arXiv:1305.6431v4 [cs.LO] 4 Dec 2013

Certifying Machine Code Safe from Hardware Aliasing
RISC is not necessarily risky

Peter T. Breudrand Jonathan P. Bowén

! Department of Computer Science, University of Birmingh&lk,
ptb@cs.bham.ac.uk
2 Department of Informatics, London South Bank Universitig U
jonathan.bowen@lsbu.ac.uk

Abstract. Sometimes machine code turns out to be a better target fificaer
tion than source code. RISC machine code is especially &atyaa with respect
to source code in this regard because it has only two ingngthat access mem-
ory. That architecture forms the basis here for an inferesgstem that can prove
machine code safe against ‘hardware aliasing’, an effettdtcurs in embedded
systems. There are programming memes that ensure code is@afhardware
aliasing, but we want to certify that a given machine codeadavably safe.

1 Introduction

In a computer system, ‘software’ aliasing occurs when chffe logical addresses si-
multaneously or sporadically reference the same physication in memory. We are
all familiar with it and think nothing of it, because the sapte/sical memory is nowa-
days reused millisecond by millisecond for different uspace processes with different
addressing maps, and we expect the operating system kerm&ave the necessary
illusion of separation. The kernel programmer has to be ewat different logical ad-
dresses from different or even the same user-space proegsalias the same physical
location, but the application programmer may proceed unesva

We are interested in a converse situation, called ‘hardwadiessing, where different
physical locations in memory are sporadically bound to @mes logical address. If
software aliasing is likened to one slave at the beck of twetera, hardware aliasing is
like identical twins slaved to one master who cannot tellaltis which. In this paper
we will investigate the safety of machine code in the lighbafdware aliasing issues.

Aliasing has been studied befofe [10] and is the subject ofespatents[]7,11].
There appears to be no theoretical treatment publishémagh the subject is broadly
treated in most texts on computer architecture (see, fanpie Chapter 6 of[1]) and is
common lore in operating systems kernel programming. Thed\vare’ kind of alias-
ing arises particularly in embedded systems where thenaeitle components of the
processor are insufficient to fill all the address lines. ®gpp for example, that the
memory has 64-bit addressing but the processor only hast4bihmetic. The extra
lines might be grounded, or sent high, and this varies fraatf@m to platform. They
may be connected to 64-bit address registers in the pragesstheir values change
from moment to moment as the register is filled. In that céss,lp to the software
to set the ‘extra’ bits reliably to zero, or one, or some cstesit value, in order that
computing an address may yield a consistent result.

http://arxiv.org/abs/1305.6431v4

We first encountered the phenomenon in the context of the IPl&[general pur-
pose ‘crypto-processor’, i.e., a processor that perfotmsamputations in encrypted
form in order to provide security against observation aredgmtion from malware. Be-
cause real encryptions are one-to-many, the result of theypted calculation of the
addresd + 1 will always mean 2’ when decrypted, but may be different from another
encryption of2. If the two differentphysical aliasesre used as addresses, then two
different memory cell contents are accessed and the rescittaotic. The same effect
occurs in the embedded system that has processor arithmittitewer bits than there
are address lines; addr 1 in the processor and instead%0)xff01000000000002 may
be returned. If those two aliases of the arithmeliare used as addresses, they access
different memory cells. The upshot is that what is meant ltiotles to be 2’ accesses
different locations according to criteria beyond the pesgmer’s control.

There are programming memes that are successful in anngliasvironment: if a
pointer is needed again in a routine, it must be copied exant saved for the next use;
when an array or string element is accessed, the addressaimasts be calculated in
exactly the same way. But whatever the programmer sayspthpiter may implement
as it prefers and ultimately it is the machine code that hasetehecked in order to
be sure that aliasing is not a risk at run-time. Indeed, inrabexlded environment it
is usual to find the programmer writing in assembler pregigebrder to control the
machine code emitted. The Linux kernel consists of agtihand-written assembly
code, for example (but rarely in segments of more than 10rEs leach). One of our
long term objectives is to be able to boot a Linux kernel onrmbedded platform with
aliasing, the KPU in particular. That requires both moditya compiler and checking
the hand-written machine-level code in the open sourcewach

An inference system will be set out here that can guarantB¢3() [2/9]) machine
code program safe against hardware aliasing as describedd®a is to map a stack
machine onto the machine code. We will reason about whatdsgéanguage instruc-
tions for the stack machine do computationally. Choosinigfarence rule to apply to a
machine code instruction is equivalent to choosing a staméhine assembly language
[5] instruction to which it disassembl€es([3,4]. The choicestbe such that a resulting
proof tree is well-formed, and that acts as a guide. The staaxhine is aliasing-proof
when operated within its intended parameters so verifyiiag-aafety means verifying
that the stack machine assembly language code obtainegsagséimbly of the RISC
machine code does not cause the stack machine to overstaimderunds at run-time.

