

According	to	the	definition,	an	individual	of	species	s	begins	by	nondeterministically	selecting	between	the
activities	of	dispersal	and	reproduction.	If	dispersal	it	selected,	then	it	migrates	with	equal	probability	to	one	of	the
neighboring	locations	and	then	probabilistically	produces	an	offspring	before	returning	to	its	initial	state.	If
reproduction	is	selected,	then	the	order	between	these	two	activities	is	swapped.	Now,	consider	a	system	initially
consisting	of	two	individuals,	one	at	location	1	and	one	at	location	4:

Further,	suppose	that	we	would	like	to	analyze	the	system	under	the	policy

That	is,	we	are	interested	in	a	process	ordering	where	dispersal	takes	place	before	reproduction	and	all	movement
actions	proceed	the	reproduction	synchronizations.

In	order	to	translate	System	under	policy	σ	in	the	PRISM	language	we	first	need	to	encode	global	information
relating	to	the	system.	This	consists	of	four	global	variables	that	record	the	initial	populations	of	each	of	the
locations	and	two	variables	that	record	the	number	of	enabled	occurrences	of	the	actions	of	the	higher	priority
referred	to	in	the	policy	σ,	that	is,	of	disperses	and	τgo,s.	We	also	include	a	global	variable	i	that	measures	the
inactive	individuals	still	available	to	be	triggered.	Initially	i	=	m.

global	s1,	s4:	[0,m+2]	init	1;		
global	s2,	s3:	[0,m+2]	init	0;		
global	i:	[0,m]	init	m;		
global	n_d:	[0,m+2]	init	2;	//dispersal	action		
global	n_g:	[0,m+2]	init	0;	//go	action

We	continue	to	model	the	two	individuals	P1:⟨s,1⟩	and	P1:⟨s,4⟩.	Each	individual	will	be	described	by	a	module.	In
Fig.	1,	we	may	see	the	translation	of	individual	P1:⟨s,1⟩.
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module	P1		
	
st1	:	[1..15]	init	1;		
loc1:	[1..4]	init	1;		
const	int	s1	=	1;		
	
[disperse]	(st1=1)&(pact=0)	->	(st1'=2)&(n_d'=n_d-1)&(pact'=1);		
[reproduce]	(st1=1)&(n_d=0)&(pact=0)	->	(st1'=3)&(n_d'=n_d-1);		
	
[prob]	(st1=2)	->	0.5:(st1'=6)&(n_g'=n_g+1)&(pact'=0)		
														+	0.5:(st1'=7)&(n_g'=n_g+1)&(pact'=0);		
[]	(st1=6)&(loc=1)&(pact=0)	->	(loc'=2)&(s1'=s1-1)&(s2'=s2+1)		
																								&(n_g'=n_g-1)&(st'=4);		
[]	(st1=7)&(loc=1)&(pact=0)	->	(loc'=3)&(s1'=s1-1)&(s3'=s3+1)		
																								&(n_g'=n_g-1)&(st'=4);		
...	//	All	possible	moves	are	enumerated		
	
[prob]	(st1=4)	->	0.5:(st1'=8)	+	0.5:(st1'=13)&(pact'=0);		
	
[]	(st1=8)&(i>0)&(n_g=0)&(pact=0)	->	(s1'=s1+1)&(i'=i-1)&(st'=9);		
[rep_1_3]	(st1=9)&(pact=0)	->	(st1'=13);	//	Activate	module	3		
...	//	All	activation	possibilities	are	enumerated		
	
[prob]	(st1=3)	->	0.5:(st1'=10)&(pact'=0)		
																+	0.5:(st1'=5)&(pact'=0);		
	
[]	(st1=10)&(i>0)&(n_g=0)&(pact=0)	->		
																								(s1'=s1+1)&(i'=i-1)&(st'=11);		
[rep_1_3]	(st1=11)&(pact=0)	->	(st1'=5)&(pact'=1);		
...	//	All	activation	possibilities	are	enumerated		
	
[prob]	(st1=5)	->	0.5:(st1'=11)&(n_g'=n_g+1)&(pact'=0)		
																+	0.5:(st1'=12)&(n_g'=n_g+1)&(pact'=0);		
[]	(st1=11)&(loc=1)&(pact=0)	->	(loc'=2)&(s1'=s1-1)&(s2'=s2+1)		
																								&(n_g'=n_g-1)&(st'=13);		
[]	(st1=12)&(loc=1)&(pact=0)	->	(loc'=3)&(s1'=s1-1)&(s3'=s3+1)		
																								&(n_g'=n_g-1)&(st'=13);		
...	//	All	possible	moves	are	enumerated		
	
[tick]	(st1=13)	->	(st1'=14);		
[]	(st1=14)	->	(n_d'=n_d+1)&(st1'=15);		
[tick']	(st1=15)	->	(st1'=1);		
	
