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Abstract. Sometimes machine code turns out to be a better target for verifica-
tion than source code. RISC machine code is especially advantaged with respect
to source code in this regard because it has only two instructions that access mem-
ory. That architecture forms the basis here for an inferencesystem that can prove
machine code safe against ‘hardware aliasing’, an effect that occurs in embedded
systems. There are programming memes that ensure code is safe from hardware
aliasing, but we want to certify that a given machine code is provably safe.

1 Introduction

In a computer system, ‘software’ aliasing occurs when different logical addresses si-
multaneously or sporadically reference the same physical location in memory. We are
all familiar with it and think nothing of it, because the samephysical memory is nowa-
days reused millisecond by millisecond for different user-space processes with different
addressing maps, and we expect the operating system kernel to weave the necessary
illusion of separation. The kernel programmer has to be aware that different logical ad-
dresses from different or even the same user-space process may alias the same physical
location, but the application programmer may proceed unawares.

We are interested in a converse situation, called ‘hardware’ aliasing, where different
physical locations in memory are sporadically bound to the same logical address. If
software aliasing is likened to one slave at the beck of two masters, hardware aliasing is
like identical twins slaved to one master who cannot tell which is which. In this paper
we will investigate the safety of machine code in the light ofhardware aliasing issues.

Aliasing has been studied before [10] and is the subject of some patents [7,11].
There appears to be no theoretical treatment published, although the subject is broadly
treated in most texts on computer architecture (see, for example, Chapter 6 of [1]) and is
common lore in operating systems kernel programming. The ‘hardware’ kind of alias-
ing arises particularly in embedded systems where the arithmetic components of the
processor are insufficient to fill all the address lines. Suppose, for example, that the
memory has 64-bit addressing but the processor only has 40-bit arithmetic. The extra
lines might be grounded, or sent high, and this varies from platform to platform. They
may be connected to 64-bit address registers in the processor, so their values change
from moment to moment as the register is filled. In that case, it is up to the software
to set the ‘extra’ bits reliably to zero, or one, or some consistent value, in order that
computing an address may yield a consistent result.
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We first encountered the phenomenon in the context of the KPU [6], a general pur-
pose ‘crypto-processor’, i.e., a processor that performs its computations in encrypted
form in order to provide security against observation and protection from malware. Be-
cause real encryptions are one-to-many, the result of the encrypted calculation of the
address1 + 1 will always mean ‘2’ when decrypted, but may be different from another
encryption of2. If the two differentphysical aliasesare used as addresses, then two
different memory cell contents are accessed and the result is chaotic. The same effect
occurs in the embedded system that has processor arithmeticwith fewer bits than there
are address lines; add1+1 in the processor and instead of2, 0xff01000000000002may
be returned. If those two aliases of the arithmetic ‘2’ are used as addresses, they access
different memory cells. The upshot is that what is meant bothtimes to be ‘2’ accesses
different locations according to criteria beyond the programmer’s control.

There are programming memes that are successful in an aliasing environment: if a
pointer is needed again in a routine, it must be copied exactly and saved for the next use;
when an array or string element is accessed, the address mustalways be calculated in
exactly the same way. But whatever the programmer says, the compiler may implement
as it prefers and ultimately it is the machine code that has tobe checked in order to
be sure that aliasing is not a risk at run-time. Indeed, in an embedded environment it
is usual to find the programmer writing in assembler precisely in order to control the
machine code emitted. The Linux kernel consists of about5% hand-written assembly
code, for example (but rarely in segments of more than 10-15 lines each). One of our
long term objectives is to be able to boot a Linux kernel on an embedded platform with
aliasing, the KPU in particular. That requires both modifying a compiler and checking
the hand-written machine-level code in the open source archive.

An inference system will be set out here that can guarantee a (RISC [2,9]) machine
code program safe against hardware aliasing as described. The idea is to map a stack
machine onto the machine code. We will reason about what assembly language instruc-
tions for the stack machine do computationally. Choosing aninference rule to apply to a
machine code instruction is equivalent to choosing a stack machine assembly language
[5] instruction to which it disassembles [3,4]. The choice must be such that a resulting
proof tree is well-formed, and that acts as a guide. The stackmachine is aliasing-proof
when operated within its intended parameters so verifying alias-safety means verifying
that the stack machine assembly language code obtained by disassembly of the RISC
machine code does not cause the stack machine to overstep certain bounds at run-time.

The RISC machine code we can check in this way isipso factorestricted to that
which we can disassemble. At the moment, that means code thatuses string or string-
like data structures and arrays which do not contain furtherpointers, and which uses
machine code ‘jump and link’ and ‘jump register’ instructions only for subroutine call
and return respectively, and in which subroutines make their own local frame and do
not access the caller’s frame (arguments are passed to subroutines in registers). These
restrictions are not fundamental, but in any case there are no functional limitations im-
plied by them; one call convention is functionally as good asanother and data structures
may always be laid out flat, as they are in a relational DB.

Mistakes in disassembly are possible: if a ‘jump register’ instruction, for example,
were in fact used to implement a computed goto and not a subroutine return, it could
still be treated as a subroutine return by the verification, which would end prematurely,
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possibly missing an error further along and returning a false negative. A mistaken return
as just described would always fail verification in our system, but other such situations
are conceivable in principle. So a human needs to check and certify that the proposed
disassembly is not wrongheaded. The practice is not difficult because, as noted above,
hand-written machine code at a professional standard consists of short, concise, com-
mented segments. The difficulty is that there is often a greatdeal of it to be checked
and humans tire easily. But our system reduces the burden to checking the disassembly
proposed by the system against the comments in the code.

This paper is structured as follows: after an illustration of programming against
aliasing in Section 2 and a discussion of disassembly in Section 3, code annotation is
introduced in sections 4, 5 and 6, with a worked example in Section 7. Section 8 argues
that code annotation gives rise to the formal assurance thataliasing cannot occur.

2 Programming memes

We model aliasing as being introduced when memory addressesare calculated in dif-
ferent ways. That model says that a memory address may becopiedexactly and used
again without hazard, but if even0 is added to it, then a different alias of the address
may result, and reads from the new alias do not return data deposited at the old alias of
the address. Arithmetically the aliases are equivalent in the processor; they will test as
equal but they are not identical, and using them as addressesshows that up.

That is particularly a problem for the way
A X

foo:

sp -= 32

. . . code . . .
sp += 32

return

foo:

gp = sp

sp -= 32

. . . code . . .
sp = gp

return

Table 1: Aliasing in functionfoo.

in which a compiler – or an assembly lan-
guage programmer – renders machine code for
the stack pointer movement around a function
call. Classically, a subroutine starts by decre-
menting the stack pointer to make room on the
stack for its local frame. Just before return, it
increments the stack pointer back to its orig-
inal value. The pseudo-code is shown on the
left in Table 1. In an aliasing context, the at-

tempt at arithmetically restoring the pointer puts an aliasof the intended address in the
sp register, and the caller may receive back a stack pointer that no longer points to the
data. The code on the right in Table 1 works correctly; it takes an extra register (gp)
and instruction, but the register content may be moved to thestack and restored before
return, avoiding the loss of the slot.