The RISC machine code we can check in this waipso factorestricted to that
which we can disassemble. At the moment, that means codeghatstring or string-
like data structures and arrays which do not contain funménters, and which uses
machine code ‘jump and link’ and ‘jump register’ instruetgonly for subroutine call
and return respectively, and in which subroutines make then local frame and do
not access the caller’s frame (arguments are passed towsuna®in registers). These
restrictions are not fundamental, but in any case there@fenctional limitations im-
plied by them; one call convention is functionally as goodmsther and data structures
may always be laid out flat, as they are in a relational DB.

Mistakes in disassembly are possible: if a ‘jump registestiuction, for example,
were in fact used to implement a computed goto and not a stibeoreturn, it could
still be treated as a subroutine return by the verificatidmnictvwould end prematurely,

possibly missing an error further along and returning aefalsgative. A mistaken return
as just described would always fail verification in our sgstéut other such situations
are conceivable in principle. So a human needs to check atifydbat the proposed
disassembly is not wrongheaded. The practice is not diffidause, as noted above,
hand-written machine code at a professional standard stsrf short, concise, com-
mented segments. The difficulty is that there is often a gieat of it to be checked
and humans tire easily. But our system reduces the burddretking the disassembly
proposed by the system against the comments in the code.

This paper is structured as follows: after an illustratidrpoogramming against
aliasing in Sectiof]l2 and a discussion of disassembly ini@€&; code annotation is
introduced in sectiorid #] 5 ahll 6, with a worked example ii@ed@. Sectiol B argues
that code annotation gives rise to the formal assurancaliaaing cannot occur.

2 Programming memes

We model aliasing as being introduced when memory addressesalculated in dif-
ferent ways. That model says that a memory address mayppiedexactly and used
again without hazard, but if evehis added to it, then a different alias of the address
may result, and reads from the new alias do not return datasitep at the old alias of
the address. Arithmetically the aliases are equivalertténprocessor; they will test as
equal but they are not identical, and using them as addrekses that up.

That is particularly a problem for the way

2 v _In .
in which a compiler — or an assembly lan-

foo: foo: guage programmer —renders machine code for
sp —= 32 ZE - ;g the stack pointer movement around a function
code code call. Classically, a subroutine starts by decre-
sp 4= 32 sp = gp menting t_he stack pointer to make room on th_e
return return stack for its local frame. Just before return, it

increments the stack pointer back to its orig-

Table 1: Aliasing in functiorioo. inal value. The pseudo-code is shown on the

left in Table[d. In an aliasing context, the at-

tempt at arithmetically restoring the pointer puts an abiihe intended address in the
sp register, and the caller may receive back a stack pointenth&énger points to the
data. The code on the right in Taljle 1 works correctly; it talia extra registegp)
and instruction, but the register content may be moved tetdoek and restored before
return, avoiding the loss of the slot.

Strings and arrays are also

string & & v problematic in an aliasing envi-
array v & hA ronment because different calcu-
st+= 2 s++; s++ lations for the address of the same
x = s[2]| x = #s X = %8 element cause aliasing. To avoid

it, the strategy we will follow is
Table 2: Aliasing while accessing a string or array. that elements of ‘string-like’ struc-
tures will be accessed by incre-
menting the base address in constant steps (see the psedelateight in Tablg]2) and
array elements will be accessed via a unique offset fromrttasy dase address (see the

A RISC machine code processor consists of 32 (32-bit) imteggistersR, a vector of232 (32-bit) integer memory|
locationsM, and the program counter The latter gives the address of the current instructioe.rétregister is used to
hold a subroutine call return address. Only two instrugjew andlw, access memory.

instruction mnemonic semantics

sw ry k(r2) |store word M =M@ {Rra+k+— Rri}; R\ = R; p/ = p+4d
Iw 1 k(rz2) |load word M =M; RR=R&{ri— M(Rra+k)}; p' =p+4
movery ry |movelcopy |M’' =M; R = R® {r1— Rra}; p’ = p+4

liry k load immediat¢M’ = M; R’ = R® {r1 — k}; p' = p+4

addiu ry 72 k |add immediatg M’ = M; R = R® {r1 — Rra+k}; p’ = p+4
addur; 72 rz|add variable |M’' = M; R = R® {r1 — Rra+Rr3}; p' = p+4
nand 7y ry r3|bitwise not-angM’ = M; R’ = R® {r1 — Rr2& Rr3}; p’ = p+4
beqri r2 k |branch-if-equalM’ = M; R’ = R; if (Rr1=Rr2) p’ = kelsep’ = p+4
jalk jump-and-link |[M’ = M; R = R® {ra+s p+4}; p' =k

jrr jump-register |[M' = M; R = R; p’ = Rr

Notation M @ {a — v} means the vectak/ overwritten at

font ‘+’) is distinguished from the instruction addressing ari¢tim (light font ‘+); 71, r2 are register names or indice
k is a signed 16-bit integer; andz’ are respectively initial and final value after the instraothas acted.

indexa with the valuev; the processor arithmetic (bol

Bs

Box 1: RISC machine code instructions and their underlygmantics.

pseudo-code at left in Tadlé 2). This technique ensureshbed is only one calculation
possible for the address of each string element (it4s-1)+1)+0 in Table[2) or array
element §+2 in Table[2), so aliasing cannot occur. The middle code in d@bjives
addresgs+2)+0 which matches exactly neither string nor array calculatidrne de-

cision over whether to treat a memory area
of access to be used.