[prob]	(pact=1)&(st1!=2,3,4,5)	->	(pact'=0);		
endmodule

Fig.	1:	PRISM	code	for	an	active	individual

We	observe,	that	its	species	variable,	s1,	is	set	to	1,	a	constant	that	identifies	the	species,	its	location	variable,
loc1,	is	set	to	1	and	variable	st1,	recording	its	state,	is	set	to	1,	the	initial	state	of	the	module.	Overall,	the	module
has	15	different	states.	From	state	1	two	commands	are	enabled:	one	of	actions	disperse	and	reproduce	can	take
place,	though	the	latter	has	as	a	precondition	that	nd	=	0.	Thus,	in	fact,	it	will	never	be	enabled.	Then	from	state	2,
a	probabilistic	transition	takes	place	to	determine	the	position	of	dispersal.	This	yields	one	of	the	states	6	and	7
which	result	in	horizontal	and	vertical	dispersals	along	the	grid,	respectively.	In	both	bases	variable	ng	is	increased
by	one	as	the	go	action	becomes	enabled.	Note	that	the	actions	enabled	from	states	6	and	7	update	the	number	of
individuals	of	the	source	and	destination	locations	of	the	move	and	the	variable	ng	is	decreased	by	one	as	there	is
now	one	fewer	movement	action	enabled.	From	state	4	a	probabilistic	transition	determines	whether	the	individual
will	reproduce	or	not.	In	the	case	that	dispersal	is	selected,	it	is	executed	in	two	distinct	steps:	initially	at	state	8	it
is	confirmed	that	there	is	still	an	individual	to	activate	and	that	no	movement	actions	are	currently	enabled.	In	this
case	variables	i	and	sloc	are	updated	and	the	flow	of	control	is	passed	on	to	state	9	where	a	synchronization	with	an
inactive	module	is	performed.	Finally,	we	point	out	that	the	tick	action	is	implemented	via	three	actions	in	PRISM
(states	13-15):	initially	all	modules	are	required	to	synchronize	on	the	tick	action,	then	they	all	perform	their
necessary	updates	for	actions	that	will	become	enabled	by	the	move	and,	finally,	the	modules	are	required	to
synchronize	again	before	they	may	start	to	execute	their	next	time	step.

Note	that	for	both	the	reproduction	and	the	tick	actions	the	moves	given	rise	by	our	translation	cannot	be
merged	into	one	due	to	the	restriction	of	PRISM	that	commands	which	synchronize	with	other	modules	(such	as	rep)
cannot	modify	global	variables	(such	as	si).

Individual	P1:⟨s,4⟩	may	be	defined	similarly.	Note	that	the	module	encoding	this	process	is	identical	to	module
P1	with	the	exception	that	we	rename	the	names	of	the	variables	and	the	initial	value	of	the	location	variable.

This	leaves	us	with	the	encoding	of	R:	the	component	that	implements	replication	of	individuals.	As	we	have
already	discussed,	we	achieve	this	via	bounded	replication	which	makes	an	assumption	on	the	maximum	number	of
new	individuals	that	can	be	created	in	a	system.	Given	this	assumption,	our	model	must	be	extended	by	an
appropriate	number	of	inactive	individuals	awaiting	for	a	trigger	via	a	rep_i_j	action	as	illustrated	in	Fig.	2.

module	P3		
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	st3	:	[0..15]	init	0;		
	loc3:	[1..4]	init	1;		
	const	int	s3	=	1;		
	[tick]	(st3=0)	->	(st3'=0);		
	[tick']	(st3=0)	->	(st3'=0);		
	[rep_1_3]	(st3=0)	->	(st3'=1)&(loc3=loc1);	...		
	[rep_max_3]	(st3=0)	->	(st3'=1)&(loc3=loc_max);	...		
	//	Here	we	append	the	code	of	an	active	$P_1$	individual		
	//	with	the	variables	appropriately	renamed		
	
endmodule

Fig.	2:	PRISM	code	for	an	inactive	individual

Thus,	the	inactive	individual	modeled	by	module	P3,	awaits	to	synchronize	with	any	of	the	remaining	modules
0,...,m	+	2,	in	which	case	it	inherits	the	location	of	the	synchronizing	module	and	it	sets	st3	=	1	so	that	it	may
begin	to	execute	the	code	of	an	active	individual,	presented	in	Fig.	1,	with	the	variables	appropriately	renamed.

3.3	Formal	translation

In	this	section,	we	will	formalize	the	intuitions	of	the	previous	example	into	a	formal	translation	of	PALPS	into	PRISM
and	we	will	prove	its	correctness.

Consider	a	PALPS	model.	This	consists	of	a	set	of	locations,	L	=	{1,…,k},	a	set	of	attributes,	Θ	=	{θ1,…,θm},	and	a
value	of	each	attribute	at	each	location,	the	neighborhood	relation	Nb,	a	process	System	and	a	policy	σ	=	{(1,β1),
…,(p,βp)}.	We	assume,	for	the	reasons	already	discussed	in	the	previous	section,	that	all	replication	processes	are
bounded	and	have	the	form	R	=!nrep.P	,	thus	allowing	the	creation	of	up	to	n	individuals	of	the	specific	species.	We
also,	assume	that	all	rep	channels	are	restricted	within	System.	Then,	the	PRISM	model	is	constructed	as	follows:

For	each	species	s,	the	model	contains	the	k	global	integer	variables	s1,…,sk,	capturing	the	number	of
individuals	of	species	s	for	each	of	the	locations.	The	variables	are	appropriately	initialized	based	on	the
definition	of	System.
For	each	attribute	θ	and	each	location	ℓ,	the	model	contains	a	constant	that	records	the	value	of	θℓ.
For	each	channel	a	on	which	synchronization	takes	place	we	introduce	a	variable	ay	which	counts	the	number
of	available	inputs	at	location	y.
There	exists	a	global	variable	atomic	which	may	take	values	from	{0,1}	and	is	used	to	force	the	atomic
execution	of	sequences	of	actions	forming	the	translation	of	a	single	PALPS	action.	Initially,	atomic	=	0.
There	exists	a	global	variable	pact	which	may	take	values	from	{0,1}	and	expresses	whether	there	is	a
probabilistic	action	enabled.	It	is	used	to	give	precedence	to	probabilistic	actions	over	nondeterministic
actions.	Initially,	pact	=	0.	Furthermore,	all	non-probabilistic	actions	have	pact	=	0	as	a	precondition.
For	each	action	β	such	that	( β)	∈	σ,	we	distinguish	two	cases.	If	β	is	an	input/output	action	on	a	channel	or	the
action	τgo,ℓ,s,	then	we	introduce	a	variable	nβ	which	counts	the	number	of	enabled	actions	of	type	β.	If	instead	β
=	τa,ℓ,s	for	some	channel	a,	then	we	employ	three	variables	na,ℓ,	na,ℓ	and	nβ	which	count	the	available
occurrences	of	aℓ,s,	aℓ,s	and	β,	respectively.
Each	(active)	process	P:⟨s,ℓ⟩	of	System	becomes	a	PRISM	module	with	a	constant	spP	=	s,	a	variable	locP	=	ℓ	and	a
variable	stP,	with	range	1,…,|P|,	which	records	the	current	state	of	the	individual	and	where	|P|	is	the	number
of	states	that	P	may	evolve	to.	The	body	of	the	module	is	the	translation	of	process	P	into	guarded	commands.
Each	species	definition	R:⟨s⟩	=!nrep.P	of	System	becomes	a	sequence	of	n	PRISM	modules,	Px+1,…,Px+n,	where	x
is	the	number	of	individuals	of	species	s	in	the	initial	state	of	System.	In	our	model,	we	introduce	a	variable	is
that	records	the	current	number	of	inactive	individuals	of	species	s:

Each	inactive	module	Py	possesses	a	constant	spy	=	s,	a	variable	locy	which	is	not	initialized,	and	another
variable	sty,	with	range	0,…,|P|,	which	corresponds	to	the	current	state	of	the	individual	and	where	|P|	is	the
number	of	states	that	P	may	evolve	to.	Note	that	sty	=	0	corresponds	to	the	state	where	the	inactive	individual
is	awaiting	activation	by	one	of	the	active	individuals	of	species	s.	To	capture	this,	we	include	the	following
commands:
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Thus,	Py	may	be	activated	by	any	of	the	modules	P1,…,Px+n	and	then	proceed	according	to	the	translation	of
process	P	into	guarded	commands.

We	now	continue	to	describe	how	a	process	at	the	individual	level	of	PALPS	can	be	translated	to	a	sequence	of
PRISM	commands.	We	denote	the	translation	of	a	process	P	as	[ [P] ]	and	we	define	it	inductively	on	the	structure	of
P	.	Note	that,	for	convenience,	we	write	sQ	to	for	the	state	(integer	value)	associated	with	process	Q.	In	the
translations	below,	we	assume	that	we	are	working	within	a	module	with	identifier	x,	species	s,	and	variables	st,
and	loc.	Furthermore,	we	write

enabled(P)	for	the	set	of	all	input	actions	aℓ	such	that	P ,
enabledσ(P)	for	the	set	of	all	actions	such	that,	for	all	(β,	∈	σ,	if	≠	τa,ℓ	then	∈	enabledσ(P),	and	if	τa,ℓ	then	aℓ,aℓ	∈
enabledσ(P),
enabledσ,τ(P)	for	the	set	of	all	actions	τa,ℓ,s	such	that	P 	and	(β,	∈	σ,	and
prob(P)	for	the	logical	value	that	expresses	whether	P	is	a	probabilistic	process.

Based	on	these	notions,	we	write

Finally,	in	the	translations	below,	we	assume	that	we	are	working	within	a	module	with	identifier	x	and	variables	st,
and	loc.

Case	1:	Q	=	go l.P	.	We	translate	the	process	by	including	the	command

where	the	highlighted	condition	(nβ	=	0)	is	only	present	if	there	exists	(τgo,ℓ,β)	∈	σ.	We	then	append	the	translation
of	P	.	Note	that	according	to	its	definition,	updates(Q,P)	will	increase	by	1	all	variables	n

wheretheaction$	is	enabled	by	Q	while	reducing	n

,τgo,ℓ,s	by	1,	since	there	is	now	one	less	occurrence	of	the	specific	action.

Case	2:	Q	=	a.P	.	To	begin	with,	the	process	is	translated	into	the	following	command	which	captures	the	possibility	that	Q	executes	the	input
action	on	channel	a	independently	of	synchronizing	output	actions.

where	the	highlighted	condition	is	included	only	if	there	exists	(aloc,s,β)	∈	σ.	Additionally,	we	include	the	commands

for	each	module	y	that	may	perform	an	output	on	channel	a.	Note	that	this	transition	does	not	have	the	requirement	that	atomic	=	0.	This	will
be	explained	in	conjunction	with	the	translation	of	the	action	a	in	Case	3,	below.	We	then	append	the	translation	of	P	.

Case	3:	Q	=	a.P	.	Similarly	to	Case	2,	we	include	the	following	command	to	capture	that	Q	may	execute	a	independently	of	any	synchronizing
action	on	channel	a.

where	the	highlighted	condition	is	included	only	if	there	exists	(aloc,s,β)	∈	σ.

Furthermore,	we	include	the	commands



for	each	module	y	that	may	perform	an	input	on	channel	a.	Note	that	in	this	piece	of	code,	initially	a	process	willing	to	perform	an	output
checks	whether	there	is	another	process	willing	to	do	an	input	at	the	same	location	(aloc	>	0),	assuming	that	atomic	=	0	and	pact	=	0.	In	this
case,	it	performs	all	its	updates	and	sets	atomic	=	1.	It	then	proceeds	to	synchronize	with	a	process	ready	to	do	an	input	via	action	ax,y	at	its
location.	Note	that	such	an	action	is	enabled	as	an	input	without	a	restriction	of	atomic	=	0.	We	may	then	observe	that	the	process
synchronizing	on	the	input	(see	Case	2)	will	continue	to	perform	via	a	second	action	its	own	updates	and	set	atomic	=	0.	We	point	out	that
splitting	this	synchronization	in	three	distinct	commands	was	necessary	due	to	the	fact	that	in	PRISM,	actions	in	which	synchronization	is
performed	(such	as	ax,y)	do	not	permit	to	update	global	variables	as	necessary	by	updates(Q,P).

As	before	the	condition	(nβ	=	0)	is	included	only	if	there	exists	(τℓ,s,β)	∈	σ.	We	then	append	the	translation	of	P	.

Case	4:	Q	=	√.P	.	We	translate	the	process	by	including	the	commands

and	appending	the	translation	of	P	.	Note	that,	as	in	the	case	of	a	synchronization,	this	action	needs	to	be	split	in	three	steps:	in	the	first	step
all	modules	synchronize	on	the	tick	action,	they	each	then	perform	their	updates,	and,	before	any	module	may	proceed,	the	modules	are
forced	to	synchronize	on	the	tick′	action.	This	is	again	necessary	since	the	necessary	updates	cannot	be	performed	while	the	module	are
synchronizing	on	their	tick	actions.