Strings and arrays are alsostring A A X

array X A A

x = s[2]

s+= 2

x = *s

s++; s++

x = *s

Table 2: Aliasing while accessing a string or array.

problematic in an aliasing envi-
ronment because different calcu-
lations for the address of the same
element cause aliasing. To avoid
it, the strategy we will follow is
that elements of ‘string-like’ struc-
tures will be accessed by incre-

menting the base address in constant steps (see the pseudo-code at right in Table 2) and
array elements will be accessed via a unique offset from the array base address (see the
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A RISC machine code processor consists of 32 (32-bit) integer registersR, a vector of232 (32-bit) integer memory

locationsM , and the program counterp. The latter gives the address of the current instruction. The ra register is used to

hold a subroutine call return address. Only two instructions,swandlw, access memory.

instruction mnemonic semantics

sw r1 k(r2) store word M ′ = M ⊕ {Rr2 + k 7→ Rr1}; R′ = R; p′ = p+4
lw r1 k(r2) load word M ′ = M ; R′ = R ⊕ {r1 7→ M(Rr2 + k)}; p′ = p+4
move r1 r2 move/copy M ′ = M ; R′ = R ⊕ {r1 7→ Rr2}; p′ = p+4
li r1 k load immediateM ′ = M ; R′ = R ⊕ {r1 7→ k}; p′ = p+4
addiu r1 r2 k add immediateM ′ = M ; R′ = R ⊕ {r1 7→ Rr2 +k}; p′ = p+4
addu r1 r2 r3 add variable M ′ = M ; R′ = R ⊕ {r1 7→ Rr2 +Rr3}; p′ = p+4
nand r1 r2 r3 bitwise not-andM ′ = M ; R′ = R ⊕ {r1 7→ Rr2 & Rr3}; p′ = p+4
beq r1 r2 k branch-if-equalM ′ = M ; R′ = R; if (Rr1 =Rr2) p

′ = k else p′ = p+4
jal k jump-and-link M ′ = M ; R′ = R ⊕ {ra 7→ p+4}; p′ = k

jr r jump-register M ′ = M ; R′ = R; p′ = Rr

Notation. M ⊕ {a 7→ v} means the vectorM overwritten at indexa with the valuev; the processor arithmetic (bold

font ‘+’) is distinguished from the instruction addressing arithmetic (light font ‘+’); r1, r2 are register names or indices;

k is a signed 16-bit integer;x andx′ are respectively initial and final value after the instruction has acted.

Box 1: RISC machine code instructions and their underlying semantics.

pseudo-code at left in Table 2). This technique ensures thatthere is only one calculation
possible for the address of each string element (it is((s+1)+1)+0 in Table 2) or array
element (s+2 in Table 2), so aliasing cannot occur. The middle code in Table 2 gives
address(s+2)+0 which matches exactly neither string nor array calculations. The de-
cision over whether to treat a memory area like a string or an array depends on the mode
of access to be used.

3 Disassembly

Nothing in the machine code indicates
Say that the stack pointers is in the stack pointer register
sp in the machine code processor. A corresponding abstract
stack machine state is a 4-tuple(R,K,H, p), whereR
consists of the31 registers excluding the stack pointer reg-
ister, the stackK consists of the top part of memory above
the stack pointer values, the heapH consists of the bottom
part of memory below the stack pointer, and the addressp

is that of the current instruction.

K k = M(s + k) s = R sp, k ≥ 0

R r = Rr r 6= sp, r ∈ {0, . . . 31}

H a = M a a < s

The (hidden) stack pointer values is needed to recreate the
machine code processor state(R,M, p) from the stack ma-
chine state(R,K,H, p), so the latter is more abstract.

Box 2: Relation of processor to stack machine.

which register holds a subroutine return
address, and that affects which machine
code instructions may be interpreted as
a return from a subroutine call. To deal
with this and similar issues in an organ-
ised manner, we describe rules of rea-
soning about programs both in terms of
the machine code instruction to which
they apply and an assembly language in-
struction for a more abstractstack ma-
chine that the machine code instruction
may be disassembled to and which we
imagine the programmer is targeting.

The core RISC machine code instruc-
tions are listed in Box 1, where their semantics are given as state-to-state transforma-
tions on the three components of a RISC processor: 32 32-bit registersR, memoryM
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Table 3: Stack machine instructions: then are small integers, ther are register names or indices,
and thea are relative or absolute addresses.

s ::= cspt r | cspf r | rspf r | pushn // stack pointer movement
| get r n | put r n | . . . // stack access
| newx r a n| stepxr n | getx r n(r) | putx r n(r) | . . . // string operations
| newh r a n| lwfh r n(r) | swfh r n(r) | . . . // array operations
| gosuba | return | goto a | ifnz r a | . . . // control operations
| mov r r | addaiu r r n | . . . // arithmetic operations

Table 4: Machine code may be disassembled to one of several alternate assembly language in-
structions for a stack machine.

machine codeassembly language

mover1 r2

csptr1
cspfr2
rspf r2
mov r1 r2

addiu r r n
push -n
stepxr n
addaiu r r n

lw r1 n(r2)
get r1 n
lwfh r1 n(r2)
getxr1 n(r2)

swr1 n(r2)
put r1 n
swfh r1 n(r2)
putx r1 n(r2)

machine codeassembly language

lb r1 n(r2)
getbr1 n
lbfh r1 n(r2)
getbxr1 n(r2)

sbr1 n(r2)
putb r1 n
sbth r1 n(r2)
putbx r1 n(r2)

jal a gosuba

jr r return

j a gotoa

li r a
newxr a n
newhr a n

bnezr a ifnz r a

and a 32-bit program counterp. The corresponding abstract stack machine is described
in Box 2. The stack pointer addresss in the machine code processor notionally divides
memoryM into two components: stackK above and heapH below. The stack machine
manipulates the stack directly via instructions that operate at the level of stack opera-
tions, and they are implemented in the machine code processor via instructions that act
explicitly on the stack pointer. No stack pointer is available in the abstract machine. Its
registersR consist of the setR in the machine code processorminusthe register that
contains the stack pointer, usually thesp register. The program counterp is the same
in the abstract stack machine as in the machine code processor, because instructions
correspond one-to-one between programs for each machine. However, there is usually
a choice of more than one abstract stack machine instructionthat each machine code
instruction could have been disassembled to, even though only one is chosen.

For example, several different stack machine instructionsmay all be thought of as
manipulating the hidden stack pointer, registersp in the machine code processor, and
they all are implemented as amove(‘copy’) machine code instruction. Thus themove
instruction disassembles to one of several stack machine instructions as follows:

1. Thecsptr1 (‘copy stack pointer to’) instruction saves a copy of the stack pointer in
registerr1. It corresponds to themover1 sp machine code processor instruction.