3 Disassembly

Say that the stack pointeris in the stack pointer registe

stack machine state is a 4-tupl®, KC, #, p), whereR

consists of the31 registers excluding the stack pointer re|
ister, the stackC consists of the top part of memory abo
the stack pointer value, the heapH consists of the bottom

0-
e

is that of the current instruction.

Kk=M(s+k)
Rr=Rr
Ha=Ma

s=Rsp, k>0
r#sp, re€{0,...31}
a<s

D

The (hidden) stack pointer valueis needed to recreate th
machine code processor stéfe, M, p) from the stack ma-
chine stat§ R, KC, H, p), so the latter is more abstract.

Box 2: Relation of processor to stack machine.

like a string oreayalepends on the mode

Nothing in the machine code indicates

) ¢ i I which register holds a subroutine return
spin the machine code processor. A corresponding abstraci

a{ddress, and that affects which machine
code instructions may be interpreted as
a return from a subroutine call. To deal

part of memory below the stack pointer, and the addeess with this and similar issues in an organ-

ised manner, we describe rules of rea-
soning about programs both in terms of
the machine code instruction to which
they apply and an assembly language in-
struction for a more abstrastack ma-
chinethat the machine code instruction
may be disassembled to and which we
imagine the programmer is targeting.
The core RISC machine code instruc-

tions are listed in Bokl1, where their semantics are givertas-so-state transforma-
tions on the three components of a RISC processor: 32 324djgtersk, memoryM

Table 3: Stack machine instructions: thare small integers, theare register names or indices,
and thea are relative or absolute addresses.

s = csptr | cspfr | rspfr| pushn /I stack pointer movement
| getrn|putrn| ... /I stack access
| newxran|stepxrn|getxrn(r)| putx rn(r)| .../ string operations
| newhran|lwfh rn(r)| swthrn(r)| ... I array operations
| gosuba|return |gotoal|ifnzral ... /I control operations
| movrr|addaiurrn] ... /I arithmetic operations

Table 4: Machine code may be disassembled to one of sevezahate assembly language in-
structions for a stack machine.

machine codmssembly language |machine codmssembly language

csptry getbri n
cspfrs b r1 n(rs Ibfth 71 n(rs
Mover: 2 rs;?f o) getbxry £L(T')2)
mov ry 72 putb r1 n
push-n sbry n(rz) |sbthri n(rz)
addiur rn |stepxrn putbx r1 n(rz)
addaiur rn jal a gosuba
getrin jirr return

wri n(re) |lwfh ri n(re)

getxri n(rz) Ja gotoa

. newxr an
putrin lira newh
swry n(rz) |swfhry n(rz) _ ran
bnezr a ifnzra

putx 71 n(r2)

and a 32-bit program countgr The corresponding abstract stack machine is described
in Box[2. The stack pointer addresé the machine code processor notionally divides
memoryM into two components: stadk above and heafl below. The stack machine
manipulates the stack directly via instructions that ofgead the level of stack opera-
tions, and they are implemented in the machine code processimstructions that act
explicitly on the stack pointer. No stack pointer is avdiaib the abstract machine. Its
registersk consist of the seR in the machine code processoinusthe register that
contains the stack pointer, usually thgregister. The program countgris the same

in the abstract stack machine as in the machine code procéssause instructions
correspond one-to-one between programs for each machavee\ér, there is usually

a choice of more than one abstract stack machine instruttietreach machine code
instruction could have been disassembled to, even thougloae is chosen.

For example, several different stack machine instructioag all be thought of as
manipulating the hidden stack pointer, registpiin the machine code processor, and
they all are implemented asnaove (‘copy’) machine code instruction. Thus theove
instruction disassembles to one of several stack mach#teictions as follows:

1. Thecsptry (‘copy stack pointer to’) instruction saves a copy of thektaointer in
registerr;. It corresponds to thenover; spmachine code processor instruction.

2. Thecspfr; (‘copy stack pointer from’) instructiorefresheghe stack pointer from
a copy inr; that has the same value and was saved earlier (we will nobexpere

the reasons why a compiler might issue such a ‘refresh’untin). It corresponds
to themove spr; machine code instruction.

3. Therspf r; (‘restore stack pointer from’) instruction returns thec&t@ointer to a
value that it held previously by copying an old saved valwafy . It also corre-
sponds tanove spry.

A fourth disassembly of the machine comeveinstruction, to the stack machimeov
instruction, encompasses the case when the stack poimtet isvolved at all; it does
a straight copy of a word from one register to another at thekstnachine level. The
full set of stack machine instructions is listed in TdBler® éheir correspondence with
RISC machine code instructions is shown in Table 4.