Case	5:	Q	=	rep.P	.	We	translate	the	process	by	including	the	commands

for	each	module	y	that	may	perform	an	output	on	channel	rep.	We	then	append	the	translation	of	P	.	The	translation	is	explained	in
conjunction	with	the	next	case.

Case	6:	Q	=	rep.P	.	We	translate	the	process	by	including	the	commands

for	each	inactive	module	y	of	species	s,	and	then	appending	the	translation	of	P	.	As	before,	the	highlighted	condition	is	included	only	if	there
exists	(τrep,ℓ,s,β)	∈	σ.	Note	that	in	this	case,	a	module	aiming	to	perform	the	reproduction	action	rep	begins	by	confirming	that	there	are
inactive	modules	of	its	species	still	available	(is	>	0)	and	that	atomic	=	0	and	pact	=	0.	In	such	a	case,	it	reduces	is	by	1,	it	performs	its
updates	and	it	sets	atomic′	=	1	so	that	the	next	two	steps	are	performed	atomically.	These	steps	consists	of	a	synchronization	of	the	current
module	with	the	module	of	an	inactivated	individual	(action	repx,y)	after	which	the	newly-activated	individual	will	perform	its	updates	and	set
atomic	=	0.

Case	7:	Q	=	1.P1	+	2.P2.	We	translate	the	process	by	computing	the	translations	[ [1.P1] ]	and	[ [2.P2] ]	and	replacing	all	commands	of	the	form

by

where	updates′	is	the	same	as	updates	expect	that	we	compute	updates(Q,P1)	instead	of	updates(1.P1,P1),	and	similarly	for	the	commands	of
[ [2.P2] ].

Case	8:	Q	=	p1	:	P1	+	…	+	pn	:	Pn.	We	translate	the	process	by	appending	[ [P1] ],…,[ [Pn] ]	to	the	command:

Case	9:	Q	=	cond (e1	⊴	P1,…,en	⊴	Pn).	We	translate	the	process	by	constructing	[ [P1] ],…,[ [Pn] ]	and	replacing	each	command	of	the	form:

by	the	command

where	[ [e@loc]	is	the	translation	of	the	PALPS	expression	e@ℓ	into	the	PRISM	language.

Case	10:	Q	=	P\L.	We	translate	the	process	by	computing	[ [P] ]	and	then	removing	all	transitions	with	label	[ai]	and	[ai′]	where	a	∈	L.

Case	11	C,	C P	.	We	translate	the	process	by	computing	[ [P] ]	and	replacing	each	command	in	[ [P] ]	of	the	form

by

Case	11:	Q	=	0.	We	translate	the	process	as



Finally,	in	each	module	we	include	a	transition	that	allows	the	module	to	perform	a	probabilistic	action,	assuming	that	pact	=	1,	i.e.	there
exists	at	least	one	module	willing	to	execute	a	probabilistic	action.	In	this	way	probabilistic	actions	are	given	precedence	over
nondeterministic	actions	as	required	by	the	semantics.	Note	that	a	module	resorts	to	this	action	only	if	itself	does	not	enable	a	probabilistic
action.	Assuming	that	the	probabilistic	states	of	the	module	are	s1,…,sp,	this	remaining	action	is	as	follows:

3.4	Correctness	of	the	translation

We	now	turn	to	consider	the	correctness	of	the	proposed	translation.	This	is	demonstrated	via	the	following	two	theorems.	In	what	follows,

given	a	PRISM	model	M,	we	write	M Mi	if	M	contains	an	action	[α]	guard	->	p1	:	u1	+	…	+	pm	:	um;	where	guard	is	satisfied	in	model	M	and

execution	of	ui	gives	rise	to	model	Mi.	Furthermore,	we	write	M mM′	if	M( )mM′,	that	is,	M	may	evolve	into	M′	after	an	a	sequence	of	m
moves	each	of	which	is	executed	with	probability	1.

Theorem	1.		For	any	configuration	(E,Sys)	and	policy	σ,	where	E	is	compatible	with	Sys,	the	following	hold:

1.	 if	(E,Sys) σ(E′,Sys′)	then	[ [(E,Sys)] ] m[ [(E′,Sys′)] ],	for	some	m,

2.	 if	(E,Sys) p(E′,Sys′)	then	[ [(E,Sys)] ] [ [(E′,Sys′)] ].

Theorem	2.		For	any	configuration	(E,Sys)	and	policy	σ,	where	E	is	compatible	with	Sys,	the	following	hold:

1.	 if	[ [(E,Sys)] ] M	then	(E,Sys) p(E′,Sys′)	and	M	=	[ [(E′,Sys′)] ],

2.	 if	[ [(E,Sys)] ] M,	then	(E,Sys) σ(E′,Sys′)	and	M mM′	for	some	m,	where	M′	=	[ [(E′,Sys′)] ]	and	whenever	M mM′′	then	M′′	=
[ [(E′,Sys′)] ].

Theorem	1	establishes	that	each	transition	of	(E,Sys)	can	be	mimicked	by	its	translation	module	in	a	sequence	of	steps:	in	the	case	of
probabilistic	actions	this	is	achieved	in	a	single	step,	whereas	in	the	case	of	nondeterministic	actions,	this	may	take	more	than	one	step	in	the
PRISM	translation.	Theorem	2	considers	the	other	direction	of	the	correctness:	Given	a	transition	of	a	PRISM	module	there	are	two	possibilities.
If	the	transition	is	a	prob	transition,	when	a	probabilistic	action	with	the	same	probability	may	take	place	at	the	PALPS	level.	Otherwise,	it	is
possible	that	the	transition	of	the	module	has	resulted	in	the	first	of	a	sequence	of	states	for	establishing	the	transition	of	a	PALPS	process.	In
this	case,	the	intermediate	state	may	perform	no	other	execution	steps	other	than	to	reach	the	translation	of	the	resulting	process	of	the	PALPS
process.