2. Thecspfr1 (‘copy stack pointer from’) instructionrefreshesthe stack pointer from
a copy inr1 that has the same value and was saved earlier (we will not explore here
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the reasons why a compiler might issue such a ‘refresh’ instruction). It corresponds
to themove spr1 machine code instruction.

3. Therspf r1 (‘restore stack pointer from’) instruction returns the stack pointer to a
value that it held previously by copying an old saved value from r1. It also corre-
sponds tomove spr1.

A fourth disassembly of the machine codemove instruction, to the stack machinemov
instruction, encompasses the case when the stack pointer isnot involved at all; it does
a straight copy of a word from one register to another at the stack machine level. The
full set of stack machine instructions is listed in Table 3, and their correspondence with
RISC machine code instructions is shown in Table 4.

We will not work through all the instructions and disassembly options in detail here,
but note the importantpush n instruction in the stack machine, which can be thought
of as decrementing the hidden stack pointer byn, extending the stack downwards. It
corresponds to theaddiu sp spm machine code instruction, withm = −n. Also,
the stack machine instructionsput r1 n andget r1 n access the stack for a word at
offsetn bytes, and they correspond to the machine codesw r1 n(sp) andlw r1 n(sp)
instructions, respectively.

The very same machine code instructions may also be interpreted as stack machine
instructions that manipulate not the stack but either a ‘string-like’ object or an array.
Strings/arrays are read withgetx/lwfh and written withputx/swth. Table 4 shows that
these are implemented bylw/sw in the machine code processor, applied to a base reg-
isterr2 6= sp. Stepping through a string is done with thestepx instruction in the stack
machine, which is implemented byaddiu in the machine code procesor. Introducing
the address of a string/array in the stack machine needsnewx/newhand those are both
implemented by theli (‘load immediate’) instruction in the machine code processor.

There are also ‘b’ (‘byte-sized’) versions of theget, lwfh , getx stack machine in-
structions namedgetb, lbfh , getbx respectively. These are implemented bylb in the
machine code processor. Forput, swth, putx we have byte versionsputb, sbth, putbx.

4 Introducing annotations and annotated types

Consider the ‘good’ pseudo-code of Table 1 imple-foo:

move gp sp

addiu sp sp -32

. . . code . . .
move sp gp

jr ra

Table 5: Non-aliasing sub-
routine machine code.

mented as machine code and shown in Table 5. How do
we show it is aliasing-safe? Our technique is toannotate
the code in a style akin to verification using Hoare logic,
but the annotation logic is based on the stack machine ab-
straction of what the machine code does. We begin with an
annotation that says thesp register is bound to a particular
annotation typeon entry:

{ sp = c!0!4!8 }

The ‘c’ as base signifies a variable pointer value is in registersp. It is the stack pointer
value. The ‘!0!4!8’ means that that particular value has been used as the base address
for writes to memory at offsets 0, 4 and 8 bytes from it, respectively.
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The first instruction in subroutinefoocopies the stack pointer to registergp and we
infer that registergp also gets the ‘c’ annotation, using a Hoare-triple-like notation:

{ sp∗ = c!0!4!8 } move gp sp { sp∗,gp = c!0!4!8 }

The stack pointer location (in thesp register) should always be indicated by an asterisk.
The arithmetic done by the next instruction destroys the offset information. It cannot

yet be said that anything has been written at some offset fromthe new address, which
is 32 distant from the old only up to an arithmetic equivalence in the processor:

{ sp∗,gp = c!0!4!8 } addiu sp sp -32 { gp = c!0!4!8; sp∗ = c}

Suppose the annotation on thegp register is still valid at the end of subroutinefoo,
so the stack pointer register is finally refreshed by themove instruction with the same
annotation as at the start:

{ sp∗ = c; gp = c!0!4!8; } move sp gp { sp∗,gp = c!0!4!8 }

The return (jr ra ) instruction does not change these annotations. So the calling code has
returned as stack pointer a value that is annotated as havinghad values saved at offsets
0, 4, 8 from it, and the caller can rely on accessing data stored at those offsets. That does
not guarantee that thesamevalue of the stack pointer is returned to the caller, however.
It will be shown below how this system of annotations may be coaxed into providing
stronger guarantees.

5 Types for stack, string and array pointers

The annotation discussed above is not complete. Thesize in bytes of the local stack
frame needs to be recorded by following the ‘c’ with the frame size as a superscript.
Suppose that on entry there is a local stack frame of size 12 words, or 48 bytes. Then
here is the same annotation with superscripts on, written asa derivation in which the
appropriate disassembly of each machine code instruction is written to the right of the
machine code as the ‘justification’ for the derivation:

{sp∗ = c48!0!4!8}
movegp sp /cspt gp

{sp∗,gp = c48!0!4!8}
addiu sp sp -32 /push 32

{sp∗ = c32
48

; gp = c48!0!4!8}

...

{sp∗ = c32
48

; gp = c48!0!4!8}
movesp gp /rspf gp

{sp∗,gp = c48!0!4!8}

The push 32 abstract stack machine instruction makes anew local stack frame of8
words or32 bytes. It does not increase the size of the current frame. Accordingly, the
32 ‘pushes up’ the48 in the annotation so that3248 is shown. This makes the size of
the previous stack frame available to the annotation logic.

A different disassembly ofaddaiu r r n is required whenr contains a string pointer,
not the stack pointer, which means that registerr lacks the asterisk in the annotation.
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The disassembly as a step along a string is writtenstepx r n, and requiresn to be
positive. In this case, the string pointer inr will be annotated with the type

c1̈

meaning that it is a ‘calculatable’ value that may be alteredby adding1 to it repeatedly.

The formc1̈ hints that a string is regarded as a stackc1
..
.

that starts ‘pre-charged’ with an
indefinite number of frames of 1 byte each, which one may step up through by ‘popping
the stack’ one frame, and one byte, at a time. So annotation types may be either like
c32

48

or c1̈ and these may be followed by offsets!0!4!8! . . . . There is just one more base
form, described below, completing the list in Box 3.

The RISC instructionlw r1 n(r2) is also Annotationsa assert a binding of registersr or

stack slots(n) to anannotated typet. One of the

register names may be starred to indicate the stack

pointer position. A type is either ‘uncalculated’,

u, or ‘calculated’,c. Either may be decorated with

‘ !n’ annotations indicating historical writes at that

offset from the typed value when used as an ad-

dress. Ac base type may also be superscripted by

a ‘tower’ of natural numbersn denoting ‘frame

sizes’ (see text), while au base type may have

a single superscript (also denoting size). We also

use1̈ for a tower11
..
.

of undetermined extent and

a single repeated size. Also, formal type variables

x, y, etc are valid stand-ins for annotated types,

and formal ‘set of offsets variables’X, Y, etc are

valid stand-ins for sets of offsets.

a ::= r[* ], . . . , (n), . . . = t; . . .

t ::= c[n
..
.

]!n! . . . | u[n]!n! . . .