We will not work through all the instructions and disasseyrdgtions in detail here,
but note the importarjush » instruction in the stack machine, which can be thought
of as decrementing the hidden stack pointembextending the stack downwards. It
corresponds to thaddiu sp spm machine code instruction, with = —n. Also,
the stack machine instructiopsait ;1 » andgetr; n access the stack for a word at
offsetn bytes, and they correspond to the machine cwle, n(sp) andlw 71 n(sp)
instructions, respectively.

The very same machine code instructions may also be interpas stack machine
instructions that manipulate not the stack but either angtlike’ object or an array.
Strings/arrays are read witetxlwfh and written withputx/swth. Table[4 shows that
these are implemented Ihy/swin the machine code processor, applied to a base reg-
isterry # sp. Stepping through a string is done with tstepxinstruction in the stack
machine, which is implemented @&ddiu in the machine code procesor. Introducing
the address of a string/array in the stack machine needs/newh and those are both
implemented by thé (‘load immediate’) instruction in the machine code process

There are also ‘b’ (‘byte-sized’) versions of tiget, Iwfh, getx stack machine in-
structions namedetb, Ibfh, getbx respectively. These are implementedlbyin the
machine code processor. Fart, swth, putx we have byte versiorgutb, sbth, putbx.

4 Introducing annotations and annotated types

foo: Consider the ‘good’ pseudo-code of Table 1 imple-
move gp sSp mented as machine code and shown in Table 5. How do
addiu sp sp -32 we show it is aliasing-safe? Our technique isattmotate
...code ... the code in a style akin to verification using Hoare logic,
move sp gp but the annotation logic is based on the stack machine ab-
jr ra straction of what the machine code does. We begin with an

annotation that says ttep register is bound to a particular

Table 5: Non-aliasing sub- . '
annotation typen entry:

routine machine code.
{sp =cl0!4!8 }
The ‘c’ as base signifies a variable pointer value is in regisgett is the stack pointer

value. The ‘10!4!8" means that that particular value hasrbesed as the base address
for writes to memory at offsets 0, 4 and 8 bytes from it, refipely.

The first instruction in subroutirfieo copies the stack pointer to registgy and we
infer that registegp also gets thec’ annotation, using a Hoare-triple-like notation:

{sp* =cl0!4!8 } move gp sp {sp*,gp = cl0!4!8}

The stack pointer location (in trspregister) should always be indicated by an asterisk.

The arithmetic done by the next instruction destroys theedfhformation. It cannot
yet be said that anything has been written at some offset fhenmew address, which
is 32 distant from the old only up to an arithmetic equivakeimcthe processor:

{sp”,gp =l0!4!18 } addiu sp sp -32{gp = cl0l4!§; sp* =c}

Suppose the annotation on thp register is still valid at the end of subroutifieo,
so the stack pointer register is finally refreshed byrtieve instruction with the same
annotation as at the start:

{sp” =c¢; gp = l0!4!§; } move sp gp {sp*,gp =cl0i4!8}

The returnjf ra) instruction does not change these annotations. So thegeatide has
returned as stack pointer a value that is annotated as hashgalues saved at offsets
0, 4, 8 from it, and the caller can rely on accessing datadtairthose offsets. That does
not guarantee that treamevalue of the stack pointer is returned to the caller, however
It will be shown below how this system of annotations may baxeal into providing
stronger guarantees.

5 Types for stack, string and array pointers

The annotation discussed above is not complete.sitein bytes of the local stack
frame needs to be recorded by following tlee with the frame size as a superscript.
Suppose that on entry there is a local stack frame of size X@syor 48 bytes. Then
here is the same annotation with superscripts on, writteg derivation in which the
appropriate disassembly of each machine code instructiamiiten to the right of the
machine code as the ‘justification’ for the derivation:

{sp* = 8101418}
{sp*, gp = c*81014!8}
{sp* = c32"°; gp = 48101418}

movegp sp lesptgp
addiu sp sp -32 push 32

{sp* = c32"; gp = 48101418}
{sp*, gp = c*81014!8}

The push 32 abstract stack machine instruction make®ee local stack frame o8
words or32 bytes. It does not increase the size of the current frameoraagly, the
32 ‘pushes up’ thet8 in the annotation so tha&2*® is shown. This makes the size of
the previous stack frame available to the annotation logic.

A different disassembly aiddaiu r r n is required whem contains a string pointer,
not the stack pointer, which means that registéacks the asterisk in the annotation.

movesp gp Irspf gp

The disassembly as a step along a string is writiEpx » n, and requires: to be
positive. In this case, the string pointersinwill be annotated with the type

Cl

meaning that itis a ‘calculatable’ value that may be altdngdddingl to it repeatedly.

The formc! hints that a string is regarded as a statkthat starts ‘pre-charged’ with an

indefinite number of frames of 1 byte each, which one may spehnough by ‘popping
the stack’ one frame, and one byte, at a time. So annotatjestynay be either like
c32” orcl and these may be followed by offsé@$4!8! There is just one more base
form, described below, completing the list in Bdx 3.