Sketch	of	the	proof	of	Theorem	1:	The	proof	consists	of	a	case	analysis	of	all	possible	ways	in	which	the	transition	(E,Sys) (E′,Sys′)	can
be	produced.	Four	cases	exist:

If	the	transition	involves	a	single	process	participant	P:⟨s,ℓ⟩,	then	we	may	verify	by	induction	on	the	structure	of	P	that	any	action	P	can
perform	can	also	be	performed	by	its	translation	and	the	resulting	PRISM	model	is	the	translation	of	(E′,Sys′).	In	all	cases	this	can	be
established	in	a	single	move	of	module	P	.
If	instead	the	transition	has	arisen	via	the	communication	of	two	components	of	Sys	then	it	is	possible	to	establish	that	the	two	modules
corresponding	to	the	two	components	share	the	action	in	question	and	can	thus	execute	the	synchronization.	This	will	take	three
actions	at	the	PRISM	level.
If	√,	then	it	must	be	that	all	components	of	Sys	enable	the	transition	√.	We	may	then	observe	that	the	PRISM	translations	of	the
components	enable	the	tick	action	and	thus	the	transition	can	be	performed	in	a	sequence	of	moves.
if	w,	then	it	must	be	that	a	set	of	Sys	processes	enable	a	probabilistic	transition	and	w	is	the	product	of	the	associated	probabilities.	We
may	then	observe	that	all	PRISM	components	enable	the	prob	action	with	the	respective	modules	enabling	the	specific	probabilistic
actions	and	the	remaining	modules	enabling	the	action	with	probability	1.	As	a	result	the	PRISM	model	will	match	the	transition	with	a
(prob,q)	action.	The	resulting	PRISM	model	is	the	translation	of	(E′,Sys′).	□

Sketch	of	the	proof	of	Theorem	2:	The	proof	consists	of	a	case	analysis	of	all	possible	ways	in	which	the	transition	[ [(E,Sys)] ] M	can
be	produced.	It	follows	along	similar	lines	with	the	proof	of	Theorem	1.	The	interesting	cases	include	the	synchronizations,	the	activations	of
inactive	modules,	and	the	tick	action.	The	important	point	to	note	here	is	that,	in	all	cases,	the	intermediate	step	M	captures	correctly
environment	E′	in	the	transition	(E,Sys) (E′,Sys′).	Furthermore,	the	assignment	atomic	=	1	locks	all	actions	not	involved	in	the	completion

of	the	translation	of	(E,Sys) (E′,Sys′).	As	result,	there	exists	exactly	one	possible	path	of	execution	of	the	PRISM	model	which	is	exactly	the
one	leading	to	[ [(E′,Sys′)] ].	□

3.5	Verification	in	PRISM

In	this	section	we	briefly	describe	the	types	of	analysis	that	can	be	performed	on	PALPS	models	via	the	PRISM	model	checker.

Model	Checking	To	begin	with,	PALPS	models	may	be	model	checked	in	PRISM	against	properties	specified	in	the	PCTL	logic	[10].	The	syntax	of
the	PCTL	logic	is	given	by	the	following	grammar	where	Φ	and	ϕ	range	over	PCTL	state	and	path	formulas,	respectively,	p	∈	[0,1]	and	k	∈	ℕ.

In	the	syntax	above,	we	distinguish	between	state	formulas	Φ	and	path	formulas	ϕ,	which	are	evaluated	over	states	and	paths,	respectively.
A	state	formula	is	built	over	logical	expressions	e	and	the	construct	P p[ϕ].	Intuitively,	a	configuration	s	satisfies	property	P p[ϕ]	if	for	any
possible	execution	beginning	at	the	configuration,	the	probability	of	taking	a	path	that	satisfies	the	path	formula	ϕ	satisfies	the	condition	 p.

Path	formulas	include	the	X	(next),	Uk	(bounded	until)	and	U	(until)	operators,	which	are	standard	in	temporal	logics.	Intuitively,	XΦ	is
satisfied	in	a	path	if	the	next	state	satisfies	path	formula	Φ.	Formula	Φ1UkΦ2	is	satisfied	in	a	path	if	Φ1	is	satisfied	continuously	on	the	path
until	Φ2	becomes	true	within	k	time	units	(where	time	units	are	measured	by	√	events	in	PALPS).	Finally,	formula	Φ1UΦ2	is	satisfied	if	Φ2	is
satisfied	at	some	point	in	the	future	and	Φ1	holds	up	until	then.
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As	an	example,	consider	a	population	s	in	danger	of	extinction.	A	property	that	one	might	want	to	check	for	such	a	population	is	that	the
probability	of	extinction	of	the	population	in	the	next	ten	years	is	less	than	a	certain	threshold	pe.	This	can	be	expressed	in	PCTL	by	the
property	P≤pe[trueU

10	∑	ℓ∈Locs@ℓ	=	0].	Alternatively,	one	might	express	that	a	certain	central	location	ℓ	will	be	re-inhabited	with	at	least	some
probability	pr	by	s@ℓ	=	0	→	P≥pr[trueU(s@ℓ	>	0)].

It	is	also	possible	to	study	the	relation	within	a	model	between	the	size	of	the	initial	population	and	the	probability	of	extinction	of	the
population,	by	checking	properties	of	the	form	s@ℓ	≥	m	→	P≥pe[trueU(s@ℓ	=	0)]	or	to	explore	the	dynamics	between	two	(or	more)	competing
populations	s	and	s′.	As	an	example,	expressing	that,	within	the	next	20	years	with	some	high	probability,	members	of	the	population	s	will
outnumber	the	members	of	population	s′:	P≥p[trueU(∑	ℓ∈Locs′@ℓ	≤∑	ℓ∈Locs@ℓ)].