Box 3: Syntax of annotations and types.

disassembled differently according to the an-
notated type inr2. As get r1 n it retrieves a
value previously stored at offsetn in the stack,
whenn ≥ 0 andr2 is the stack pointer regis-
ter. As lwfh r1 n(r2) it retrieves an element
in an array from theheaparea. In that case,
r2 will be annotated

um

meaning an ‘unmodifiable’ pointer to an ar-
ray of sizem bytes, andm − 4 ≥ n ≥ 0.
A third possibility is dissassembly as retrieval
from a string-like object in the heap, when, as
getx r1 n(r2), registerr2 will have a ‘string-
like’ annotation of the formcm̈, meaning that
it must be stepped through in increments ofm
bytes.

Similarly the RISCsw r1 n(r2) instruc-
tion can be dissassembled asput r1 n of a
value at offsetn to the stack, orswth r1 n(r2)
to an array orputx r1 n(r2) to a string, de-
pending on the type bound to registerr2. These
register types drive the disassembly.

6 Formal logic

We can now write down formal rules for the logic of annotations introduced informally
in the ‘derivation’ laid out in the previous section. Readers who would prefer to see a
worked example first should jump directly to Section 7.

We start with a list of so-called ‘small-step’ program annotations justified by indi-
vidual stack machine instructions, each the disassembly ofa machine code instruction.
The small-step rules relate the annotation before each machine code instruction to the
annotation after. Table 6 helps to reducea priori the number of possible disassemblies
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Table 6: Possible disassemblies of machine code instructions as constrained by the stack pointer
register location changes (SP←SP) or absence (×), and changes to the stack content (‘delta’).

mover1 r2 r1 r2 stack delta

rspfr2 SP� × yes
cspfr2 SP� × no
csptr1 × SP� no
msptr1 SP←−SP no
movr1 r2 × × no

addiur1 r2 m r1 r2 stack delta

stepr m × no
steptor1 r2 m × × no
push−m SP� yes
pushtor1 −m SP←−SP yes
addaiur1 r2 m × × no

lw r1 m(r2) r1 r2 stack delta

getr1 m × SP� no
lwfh r1 m(r2) × × no
getxr1 m(r2) × × no

swr1 m(r2) r1 r2 stack delta

putr1 m × SP� no
swthr1 m(r2) × × no
putxr1 m(r2) × × no

for each machine code instruction, but in principle disassembly to stack machine code
does not have to be done first, but can be left till the last possible moment during the
annotation process, as each dissassembly choice corresponds to the application of a
different rule of inference about which annotation comes next. If the corresponding
inference rule may not be applied, then that disassembly choice is impossible.

Here is how to read Table 7. Firstly, ‘offsets variables’X, Y, etc, stand in for sets
of offset annotations ‘!k’. For example, theput gp 4 instruction is expected to start
with a prior annotation patternsp∗ = cf !X for the stack pointer register. Secondly, the
stack pointer register is indicated by an asterisk. Thirdly, f in the table stands for some
particular stack frame tower of integers; it is not a variable, being always some constant
in any patrticular instance. In the case of theput gp 4 instruction,f must start with
some particular number at least 8 in size, in order to accommodate the 4-byte word
written at offset 4 bytes within the local stack frame. Just ‘8’ on its own would do forf
here. Lastly, ‘type variables’x, y, etc, where they appear, stand in for full types.

The table relates annotations before and after each instruction. So, in the case of the
put gp 4 instruction, if the prior annotation for the stack pointer register issp∗ = cf !X,
then the post annotation issp∗ = cf !4!X, meaning that 4 is one of the offsets at which
a write has been made. It may be that 4 is also a member of the setdenoted byX (which
may contain other offsets too), or it may be not inX. That is not decided by the formula,
which merely says that whatever other offsets there are in the annotation, ‘4’ is put there
by this instruction. At any rate, the annotation pattern fortheput gp 4 instruction is:

{. . . ; sp∗ = cf !X; . . . } put gp 4 {. . . ; sp∗ = cf !4!X; . . . }

and considering the effect on thegp register (which may be supposed to have the type
denoted by the formal type variablex initially) and the stack slot denoted by ‘(4)’ gives

{gp=x; sp∗=cf !X} put gp 4 {sp∗=cf !4!X;gp,(4)=x}

because whatever the descriptionx of the data in registergp before the instruction runs,
since the data is transferred to stack slot ‘(4)’, the latter gains the same description.
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Table 7: ‘Small-step’ annotations on assembly instructions.

{ } newxr n {r =cn̈!X} // Set reg.r content
{r1=cf1 !Y; r2=uf2 !X} putx r1 n(r2) {r1=cf1 !Y; r2=uf2 !n!X} // Store word to string

{r2=uf !n!X} getxr1 n(r2) {r1=c0; r2=uf !n!X} // Load word from string

{r=cn
f

!X} stepxr n {r=cf !Y} // Step along string
{ } newhr n {r =un!X} // Set reg.r content

{r1=cf1 !Y; r2=uf2 !X} swth r1 n(r2) {r1=cf1 !Y; r2=uf2 !n!X} // Store word to array
{r2=uf !n!X} lwfh r1 n(r2) {r1=c0; r2=uf !n!X} // Load word from array

{r1=x; r∗2=cf !X} put r1 n {r1,(n)=x; r∗2=cf !n!X} // Store word to stack
{r∗2=cf !n!X; (n)=x} get r1 n {r1,(n)=x; r∗2=cf !n!X} // Load word from stack

{r∗=cf !X} pushn {r∗=cn
f

} // New frame
{r∗2=cf !X} csptr1 {r1,r

∗

2=cf !X} // Copy SP to reg.r1
{r∗1=cf !Y; r2=cf !X} cspfr2 {r∗1 ,r2=cf !X} // Copy SP from reg.r2
{r∗1=cn

f

!Y; r2=cf !X} rspf r2 {r∗1 ,r2=cf !X} // Restore SP from reg.r2
{ } nop { } // No-op, do nothing

{r2=x} mov r1 r2 {r1,r2=x} // Copy from reg.r2
{r2=cf !X} addaiu r1 r2 n {r1=c0; r2=cf !X} // Arithmetic add

Notation. TheX, Y, etc stand for a set of offsets!n1!n2! . . . , for literal natural numbersn. The stack frame size (or ‘tower

of stack frame sizes’)f is a literal natural number (or finite sequence of natural numbers). Thex, y, etc stand for any type

(something that can appear on the right of an equals sign).

Generalising the stack offset ‘4’ back ton, and generalising registersgp andsp to r1
andr2 respectively, one obtains exactly the small-step signature listed for instruction
put r1 n. Registers whose annotations are not mentioned in this signature have bindings
that are unaffected by the instruction.

Small-step annotations{Θ} κ {Ψ} for an instructionι at addressa with a disassem-
bly κ generate a so-called ‘big step’ rule

T ⊲ {Ψ} a+ 4 {Φ}

T ⊲ {Θ} a {Φ}
[a | ι / κ]

in whichΦ is the final annotation at program end andT denotes a list of big-step an-
notations{Ψ} a {Φ}, one for each instruction addressa in the program (note that, in
consequence, branches within the program must get the same annotation at convergence
as there is only one annotation there). Thus the big-step rule is an inference about what
theoryT contains. The rule above says that if{Ψ} a+ 4 {Φ} is in theoryT , then so is
{Θ} a {Φ}. The label justifies the inference by the fact that instruction ι is at address
a, and disassemblyκ has been chosen for it.