The RISC instructiow 71 n(r3) is also

disassembled differently according to the ant

notated type in,. As getry n it retrieves a
value previously stored at offsein the stack,
whenn > 0 andrs is the stack pointer regis-
ter. Aslwfh r, n(ry) it retrieves an element
in an array from théheaparea. In that case,
ro Will be annotated

um

meaning an ‘unmodifiable’ pointer to an ar-
ray of sizem bytes, andn — 4 > n > 0.
A third possibility is dissassembly as retrieval
from a string-like object in the heap, when, ag
getxry n(re), registerro will have a ‘string-
like’ annotation of the fornt”™, meaning that
it must be stepped through in incrementsrof
bytes.

Similarly the RISCsw 1 n(r3) instruc-

tion can be dissassembled pst r; n of a

Annotationsa assert a binding of registers or
stack slotgn) to anannotated type. One of the

register names may be starred to indicate the stack

pointer position. A type is either ‘uncalculated|,

u, or ‘calculated’ c. Either may be decorated witl

‘In’ annotations indicating historical writes at tha

offset from the typed value when used as an ad-

dress. Ac base type may also be superscripted

a ‘tower’ of natural numbers:. denoting ‘frame

sizes’ (see text), while a base type may have
a single superscript (also denoting size). We a|
usei for a towerl! of undetermined extent an
a single repeated size. Also, formal type variab
X, Yy, etc are valid stand-ins for annotated type
and formal ‘set of offsets variableX,, Y, etc are

valid stand-ins for sets of offsets.

r[*],....,(n), R A
toa=clr gl pullint

o ~

by

so
i

value at offset: to the stack, oswthry n(rs2)
to an array omputx r; n(rq) to a string, de-
pending on the type bound to register These
register types drive the disassembly.

6 Formal logic

Box 3: Syntax of annotations and types.

We can now write down formal rules for the logic of annotasiamroduced informally

in the ‘derivation’ laid out in the previous section. Read@aho would prefer to see a

worked example first should jump directly to Sectidn 7.
We start with a list of so-called ‘small-step’ program aratmns justified by indi-

vidual stack machine instructions, each the disassemtdynodichine code instruction.
The small-step rules relate the annotation before eachimachde instruction to the
annotation after. Tab[g 6 helps to redwecpriori the number of possible disassemblies

Table 6: Possible disassemblies of machine code instngctie constrained by the stack pointer
register location changes (§P5P) or absencex(), and changes to the stack content (‘delta’).

[moverira || 71 | r2 [[stack delth laddiury o m |[r1 | ro [[stack delta
rspfra SPO| x ||yes stepr m X no

cspfra SPO| x [|no steptor; r2m || x [x [[no

csptry x [SPO|Ino push—m SPO ||yes
msptrq SP——SP ||no pushtor; —m || S’—SP||yes
movry 72 x | x [lno addaiur; ro m|| x [x [[no
wrym(rg) [| v | r2 [|stack delta [swrim(r) [ri | r2 [[stack delta
getri m x |SPO|Ino putry m X |SPO|Ino

wfh r1 m(r2)|| X X ||no swthry m(r2)|| X x ||no

getxry m(r2) || X X ||no putxr; m(r2)|| X x ||no

for each machine code instruction, but in principle disaddg to stack machine code
does not have to be done first, but can be left till the lastiptesssnoment during the
annotation process, as each dissassembly choice cortsspmithe application of a
different rule of inference about which annotation comest.nk the corresponding
inference rule may not be applied, then that disassembliceti®impossible.

Here is how to read Tabld 7. Firstly, ‘offsets variabl¥s'Y, etc, stand in for sets
of offset annotations!%’. For example, thgut gp 4 instruction is expected to start
with a prior annotation pattersp* = c/!X for the stack pointer register. Secondly, the
stack pointer register is indicated by an asterisk. Thjrfliy the table stands for some
particular stack frame tower of integers; it is not a varablkeing always some constant
in any patrticular instance. In the case of & gp 4 instruction, f must start with
some particular number at least 8 in size, in order to accodateothe 4-byte word
written at offset 4 bytes within the local stack frame. J85bh its own would do forf
here. Lastly, ‘type variables, y, etc, where they appear, stand in for full types.

The table relates annotations before and after each itistnu§o, in the case of the
put gp 4 instruction, if the prior annotation for the stack pointegister issp* = ¢f!X,
then the post annotationsp* = ¢/!4!X, meaning that 4 is one of the offsets at which
a write has been made. It may be that 4 is also a member of tdeseted byX (which
may contain other offsets too), or it may be noXinThat is not decided by the formula,
which merely says that whatever other offsets there aresiatimotation, ‘4’ is put there
by this instruction. At any rate, the annotation patterntfiemput gp 4 instruction is:

{...;sp*=c/IX;...}putgp4 {...;sp* =c/l4IX;...}

and considering the effect on tige register (which may be supposed to have the type
denoted by the formal type variabtenitially) and the stack slot denoted by ‘(4)’ gives

{gp=x;sp"=c/IX} put gp 4 {sp*=c/14IX; gp,(4)=x}

because whatever the descriptioof the data in registegp before the instruction runs,
since the data is transferred to stack sld)’(the latter gains the same description.