PRISM	also	enables	to	take	a	more	quantitative	approach	for	model	checking	PCTL	properties:	it	supports	the	verification	of	the	constructs
Pmin=?[ϕ]	and	Pmax=?[ϕ]	via	which	the	minimum	and	maximum	probabilistic	of	satisfying	ϕ	are	computed.

Steady-state	behavior.	PRISM	also	supports	reasoning	about	the	steady-state	behavior	of	a	model,	that	is,	the	behavior	in	the	long-run	or
when	an	equilibrium	is	reached	[10].	Steady-state	properties	are	only	available	for	discrete-time	and	continuous-time	Markov	chains.	These
properties	are	expressed	by	Sbound[prop].	Such	a	property	is	true	in	a	state	s	of	a	discrete-time	or	a	continuous-time	Markov	chain	if,	starting
from	s,	the	steady-state	(long-run)	probability	of	being	in	a	state	which	satisfies	the	(boolean-valued)	property	prop,	meets	the	bound	bound.
For	example,	the	steady-state	property	Sbound[s@2	=	4]	expresses	that	the	long-run	probability	that	there	will	be	4	individuals	of	species	s	at
location	2	meets	the	bound.

Rewards.	PRISM	models	can	also	be	augmented	with	information	about	rewards:	It	is	possible	to	assign	a	reward	(a	positive	real	number)	to
any	command	or	state	of	a	PRISM	model.	Every	time	a	command	is	executed	or	a	state	is	visited,	the	rewards	associate	with	the	command	or
state	is	accumulated.	It	is	then	possible	to	reason	about	reward-based	properties	for	discrete-time	Markov	chains,	by	extending	the	logic	PCTL
with	the	following	additional	operators	[1]:

where	 	∈{<,≤,≥,>},r	∈	ℝ≥0,k	∈	ℕ	and	Φ	is	a	PCTL	formula.	The	R	operator	defines	properties	about	the	expected	value	of	rewards.	The
formula	R r[ψ],	where	ψ	denotes	one	of	the	four	possible	operators	in	the	grammar	above,	is	satisfied	in	a	state	s	if,	from	s,	the	expected
value	of	reward	ψ	meets	the	bound	 r.	Operator	C≤k	refers	to	the	reward	accumulated	over	k	time	steps;	I≤k	the	state	reward	at	time	instant
k;	FΦ,	the	reward	accumulated	before	a	state	satisfying	Φ	is	reached;	and	S,	the	long-run	rate	of	reward	accumulation.	Properties	of	the	form
R=?[ψ]	means	“what	is	the	expected	reward	for	operator	ψ?”.

4	A	case	study	in	PRISM

In	this	section,	we	apply	our	methodology	for	the	simulation	and	model	checking	of	PALPS	systems	using	the	PRISM	tool.	As	a	case	study	we
consider	a	variation	of	the	system	in	Example	1,	Section	2.4,	which	was	also	considered	in	[37]	and	can	thus	serve	as	a	benchmark	for
studying	the	effect	of	applying	policies	on	systems	and,	in	particular	the	degree	by	which	policies	reduce	the	state	space	of	a	PRISM	model.	The
variation	we	hereby	consider,	as	we	can	see	below,	is	that	the	order	of	dispersal	and	reproduction	is	not	fixed:	the	two	activities	can	take
place	in	an	arbitrary	order.

In	our	model	we	will	assume	a	lattice	of	locations	of	size	n	×	n	(we	will	consider	n	=	4,9,16).	We	assume	periodic	boundaries	conditions	so
that	the	opposite	sides	of	the	grid	are	connected	together.	Then,	the	PALPS	definition	of	an	individual	takes	the	following	form:

The	PRISM	encoding	of	the	system	follows	the	translation	presented	in	Section	3.	We	performed	some	obvious	optimizations	in	order	to
reduce	the	size	of	our	model.	All	the	tests	were	performed	on	a	G46VW	Asus	laptop	with	an	Intel	i5	2.50	GHz	processor	and	8	GB	of	RAM.	We
ran	the	tests	under	Linux	Ubuntu	13.04	(Kernel	3.8.0_17),	using	PRISM	4.0.3	with	the	MTBDD	engine	for	model	checking	and	CI	method	for
simulation,	and	Java	7.

As	a	first	experiment	we	explored	and	compared	the	effect	of	applying	policies	on	the	state	space	of	the	system	in	question.	Specifically,
individuals	in	the	system	may	engage	in	two	activities:	reproduction	and	dispersal.	Let	us	assume	an	ordering	of	these	two	activities	so	that
reproduction	follows	dispersal.	This	gives	rise	to	the	policy	σ	=	{(τrep,ℓ,s,τgo,ℓ,s),(reproduceℓ,s,disperseℓ,s)∣ℓ	∈	Loc}.

In	Table	5	we	summarize	the	results	we	obtained	in	our	experiments.	In	the	models	we	fixed	p	=	0.4.	We	may	observe	that	applying	policy
σ	has	resulted	in	a	significant	reduction	in	the	size	of	the	state	spaces	by	a	factor	of	8	on	average(see	cases	No	policy	and	Policy	σ).	A	further
reduction	was	achieved	by	extending	our	policy	in	a	manner	related	to	the	PRISM	model:	in	PRISM	each	individual	is	modeled	as	a	discrete
module.	Thus	given	an	activity	of	two	individuals	two	distinct	executions	may	arise	depending	on	the	order	in	which	the	individuals	execute
the	activity.	However,	we	may	observe	that	these	two	executions	both	lead	to	equivalent	final	states,	thus,	it	is	sufficient	to	consider	only	one
of	them.	To	take	this	into	account,	we	extended	policy	σ	so	as	to	enforce	an	order	on	individuals.	That	is,	we	require	that	individuals	execute
actions	in	an	increasing	order	in	terms	of	their	identifier.	This	extended	policy	results	in	a	further	reduction	of	the	state	space	by	about	20%.