The big-step rules aim to generate a ‘covering’ theoryT for each program. That
is, an annotation before every (reachable) instruction, and thus an annotationbetween
every instruction. The rule above tells one how to extend by one further instruction a
theory that is growing from the back of the program towards the front.

Where does theory construction start? It is with the big-step rule for the finaljr ra
instruction that classically ends a subroutine. The actionof this instruction is to jump
back to the ‘return address’ stored in thera register (or another designated register).
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The annotation for it says that there was a program address (an ‘uncalculatable value’,
u0) in thera register before it ran (and it is still there after), and requires no hypotheses:

T ⊲ {r=u0} a {r=u0}
[a | jr r / return ]

The ‘0’ superscript indicates that the address may not be used as a base for offset mem-
ory accesses; that would access program instructions if it were allowed. Calling code
conventionally places the return address in thera register prior to each subroutine call.

There are just three more big-step rules, corresponding to each of the instructions
that cause changes in the flow of control in a program. Jumps (unconditional branches)
are handled by a rule that refers back to the target of the jump:

T ⊲ {Θ} b {Φ}

T ⊲ {Θ} a {Φ}
[a | j b / gotob]

This rule propagates the annotation at the targetb of the jump back to the sourcea. At
worst a guess at the fixpoint is needed.

The logic of branch instructions (conditional jumps) ata says that the outcome of
going down a branch tob or continuing ata+ 4 must be the same. But the instruction
bnezr b (‘branch to addressb if registerr is nonzero, else continue’) and variants first
require the value in the registerr to be tested, so it is pre-marked withc (‘calculatable’):

T ⊲ {r=cf !X;Θ} b {Φ} T ⊲ {r=cf !X;Θ} a+ 4 {Φ}

T ⊲ {r=cf !X;Θ} a {Φ}
[a | bnezr b / ifnz r b]

The caseb < a (backward branch) requires a guess at a fixpoint as it does forjump.
The annotated incremental historyf , likely none, of the value in the tested register is
irrelevant here, but it is maintained through the rule. The set of offsetsX already written
to is also irrelevant here, but it is maintained through the rule.

The RISCjal b machine code instruction implements standard imperative program-
ming language subroutine calls. It puts the address of the next instruction in thera
register (the ‘return address’) and jumps to the subroutineat addressb. The calling code
will have saved the current return address on the stack before the call. The callee code
will return to the caller by jumping to the address in thera register withjr ra , and the
calling code will then restore its own return address from the stack.

Because ofjal ’s action in filling registerra with a program address,ra on entry to
the subroutine atb must already have au0 annotation, indicating an unmodifiable value
that cannot even be used for memory access. And because the same subroutine can be
called from many different contexts, we need to distinguishthe annotations per call site
and so we use a throwaway letteringT ′ to denote those annotations that derive from the
call of b from sitea. The general rule is:

T ′ ⊲ {ra=u0;Ψ} b {Θ} T ⊲ {Θ} a+ 4 {Φ}

T ⊲ {Ψ} a {Φ}
[a | jal b / gosubb]

The ‘0’ superscript means that memory accesses via the return address as base address
for lw/sware not allowed; that would access the program instructions. The stack pointer
register has not been named, but it must be distinct from thera register.
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We have found it useful to apply extra constraints at subroutine calls. We require
(i) that each subroutine return the stack to the same state itacquired it in (this is not a
universal convention), and (ii) that a subroutine make and unmake all of its own local
stack frame (again, not a universal convention). That helpsa Prolog implementation of
the verification logic start from a definitely known state at the end of each subroutine
independent of the call context – namely, that the local stack frame at subroutine end
(and beginning) is size zero. These constraints may be builtinto thejal rule as follows:

T ′ ⊲ {ra=u0; r∗=c0!X, Ψ} b {r∗=c0!Y;Θ} T ⊲ {r∗=cf !Y;Θ} a+4 {Φ}

T ⊲ {r∗=cf !X;Ψ} a {Φ}

The requirement (i) is implemented by returning the stack pointer in the same register
(r∗ with the samer on entry and return) and with no stack cells visible in the local stack
frame handed to the subroutine and handed back by the subroutine (the two0s). The
requirement (ii) is implemented by setting the local stack frame on entry to contain no
stack, just the general purpose registers, which forces thesubroutine to make its own
stack frame to work in. Other calling conventions require other rule refinements.

As noted, the small-step and big-step rules can be read as a Prolog program with
variables the bold-faced offsets variablesX, Y, etc, and type variablesx, y, etc.

7 Example annotation

Below is the annotation of the simple main routine of a Hello World program that
calls ‘printstr’ with the Hello World string address as argument, then calls ‘halt’. The
code was emitted by a standard compiler (gcc) and modified by hand to be safe against
aliasing, so some compiler ‘quirks’ are still visible. The compiler likes to preserve the
fp register content across subroutine calls, for example, even though it is not used here.

The functionality is not at issue here, but, certainly, knowing what each instruction
does allows the annotation to be inferred by an annotator without reference to rules and
axioms. Theli a0 instruction sets thea0 (‘0th argument’) register, for example, so the
only change in the annotation after the instruction is to thea0 column. The annotator
introduces the string type,c1̈, into the annotation there, since the instruction setsa0
to the address of the Hello World string. The annotator assumes that the stack pointer
starts in thesp register and that ‘main’ is called (likely from a set-up routine) with a
return address in thera register. Changes are marked in grey:

sp∗ ra a0 fp gp v0 v1 (16) (24) (28)

main: c0 u0 x c1̈!0 c0

move gp sp cspt gp c0 u0 x c0 c1̈!0 c0

addiu sp sp -32 push 32 c32
0

u0 x c0 c1̈!0 c0

sw ra 28(sp) put ra 28 c32
0

!28 u0 x c0 c1̈!0 c0 u0

sw fp 24(sp) put fp 24 c32
0

!24!28 u0 x c0 c1̈!0 c0 x u0

move fp sp cspt fp c32
0

!24!28 u0 c32
0

!24!28 c0 c1̈!0 c0 x u0

sw gp 16(sp) put gp 16 c32
0

!16!24!28 u0 c32
0

!24!28 c0 c1̈!0 c0 c0 x u0

li a0 <helloworld> newx a0 . . . 1 c32
0

!16!24!28 u0 c1̈ c32
0

!24!28 c0 c1̈!0 c0 c0 x u0

jal <printstr> gosub . . . c32
0

!16!24!28 u0 c0 c32
0

!24!28 c0 c0 u1!0 c0 x u0
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lw gp 16(sp) get gp 16 c32
0

!16!24!28 u0 c0 c32
0

!24!28 c0 c0 u1!0 c0 x u0

jal <halt> gosub . . . c32
0

!16!24!28 u0 c0 c32
0

!24!28 c0 c0 u1!0 c0 x u0

nop

lw gp 16(sp) get gp 16 c32
0

!16!24!28 u0 c0 c32
0

!24!28 c0 c0 u1!0 c0 x u0

nop

lw ra 28(sp) get ra 28 c32
0

!16!24!28 u0 c0 c32
0

!24!28 c0 c0 u1!0 c0 x u0

lw fp 24(sp) get fp 24 c32
0

!16!24!28 u0 c0 x c0 c0 u1!0 c0 x u0

move sp gp rspf gp c0 u0 c0 x c0 c0 u1!0 c0 x u0

jr ra return c0 u0 c0 x c0 c0 u1!0 c0 x u0

helloworld: 〈string data〉

That the ‘!’ annotations are always less than the bottom element of the tower on the
stack pointer annotation means that no aliasing occurs. Reads are at an offset already
marked with a ‘!’, hence within the same range that writes areconstrained to.