Table 7: ‘Small-step’ annotations on assembly instruction

{} newxrn {r=c"IX} /I Set regr content
{r1=c11Y; ro=u’21X} putx ry n(rz) {ri=c!Y;ra=u’2In!X} // Store word to string
{ro=ul1nIX} getxri n(rs) {ri=c”;ra=u’ln!X} // Load word from string
{r:c"f IX} stepxrn {r=c/1Y} /I Step along string
{} newhrn {r=u"X} /I Set regr content
{r1=c11Y; ro=u’21X} swthry n(r2) {ri=c!Y;rs=uf2In!X} // Store word to array
{ro=ul1nIX} Iwfh 71 n(r2) {r1=c";ra=u’ln!X} /I Load word from array
{ri=x;r3=c/IX} putrin {ri,(n)=x;r3=c’n!X} // Store word to stack
{rs=cfInIX; (n)=x} getrin {ri,(n)=x;r3=c’In!X} // Load word from stack

{r'=c/IX} pushn {r'=c""} /I New frame
{r3=cfIX} csptry {ri,r3=cfIX} /I Copy SP to regr;
{ri=cfIY;r=cfIX} cspfra {r},r=c/IX} /I Copy SP from regrs
{ri=c"1Y;ro=c/IX} rspfry {rira=cfIX} Il Restore SP from regs
{} nop {} /I No-op, do nothing
{ro=x} movriry {ri,ro=x} /I Copy from regrs

{ro=cf1X} addaiur, r2 n {ri=c;ro=c’ X} /I Arithmetic add

Notation TheX, Y, etc stand for a set of offsets; Ins! . . ., for literal natural numbers. The stack frame size (or ‘tower

of stack frame sizes’f is a literal natural number (or finite sequence of natural Iners). Thex, y, etc stand for any type
(something that can appear on the right of an equals sign).

Generalising the stack offset’*back ton, and generalising registegp andsp to r;
andr, respectively, one obtains exactly the small-step sigedisted for instruction
put r; n. Registers whose annotations are not mentioned in thiagignhave bindings
that are unaffected by the instruction.

Small-step annotatiod®} « {¥} for an instruction at address with a disassem-
bly x generate a so-called ‘big step’ rule

To (Fhatd{e}
T o {6} a{d)

in which @ is the final annotation at program end dfidlenotes a list of big-step an-
notations{¥} a {&¥}, one for each instruction addregsn the program (note that, in
consequence, branches within the program must get the samotasion at convergence
as there is only one annotation there). Thus the big-stepgsw@n inference about what
theoryT contains. The rule above says thaf#f} « + 4 {®} is in theoryT', then so is
{©} a {®}. The label justifies the inference by the fact that instarctiis at address
a, and disassembly has been chosen for it.

The big-step rules aim to generate a ‘covering’ thebrjor each program. That
is, an annotation before every (reachable) instructiod,thnos an annotatiobetween
every instruction. The rule above tells one how to extend g further instruction a
theory that is growing from the back of the program towaresftbnt.

Where does theory construction start? It is with the big-stee for the finalir ra
instruction that classically ends a subroutine. The aatiotiis instruction is to jump
back to the ‘return address’ stored in tferegister (or another designated register).

10

The annotation for it says that there was a program addressrfaalculatable value’,
u®) in thera register before it ran (and it is still there after), and rieggino hypotheses:

T [r=u) a 0] [a] jr r/return]
The ‘0’ superscript indicates that the address may not be usedaseddr offset mem-
ory accesses; that would access program instructions iéiewallowed. Calling code
conventionally places the return address inréheegister prior to each subroutine call.

There are just three more big-step rules, correspondingdb ef the instructions
that cause changes in the flow of control in a program. Jummpfuditional branches)
are handled by a rule that refers back to the target of the jump

T > {0} b {®)

This rule propagates the annotation at the tabg#tthe jump back to the souree At
worst a guess at the fixpoint is needed.

The logic of branch instructions (conditional jumps)agays that the outcome of
going down a branch th or continuing atz + 4 must be the same. But the instruction
bnezr b (‘branch to addreskif registerr is nonzero, else continue’) and variants first
require the value in the registeto be tested, so it is pre-marked witlf'calculatable’):

T > {r=c/IX;0}b{®} T > {r=c/!X;0} a+4{®}
T > {r=c/1X;0} a {®}

[a | bnezr b /ifnz r 0]

The caseh < a (backward branch) requires a guess at a fixpoint as it dogsiigp.
The annotated incremental histofy likely none, of the value in the tested register is
irrelevant here, but it is maintained through the rule. Téteo$ offsetsX already written

to is also irrelevant here, but it is maintained through thle.r

The RISCjal b machine code instruction implements standard imperativgram-
ming language subroutine calls. It puts the address of tleinstruction in thera
register (the ‘return address’) and jumps to the subrowimeldress. The calling code
will have saved the current return address on the stack édfercall. The callee code
will return to the caller by jumping to the address in theregister withjr ra , and the
calling code will then restore its own return address froegtack.