Case	study Number	of Number	of Construction RAM
size States Transitions time	(sec.) (GB)

No	policy	[37]
3	PALPS	individuals 130397 404734 8 0.5
4	PALPS	individuals 1830736 7312132 101 1.9

Policy	σ
3	PALPS	individuals 27977 64282 3 0.3
4	PALPS	individuals 148397 409342 10 0.7
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Extended	policy
3	PALPS	individuals 20201 41602 3 0.3
4	PALPS	individuals 128938 310393 9 0.6

Table	5:	Performance	of	building	probabilistic	models	in	PRISM	with	and	without	policies.

As	a	second	experiment,	we	attempted	to	determine	the	limits	for	simulating	PALPS	models.	We	constructed	PRISM	models	with	various
numbers	of	modules	of	active	and	inactive	individuals	and	we	run	them	on	PRISM.	In	Table	6,	we	summarize	the	results.	It	turns	out	that	for
models	with	more	than	5000	individuals	simulation	requires	at	least	12	hours	(which	was	the	time	limit	we	set	for	our	simulations).

Individuals File	Size	(MB) RAM	(GB) Simulation	Time	(s)
10 0.1 0.18 1
100 0.4 0.3 8
500 2.0 0.5 45
1000 4.2 1.0 300
1500 6.2 0.7 454
2000 8.2 0.9 820
5000 20.1 2.0 >	12	hours
10000 44.1 3.4 >	12	hours

Table	6:	Performance	of	simulating	probabilistic	systems	in	PRISM.

Subsequently,	we	looked	into	the	restriction	imposed	by	our	assumption	of	bounded	replication.	In	particular,	this	restriction	may	lead	to
deadlocks	when	an	active	individual	attempts	to	reproduce	but	no	inactive	module	is	available	for	synchronization.	To	explore	this,	we	used
the	simulation	environment	of	PRISM	and	searched	for	deadlocks	by	repeating	100	simulations	of	the	model	of	maximum	path	length	1000	time
steps.	Although,	this	procedure	is	not	complete,	we	may	consider	it	sufficient	as	it	looks	into	a	fairly	large	number	of	life	cycles	of	the
population.	In	Table	7	we	summarize	the	results	obtained.

Active	individuals Inactive	individuals Deadlock	(x,y,z)
3 18 (No,Yes,Yes)
4 24 (No,Yes,Yes)
5 30 (No,Yes,Yes)
6 36 (No,Yes,Yes)
7 42 (No,No,Yes)
8 48 (No,No,Yes)
9 56 (No,No,Yes)
10 60 (No,No,No)

Table	7:	Occurrence	of	deadlock	in	various	instances	of	the	model.	The	values	(x,y,z)	refer	to	the	presence	of	deadlock	in	the	case	of
4	locations	(x),	9	locations	(y),	and	16	locations	(z).

In	addition	to	simulating	models	in	PRISM,	we	also	took	advantage	of	the	model	checking	capabilities	of	PRISM	and,	in	particular,	we	checked
properties	by	using	the	model-checking	by	simulation	option,	referred	to	as	confidence	interval	CS	simulation	method	(see		[1]	for	more
details).	We	considered	several	instances	of	our	model	consisting	of	n	active	individuals,	6	×	n	inactive	individuals	and	l	locations	for	various
values	of	n	and	l	and	we	specified	to	the	tool	the	options	of	using	100	samples	and	a	confidence	interval	of	0.01.

The	property	we	experimented	with	is	R	=?[C≤k].	This	property	is	a	reward-based	property	that	computes	the	average	reward	accumulated
within	the	first	k	execution	steps	of	the	model.	To	check	this	property,	it	is	necessary	to	associate	rewards	with	actions	of	interest	within	a
model.	We	chose	to	assign	rewards	to	(1)	the	clock	action	and	(2)	the	reproduction	actions	so	as	to	compute	the	average	number	of	clock	ticks
and	reproductions	that	take	place	within	k	execution	steps	of	a	model.	For	example,	for	assigning	rewards	to	the	activity	of	reproduction	of
the	module	P1,	that	is,	the	first	active	individual,	the	reward	structure	is	defined	as	follows:

rewards		"repP1"		
[rep1_n]	true	:	1;		
...		
[rep1_n+m]	true	:	1;		
endrewards

The	value	of	k	for	the	considered	number	of	execution	steps	was	fixed	to	50	×	(n	+	m),	where	n	+	m	is	the	total	number	of	individuals	(active
and	inactive)	of	the	model	under	consideration.	In	this	way,	we	enabled	the	model	to	run	on	average	50	steps	per	individual.	Figures	??
and	??	summarize	the	obtained	results.

*

(a)

*

(b)
Fig.	1:	Average	number	of	(a)	time	steps	in	PRISM	to	simulate	one	time	unit	in	PALPS	and	(b)	reproductions	of	an	individual	per	time	unit.

As	another	experiment,	we	computed	the	percentage	of	active	individuals	at	the	end	of	the	simulation.	This	is	done	by	verifying	the
reachability	property	“eventually,	the	number	of	individuals	is	equal	to	s”	for	different	values	of	s,	where	n	≤	s	≤	m	+	n.	We	performed	this
analysis	for	both	our	model	with	policy	σ	but	also	in	the	variation	of	our	model	where	the	order	of	the	activities	of	dispersal	and	reproduction
were	swapped:
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The	results	are	presented	in	Fig.	2(a)	(policy	σ)	and	Fig.	2(b)	(policy	σ′).	The	results	show	that	the	percentages	are	somewhat	higher	under
the	σ′	policy,	especially	in	the	case	of	the	large	grid	(9	locations)	because	the	bigger	the	grid	the	higher	the	possibility	of	reproduction	and	σ′
allows	individuals	to	reproduce	sooner.

(a)

(b)

Fig.	2:	Percentage	of	active	individuals	at	the	end	of	the	simulation	with	(a)	policy	σ	and	(b)	policy	σ′.