The ‘halt’ subroutine does not use the stack pointer; its function is to write a single
byte to the hard-coded I/O-mapped address of a system peripheral. The annotation for
registerv1 on output is the taint left by that write.

halt: # zero = c0; ra = u0

li v1 0xb0000x10 newh v1 ... 1 # v1 = u1; zero = c0; ra = u0

sb zero 0(v1) sbth v1 0(v1) # v1 = u1!0; zero = c0; ra = u0

jr ra return # v1 = u1!0; zero = c0; ra = u0

Thezeroregister is conventionally kept filled with the zero word in RISC architectures.
Theprintstr routine takes a string pointer as argument in registera0. A requirement

that registersv0, v1 have certain types on entry is an artifact of annotation. Since ‘$B’
comes after writes tov0, v1, those two registers are bound to types at that point. The
forward jump (j ) to ‘$B’ forces the same annotations at the jump instructionas at the
target. But, at the jump, no write tov0, v1 has yet taken place, so we are obliged to
provide the types ofv0, v1 at entry. The table below is constructed using the same
display convention as the table formain.

sp∗ fp ra a0 gp v0 v1 (12) (20) (24) (28)

printstr: # c0 x u0 c1̈!0 c1̈!0 u1!0

move gp sp cspt gp # c0 x u0 c1̈!0 c0 c1̈!0 u1!0

addiu sp sp -32 push 32 # c32
0

x u0 c1̈!0 c0 c1̈!0 u1!0

sw ra 24(sp) put ra 24 # c32
0

!24 x u0 c1̈!0 c0 c1̈!0 u1!0 u0

sw fp 20(sp) put fp 20 # c32
0

!20!24 x u0 c1̈!0 c0 c1̈!0 u1!0 x u0

move fp sp cspt fp # c32
0

!20!24 c32
0

!20!24 u0 c1̈!0 c0 c1̈!0 u1!0 x u0

sw gp 12(sp) put gp 12 # c32
0

!12!20!24 c32
0

!20!24 u0 c1̈!0 c0 c1̈!0 u1!0 c0 x u0

sw a0 28(sp) put a0 28 #c32
0

!12!20!24!28 c32
0

!20!24 u0 c1̈!0 c0 c1̈!0 u1!0 c0 x u0 c1̈!0

move a0 zero mov a0 zero #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c1̈!0 u1!0 c0 x u0 c1̈!0
j 〈$B〉 j 〈$B〉 #

$A: # c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c0 u1!0 c0 x u0 c1̈!0

lw v0 28(sp) get v0 28 #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c1̈!0 u1!0 c0 x u0 c1̈!0
nop nop #

lb v0 0(v0) getbx v0 0(v0) #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c0 u1!0 c0 x u0 c1̈!0

move v1 v0 mov v1 v0 #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c0 c0 c0 x u0 c1̈!0

lw v0 28(sp) get v0 28 #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c1̈!0 c0 c0 x u0 c1̈!0

addiu v0 v0 1 step v0 1 #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c1̈!0 c0 c0 x u0 c1̈!0
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sw v0 28(sp) put v0 28 #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c1̈!0 c0 c0 x u0 c1̈!0

move a0 v1 mov a0 v1 #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c1̈!0 c0 c0 x u0 c1̈!0

jal 〈printchar〉 gosub printchar #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c1̈!0 u1!0 c0 x u0 c1̈!0

lw gp 12(sp) get gp 12 #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c1̈!0 u1!0 c0 x u0 c1̈!0
$B: #

lw v0 28(sp) get v0 28 #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c1̈!0 u1!0 c0 x u0 c1̈!0

lb v0 0(v0) getbx v0 0(v0) #c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c0 u1!0 c0 x u0 c1̈!0

bnez v0 〈$A〉 bnez v0〈$A〉 # c32
0

!12!20!24!28 c32
0

!20!24 u0 c0 c0 c0 u1!0 c0 x u0 c1̈!0

move sp fp cspf fp # c32
0

!20!24 c32
0

!20!24 u0 c0 c0 c0 u1!0 c0 x u0 c1̈!0

lw ra 24(sp) get ra 24 # c32
0

!20!24 c32
0

!20!24 u0 c0 c0 c0 u1!0 c0 x u0 c1̈!0

lw fp 20(sp) get fp 20 # c32
0

!20!24 x u0 c0 c0 c0 u1!0 c0 x u0 c1̈!0
move sp gp rspf gp # c0 x u0 c0 c0 c0 u1!0 c0 x u0 c1̈!0
jr ra return # c0 x u0 c0 c0 c0 u1!0 c0 x u0 c1̈!0

The ‘printchar’ subroutine writes a character received in registera0 to the hard-coded
address of a printer device:

printchar: # a0 = c0; ra = u0

li v1 0xb0000000 newh v1 ... 1 # v1 = u1;a0 = c0; ra = u0

sb a0 0(v1) sbth a0 0(v1) # v1 = u1!0; a0 = c0; ra = u0

jr ra return # v1 = u1!0; a0 = c0; ra = u0

Like halt, it does not use the stack pointer.

8 How does annotation ensure aliasing does not happen?

How to ensure memory aliasing does not happen is intuitivelysimple: make sure that
each address used can have been calculated in only one way. There are in principle two
constraints that can be enforced directly via annotation and which will have this effect:

(i) Both stack reads and writes withgetandput may be restricted to offsetsn that lie
in the range permitted by the local stack frame size (look fora stack pointer tower
m..

.

on the annotation before the instruction, with0 ≤ n ≤ m− 4);
(ii) stack reads withget may be restricted to offsetsn at which writes withput have

already taken place (look for a!n mark on the annotation before the instruction).

Similarly for strings and arrays. It is (i) that makes memoryaliasing impossible, but (ii)
is also useful because it (a) reduces (i) to be required on writes alone, and (b) prevents
‘read before write’ faults. Without (i), code could validlytry to access an element of the
caller’s frame, and that would fail because of aliasing via two distinct calculations for
the same address, from caller’s and callee’s frames respectively.