Because ofal’s action in filling registerra with a program addressa on entry to
the subroutine at must already havea annotation, indicating an unmodifiable value
that cannot even be used for memory access. And becausetteesslroutine can be
called from many different contexts, we need to distingtiighannotations per call site
and so we use a throwaway letterifigto denote those annotations that derive from the
call of b from sitea. The general rule is:

T' > {ra=u’;¥} b {O} T {O}a+4{d}
T > {¥}a{d}

[a | jal b/ gosubb]

The ‘0’ superscript means that memory accesses via the returesslds base address
for lw/sware not allowed; that would access the program instructibims stack pointer
register has not been named, but it must be distinct fromethregister.

11

We have found it useful to apply extra constraints at sulimeutalls. We require
(i) that each subroutine return the stack to the same statgitired it in (this is not a
universal convention), and (ii) that a subroutine make amuake all of its own local
stack frame (again, not a universal convention). That helpsolog implementation of
the verification logic start from a definitely known state lz¢ £nd of each subroutine
independent of the call context — namely, that the localksteaane at subroutine end
(and beginning) is size zero. These constraints may beibtolthejal rule as follows:

T > {ra=u’r*=c’IX, ¥} b {r*=c1Y;0} T > {r*=c/IY;O0} a+4 {P}
T > {r*=c/IX;¥} a {P}

The requirement (i) is implemented by returning the stadkteo in the same register
(r* with the same- on entry and return) and with no stack cells visible in thalstack
frame handed to the subroutine and handed back by the sinwdtie two0s). The
requirement (ii) is implemented by setting the local staehkfe on entry to contain no
stack, just the general purpose registers, which forcesubeoutine to make its own
stack frame to work in. Other calling conventions requiteeotrule refinements.

As noted, the small-step and big-step rules can be read asl@gRrogram with
variables the bold-faced offsets variablesy, etc, and type variables y, etc.

7 Example annotation

Below is the annotation of the simple main routine of a Hellorl/ program that
calls ‘printstr’ with the Hello World string address as angent, then calls ‘halt’. The
code was emitted by a standard compitped) and modified by hand to be safe against
aliasing, so some compiler ‘quirks’ are still visible. Thenapiler likes to preserve the
fp register content across subroutine calls, for exampley thaugh it is not used here.

The functionality is not at issue here, but, certainly, kimywwvhat each instruction
does allows the annotation to be inferred by an annotatdowtitreference to rules and
axioms. Thdi a0 instruction sets thaO (‘ 0th argument’) register, for example, so the
only change in the annotation after the instruction is tog@eolumn. The annotator
introduces the string type&,, into the annotation there, since the instruction seéts
to the address of the Hello World string. The annotator assutimat the stack pointer
starts in thesp register and that ‘main’ is called (likely from a set-up riogf with a
return address in the register. Changes are marked in grey:

5

sp ra |a0 fp gp| vO | vl |(16)|(24)|(28)
main ¥ u’ X clio|
move gp sp csptgp ¥ u’ X & |clo| @
addiu sp sp -32 push 32 32° u X ®|ctio] ¢°
sw ra 28 (sp) putra 28 c32%198 |uO X |clio| @ u
sw fp 24 (sp) put fp 24 2% 124128 [u0 X ¢ |clio] @ x | u®
move fp sp cspt fp 32%124128 |u0 2% 124128 | ¢ | cl1o]| ¢° x | u®
sw gp 16 (sp) putgp16 |2 116124128 [u0| |20 124128| 0 [cito] @ | @ | x | u®
1i a0 <helloworld> newx a0 ...1|c*2° 116124128 |u° el | ¢22” 124128 | % | P10 @ | @ | x | u®
jal <printstr> gosub... |c32°116124128 U [c® | 2% 124128 | | @ [ut10] ¢ | x | u°

12

200 250
1w gp 16 (sp) getgp 16 c®27 116124128 |u® | c® [c3? 124128

u | c® futtof | x |u

200 250
jal <halt> gosub... |c*? 116!24128|u’|c|c*? 124128 |c” | ¢ [ullo| ¢ | x | u°
nop

200 250
1w gp 16(sp) getgp 16 |c2 116124128 u®|c?|c3? 124128 || ¢ |utto| ¢ | x |u°
nop

200 250
1w ra 28(sp) getra 28 c32 116124128 |u® |0 [c327 124128 (¢ | ¢® |ulto] c® | x | u®

200
1w fp 24 (sp) getfp 24 c327116124!128 | u” | X | c® futtof @ | x [u°
move sp gp rspf gp & u’|c? X | c® futtof @ | x [u°
jr ra return ¥ u®|c® X | c® futtof ¥ | x [u°
helloworld (string data

That the ‘" annotations are always less than the bottom eferof the tower on the
stack pointer annotation means that no aliasing occurd<Raa at an offset already
marked with a ‘', hence within the same range that writescamstrained to.