Consequently,	we	redeveloped	our	model	of	the	Varroa	mite	according	to	the	description	presented	in	[42].	In	contrast	to	Example	1,	the
new	model	features	mortality.	Specifically,	the	new	model	has	two	parameters:	b	the	offspring	size	and	p	the	probability	to	survive	before
breeding.	Each	mite	begins	its	life	by	being	exposed	to	death	and	it	survives	with	a	probability	p.	In	case	of	survival,	it	disperses	to	a	new
location.	If	it	has	exclusive	use	of	the	location	then	it	produces	an	offspring	of	size	b	and	it	dies.	If	the	location	is	shared	with	other	mites	then
all	mites	die	without	reproducing.	As	before,	we	model	space	as	a	lattice	with	periodic	boundary	conditions	and	the	probability	of	dispersal
from	a	location	to	any	of	its	four	neighbors	equal	to	1∕4.	As	in	the	previous	example,	in	our	system	we	employed	the	policy	specifying	that	the
process	of	dispersal	precedes	reproduction.	Formally,	the	behavior	of	a	mite	is	defined	as	follows:

For	this	model	we	again	checked	properties	by	using	the	model-checking	by	simulation	option.	The	property	we	experimented	with	is	R	=?
[I	=	k].	This	property	is	a	reward-based	property	that	computes	the	average	state	instant	reward	at	time	k.	We	were	interested	to	study	the
expected	size	of	the	population.	For	this,	we	associate	to	each	state	a	reward	representing	this	size.	In	our	experiments,	we	varied	the	size	of
the	initial	population	(i),	while	the	probability	of	surviving	(p)	and	the	offspring	size	(b)	were	fixed	to	p	=	0.9	and	b	=	3,	and	the	lattice	was	of
size	4	×	4.	The	number	of	idle	processes	was	fixed	to	n	×	b	-	i,	which	is	sufficient	to	avoid	deadlocks.	The	results	of	the	experiments,	shown	in
Fig.	3,	demonstrate	a	tendency	of	convergence	to	a	stable	state	and	an	independence	of	the	initial	population	for	i	>	8.
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Fig.	3:	Expected	population	size	vs	simulation	time	for	different	initial	sizes	of	the	population.

We	also	analyzed,	for	this	model,	the	effect	of	the	parameters	b	and	p	on	the	evolution	of	the	average	total	number	of	individuals	through
time,	with	an	initial	population	of	1	individual,	as	shown	in	Fig.		4	and	Fig.	5.	The	chosen	values	for	p	and	b	were	selected	so	that	they	are
close	to	the	estimates	of	the	parameters	of	the	Varroa	mite,	namely,	b	=	3	and	p	=	0.9.	Finally,	we	note	that	the	results	may	also	be	applicable
to	other	species	that	follow	the	same,	so-called	scramble-contest	behavior	such	as	the	bean	bruchid	that	attacks	several	kinds	of	beans.

	

Fig.	4:	Expected	population	size	vs	simulation	time	for	different	offspring	sizes,	for	p	=	0.9	and	i	=	1.

	

Fig.	5:	Expected	population	size	vs	simulation	time	for	different	probabilities	of	survival,	for	b	=	3	and	i	=	1.

5	Conclusions

In	this	paper	we	have	extended	the	process	calculus	PALPS	with	the	notion	of	a	policy.	A	policy	is	an	entity	that	is	defined	externally	to	the
process-calculus	description	of	an	ecological	system	in	order	to	impose	an	ordering	between	the	activities	taking	place	within	a	system	as
required	for	the	purposes	of	the	analysis.	Furthermore,	we	have	described	a	translation	of	PALPS	with	policies	into	the	PRISM	language.	This
encoding	can	be	employed	for	simulating	and	model	checking	PALPS	systems	using	the	PRISM	tool.	We	experimented	with	both	of	these
capabilities	and	we	have	illustrated	types	of	analysis	that	can	be	performed	on	PALPS	models.	We	have	also	contrasted	our	results	with	those
obtained	for	the	same	example	in	our	previous	work	[37].	We	have	concluded	that	applying	policies	can	significantly	reduce	the	size	of	the
model	thus	allowing	to	consider	larger	models.	For	instance,	in	the	example	we	considered,	the	state	space	of	the	model	was	reduced	by	a
factor	of	10.

As	future	work,	we	intend	to	investigate	further	approaches	for	analysis	of	MDPs	that	arise	from	the	modeling	of	population	systems.	One
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such	approach	involves	the	PRISM	tool	and	concerns	the	production	of	PRISM	input:	we	intend	to	explore	alternatives	of	producing	such	input
possibly	via	constructing	and	providing	PRISM	directly	the	Markov	decision	process	associated	with	a	PALPS	system.	We	expect	that	this	will
result	in	smaller	state	spaces	than	those	arising	via	our	PALPS-to-PRISM	translation.	Furthermore,	we	would	like	to	explore	other	directions	for
reducing	the	state-space	of	PALPS	models	e.g.	by	enhancing	the	semantics	of	PALPS	to	enable	a	more	succinct	presentation	of	systems	especially
in	terms	of	the	multiplicity	of	individuals,	as	well	as	defining	a	symbolic	semantics	which	applies	a	symbolic	treatment	of	environments.

Another	direction	that	we	are	currently	exploring	is	the	application	of	our	methodology	to	new	and	complex	case	studies	from	the	local
habitat	and	the	exploration	of	properties	such	as	extinction	(e.g.,	the	expected	time	until	extinction),	persistence	(e.g.,	the	long-term	average
of	the	number	of	sites	occupied	at	a	given	time)	and	spatial	indices	(e.g.,	the	correlation	among	nearby	locations	in	space,	patch	shape
analysis	and	the	number	of	subpopulations	in	a	spatially	dispersed	metapopulation)	similarly	to	[41].

Another	possibility	is	consider	how	to	apply	this	techniques	to	DNA	sequencing	problems	or	routing	problems	similarly	to		[32,	28,	40].

Finally,	an	interesting	future	research	direction	would	be	extend	the	work	of	[25]	towards	the	development	of	mean-field	analysis	to
represent	the	average	behavior	of	systems	within	a	spatially-explicit	framework.
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