If these constraints are satisfied, we argue as follows that memory-aliasing cannot
occur. The base address used for access via the RISClw or sw instructions is either:

1. The stack pointer (disassembly of the access instructionis toput, get, putb, getb);
2. the base address of a string, incremented several times bythe string increment (the

disassembly is toputx, getx, putbx, getbx);
3. the base address of an array (the disassembly is toswth, sbth, lwfh , lbfh ).
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and the offset in the instruction is in the first case less thanthe stack frame size, in the
second case less than the string increment, and in the third case less than the array size.

Why are these and no other case possible? Firstly, if the program is annotated, then
every use of a base address for the underlying machine codelw andsw instructions
matches exactly one of these cases, because the annotation rules have no other option.

Next we claim that the annotations on a program aresound. This is a technical claim
that we cannot formally substantiate here that says that in an annotated program the
annotations around each instruction reflect what the instruction does computationally.
The full statement requires a model of each instruction’s semantics as a state-to-state
transformation (given in Appendix A) and a proof that the big-step rules of Section 6
express those semantics. Given that, the three cases above for the base address used in
a lw andsw instruction may be characterized thus:

1. It is the stack pointer, which is marked with an asterisk inthe annotatiion and typed
with cf where the towerf consists of the sizes of current and calling stack frames;

2. it is a string pointer, which is typed withcm̈ in the annotation and is equal to the
base address of the string plus a finite number of incrementsm;

3. it is an array pointer, which is typed withum in the annotation and is equal to the
base address of the array, which is of sizem.

In each of those three cases, the offset used in thelw or sw instruction is only permitted
by the annotation to lie in the range0 to m − 4, wherem is respectively the current
frame size, the string step size, and the array size. The firstof these cases implements
condition (i), and the second and third implement the equivalent condition for strings
and arrays respectively. I.e., there is only one calculation possible for each address used.

Similar arguments hold for byte-wise access vialb andsb. In addition, however, one
must require that menory areas accessed via these instructions are not also accessed via
lw andsw, in order to avoid different calculations for the addressesof the individual
bytes in a word. The simplest way to ensure that is to forbid use of lb andsb entirely,
relying instead onlw andsw plus arithmetic operations to extract the byte. The next
simplest alternative is to allowlb andsb only on strings with step size less than4 and
arrays of size less than 4, which word-wise instructions areforbidden from accessing
by the annotation rules.

9 Conclusion and Future Work

We have set out a method of annotation that can ensure that a RISC machine-code pro-
gram is safe against ‘hardware’ aliasing. We model aliasingas introduced by the use
of different arithmetic calculations for the same memory address, and successful anno-
tation guarantees that a unique calculation will be used at run-time for the address of
each execution stack, string or array element accessed by the program. Annotation also
means disassembling the machine code to a slightly higher level assembly language, for
a stack machine, and a human being is required to certify thatthe disassembly matches
the programmer’s intentions.

Note that one may add disassembly rules to the system that are(deliberately) se-
mantically wrong, with the aim of correcting the code. For example, one may choose to
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(incorrectly) disassemble the RISCaddiu sp sp 32 instruction to a stack machinepop
instruction. The RISC instruction is not a correct implementation of the higher level
instruction in an aliasing context, although it was likely intended to be. But one may
then replace the original RISC code with a correct implementation.

Also note that the equational annotations here may be generalised to quite arbitrary
first-order predicates. It also appears that our system of types may be generalised to
arrays of arrays and strings of strings, etc, which offers the prospect of a static analysis
technology that can follow pointers.
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APPENDIX – NOT FOR PUBLICATION

A Motivating semantics

We will restrict the commentary here to the ten instructionsfrom the 32-bit RISC in-
struction set architecture shown in Table 1. These are also the elements of a tiny RISC-
16 machine code/assembly language [8]. Because of their role in RISC-16, we know
that they form a complete set that can perform arbitrary computations.

We suppose in this paper that programs are such that the stackpointer always re-
mains in thesp register. Copies may be made of it elsewhere using themove (copy)
instruction, and it may be altered in situ using theaddiu instruction. Adding a nega-
tive amount increases the stack size, and stack conventionally grows top-down in the
address space. We also suppose that thereturn addresspointer is always in the source
registerr at the point where a (‘jump register’)jr r instruction is executed, so that the
latter may be interpreted as a stack machinereturn instruction.

A program induces a set ofdataflow tracesthrough registers. A dataflow trace is
a unique path through registers and stack memory cells that traces movement of data.
The segments of the trace may be labelled witheventsas detailed below, signifying
data transformation, or they may be unlabelled, signifyingtransfer without transforma-
tion. Each trace starts with the introduction of a value intoa register, either from the
instruction itself in the case of theli and the source is shown as a blank triangle, or by
hypothesis at the start of a subroutine and the source is shown as a vertical bar.

⊲
un!X
−→©a

r

li r a
newhr a n

|
τ

−→©x

r

hypothesis
[r = τ ]

The left hand diagram above shows the introduction of the addressa of an array of size
n into registerr, the li machine code instruction having been disassembled tonewh.
The indices of those elements already written to the array are recorded in the setX.
Usually that is the full set of indices up ton and the address is that of an array written
earlier. The label on the arrow is aannotated type(Table 3), indicating an introduction
event. The annotated type brought in with the array pointer introduction is

un!X

standing for an address that may not subsequently be altered(‘u’, or ‘uncalculatable’)
of n bytes of memory, that has been written to at each of the offsets in the setX.

If the li instruction is instead interpreted as introducing the addressa of a ‘string-
like’ object, then the annotated type brought in is

cn̈!X

standing for an address that may be altered (‘c’, or ‘calculatable’) and stepped in incre-
ments ofn bytes. TheX again stands for a set of offsets from the base (up ton bytes) at
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which the structure has been written. The same patternX applies at every incrementn

along the string. The form ‘̈n’ is meant to be understood as ‘nn..
.

’, with then repeated
an indefinite number of times. This may be viewed as a variant of the annotated type

cn
..
.nk

1 !X

that the stack pointer is associated with (for some finite sequencen1,. . . ,nk as super-
scripts) and which records a historical sequence of local stack frames created one within
the scope of the other culminating in a current stack frame ofsizen1 bytes.

Each trace that we consider ends with thereturn from a subroutine call. Only traces
that have reached some registerr2 at that moment are ‘properly terminated’. Any other
trace (i.e., one that has reached a stack cell) is not considered further. In the call protocol
that we allow here, the subroutine’s local frame is created at entry and destroyed at
return and the data in it is not shared with the caller:

jr r1
return

...

©x —⊳

r2
...

We aim to constrain the possible sequences of events along traces. The events are:

1. !k for a write at stack offsetk with put r k (or putx, swth for strings, arrays);
2. ?k for a read at stack offsetk with getr k (or getx, lwfh for strings, arrays);
3. un for the introduction of an array data addressa via newh r a n;
4. cn for the introduction of a ‘string’ data addressa via newxr a n;
5. τ for the introduction of data of any kindτ ‘by hypothesis’;
6. c0 for the production of new data via theaddaiu or other arithmetic instruction;
7. n↑ for the creation of a new stack frame of sizen bytes viapushn;
8. n↓ for restoring the previous stack frame, terminating a frameof sizen bytes via

rspf n. (or stepxwhen moving along a string);
9. nothing, for maintaining the data as-is or copying it.

An event does not always occur on the link one might expect: for example, reading data
to r1 with lw r1 4k(sp) evokes an event on a ‘sp to sp’ link in Fig. 2, not on the ‘(k) to
r1’ (‘stack slotk to registerr1’) link that the data flows along. We wish to enforce the
following restrictions. First, on the stack pointer:

(a) every!k and?k event is preceded by a lastn↑ event that hasn−w ≥ k ≥ 0 (where
w is the number of bytes written), so stack reads and writes do not step outside the
local frame of the subroutine;

(b) every?k event is preceded by a!k event that takes place after the last precedingn↑
event, so every read is of something that has been written;

(c) everyn↓ event is preceded by a lastm↑ event withm = n, and so on recursively
so stack pushes and pops match up like parentheses;
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Fig. 1: Dataflow semantics of machine code/assembly language instructions.

(d) no trace containing ac or u event other than an originatingc0 may eventually
pass through the stack pointer register, so the only operations allowed on the stack
pointer are shifts up and down;

(e) everyn↑ event is withn > 0.

Secondly, on the traces through registers containing a string pointer:

(a) every!k and?k event is within the boundn established by the introductioncn̈ on
the trace, in thatn− w ≥ k ≥ 0, wherew is the width of the transferred data;

(b) there is no (b) constraint;
(c) everyn↓ event is withn equal to the string increment established by the introduc-

tion cn̈ on the trace;
(d) no trace containing any other event than thecn̈ introduction and subsequentn↓

shifts may later pass through the string pointer register, so the only modifications
allowed to the string pointer are shifts down;

(e) there is no (e) constraint.

The constraints applied to traces through array pointers are stricter:

(a) every!k and?k event is within the boundn established by the preceding introduc-
tion un on the trace, in thatn− w ≥ k ≥ 0.

(b) there is no (b) constraint;
(c) there are non↓ or n↑ events allowed;
(d) no trace containing any other event than theun introduction may later pass through

the array pointer register, so no modifications to the array pointer are allowed;
(e) there is no (e) constraint.

We express these constraints formally below. Starting withthe event that introduces an
annotated typeτ we accumulate a running ‘total’ annotated type along each trace. The
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first two equations and their guards express the constraintson an array pointer. Shifts of
the base address are not allowed and reads and writes are restricted to the array bound:

un!X · !k = un!(X ∪ {k}) n− w ≥ k ≥ 0 (1)

un!X · ?k = un!X X ∋ k ≥ 0 (2)

The next three equations express the constraints on a stringpointer. Additionally, over
the array pointer equations, shifts-down on (increasing) the pointer are allowed:

cn̈!X · n↓ = cn̈ n > 0 (3)

cn̈!X · !k = cn̈!(X ∪ {k}) n− w ≥ k ≥ 0 (4)

cn̈!X · ?k = cn̈!X X ∋ k ≥ 0 (5)

The next four equations express the constraints on the stackpointer. Additionally, over
the string pointer equations, shifts-up on (decreasing) the pointer are allowed. The first
two equations make shifts nest like parentheses:

cf !X · n↑ = cn
f

n > 0 (6)

cn
f

!X · n↓ = cf n > 0 (7)

cn
f

!X · !k = cn
f

!(X ∪ {k}) n− w ≥ k ≥ 0 (8)

cn
f

!X · ?k = cn
f

!X X ∋ k ≥ 0 (9)

These calculations bind an annotated type to each register and stack cell at each point
in the program.

Does the same register get the same type in every trace calculation? Traces converge
only after anand (when the type computed isc0, so ‘yes it does’ in this case) and after
a jump or branch. In these latter two cases we specify:

The calculated type at the same registers or stack slots mustbe the same across
different traces starting from the same entry point for the programs considered. (*)

The programs in which (*) is true are the only programs we consider. They are programs
that re-establish the same pattern of annotated types at each point at every pass through
a loop and no matter which path through to a given point is taken.

The annotated types that get bound to registers and stack slots are the values in
the states of anabstract stack machinewhose instruction semantics is described by
Figs. 1 and 2. That may be shown to be an abstract interpretation of the instruction
trace semantics in a stack machine. That in turn abstracts a machine code processor via
disassembly.

Call an attempt in the stack machine to read or write beyond the current local frame
out-of-bounds. That the abstract stack machine that calculates with annotated types is
an abstract interpretation of the stack machine that calculates with integer words means
that an out-of-bounds access in the stack machine must evokea !k or ?k event on a trace
through the abstract stack machine wherek is not bounded by the sizen of the lastn↑
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event on the trace. But that is forbidden by (1-9) in the abstract stack machine. So if
we can verify that (1-9) hold of a program in the abstract stack machine, out-of-bounds
accesses cannot happen in the stack machine.

If out-of-bounds accesses in the stack machine cannot happen, then we argue that
aliasing cannot happen in the machine code processor. The argument goes as follows:
the base address used for access via the RISClw or sw instructions must be either

1. the stack pointer (disassembly is toput, get, putb, getb and the base address reg-
ister gets the annotated typecf !X for some finite tower of frame sizesf );

2. the base address of a string, incremented several times bythe string increment (dis-
assembly is toputx, getx, putbx, getbx and the base address register gets the an-
notated typecn̈!X for some string stepn);

3. the base address of an array (disassembly is toswth, sbth, lwfh , lbfh and the base
address register gets the annotated typeun!X for some array sizen).

Those are the only annotated types allowed by (1-9) on the abstract stack machine to be
bound to the pointer’s register at the moment the event!k or ?k happens.

In the first case, the offset in the accessing instruction is less than the stack frame
size, in the second case less than the string increment, and in the third case less than
the array size. Those calculations are the only ones that canbe made for the address
of the accessed element, and they are each unique. For example, in case 1, the address
used iss + k, wheres is the stack pointer and0 ≤ k ≤ n − w, wheren is the local
frame size andw is the size of the data accessed. If two such accesses from thesame
frame are at arithmetically equal address aliasess+ k1 ≡ s+ k2 buts+ k1 6= s+ k2
identically. Sok1 ≡ k2 arithmetically butk1 6= k2 identically. Butk1 andk2 are small
numbers in the range0 to n, wheren is the frame size. If they cannot be distinguished
by the processor arithmetic, then something is deeply wrongwith the processor design.
Accessing an element of a parent frame withs1 + k1 ≡ s2 + k2 wheres1 = s2 − n is
simply out of the question becausek1 is restricted to the range0 to n.

We conclude that accessing different aliases of the same address is impossible if
the abstract interpretation of the program as set out by Figs. 1 and 2 can be verified to
satisfy (1-9).
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Fig. 2: Dataflow semantics of four more machine code instructions.
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