The ‘halt’ subroutine does not use the stack pointer; itgfion is to write a single
byte to the hard-coded I/0-mapped address of a system pegipfihe annotation for
registervl on output is the taint left by that write.

halt: #zero:co;ra:uo

1i vl 0xb0000x10 newh vl ... 1 #vl=u';zero=c’ra=u’
sb zero 0(vl) sbth vl 0(vl) #vl= ul!O; zero = Co;ra =u°
jr ra return # vl =u'l0; zero = c’;ra = u°

Thezeroregister is conventionally kept filled with the zero word ifBR architectures.

Theprintstr routine takes a string pointer as argument in regesfeA requirement
that registers0, v1 have certain types on entry is an artifact of annotationc&IiB’
comes after writes to0, v1, those two registers are bound to types at that point. The
forward jump () to ‘$B’ forces the same annotations at the jump instructierat the
target. But, at the jump, no write 0, v1 has yet taken place, so we are obliged to
provide the types o¥0, v1 at entry. The table below is constructed using the same
display convention as the table farain

sp* fp ra| a0 |gp| vO | v1 [(12)|(20)|(24)|(28)
printstr. # c? X wlchio| |ctofutto
move gp sp cspt gp # c® X u®|ct1o]c?[cto|utto
addiu sp sp -32 push 32 # 32° X u|clhofc® |ciofutto
sw ra 24 (sp) put ra 24 # ¢*2%124 X u®|ct1o]c? [cio|uto u®
sw £p 20 (sp) put fp 20 4 c*2%120124 X u®|ct1o]c? [co|uto x |u
move fp sp cspt fp #2024 6221200240 |ct10]c |cTo|ut10 x | u®
sw gp 12 (sp) put gp 12 & 2112120124 |22 12012400 [cl10]c [cl10]u10] @ | x | u®
sw a0 28(sp) puta0 28 c22°112120124128| 2% 120124 |u® | ci10 | | cito|ut10] ¢ | x | u® [clto
move a0 zero movaOzero #32’112120124128|c32% 120124 [u°| @ |c°[ci10lutt0] ¢ | x | u® [cito
i ($B) j ($B) #
SA: # ¢32°112120124128| 2% 120124 U0 | @ |c°| @ |utto| ¢ | x | u® |cito
1w v0 28 (sp) getvo 28 #c32° 112120124128(2% 120124 W0 | @ [|cl1o]utto] @ | x | u® |cito
nop nop #
1b v0 0(v0) getbx v0 0(v0) #32% 112120124128 |32 120124 [1°| @ 0] @ [ut10] @ | x |u® |cTio
move vl vO mov v1 v0 #c32% 112120124128 |32 120124 |10 @ [0 @ | @ | @ | x |u® [cTio
1w v0 28 (sp) getvo 28 #c32° 112120124128(2% 120124 W0 | @ [|clto] ¢ | @ | x | u® |cito
addiu vO v0 1 stepvOl #32° 112120124128 [¢32° 120124 |u® | @ |c[ct10] ¢® | ¢ | x |u® [ci1o

13

590 320 i i

sw v0 28 (sp) put v0 28 #c327 112120124128 (c32 7120124 |u’| ¢ |c®|ctto] ® [| x |u® |c'to
590 320 i i

move a0 vl mov a0 vl #c327 112120124128 |c*27 120124 [u° | ¢ |c°[clto] ¢® [c® | x | u® [clto
_ o o))

jal (printchar) gosub printchar #532"112120124!28|c32 120124 |u®| ¢ |c” [c!tojutto| ¢ | x |u® |c'l0
320 320 i i

1w gp 12 (sp) getgp 12 #c327112120124128 327120124 |u®| ¢ |c®|cttofutto] ¢ | x | u® |c'to

$B: #

— 320 320 i i

1w v0 28 (sp) get v0 28 #c327112120124128(¢®? 120124 [u®| ¢ [[cttojutto] ¢ | x | u® |ctto
250 0 T

1b v0 0(v0) getbx vO O(v0) #c32 112120124128 |c327 120124 |u’| ¢ || c® |ulto| c® | x |u® |ctto
250 0 T

bnez v0 (SA) bnez vO($A) # c327112120!24128|c32 120124 |u®| ¢ || ¢ |utto| c® | x |u® |c'to

move sp fp cspf fp # %2024 32120124 (00| @ |°] ¢ |utto] @ | x | u® |co
200 200 T

1w ra 24 (sp) getra 24 # 32120124 327120124 u’| @ |0 ¢ |utto| ¢ | x |[u® |cllo
320 i

1w fp 20 (sp) get fp 20 # c32120124 X ul ¢ |c”| ¢ |utto] ¢ | x |u®|c'to

move sp gp rspf gp # & X ul ¢ |c”| ¢ |utto] ¢ | x |u®|c'to

ir ra return # c? X ul ¢ | @ julto c® | x |u®|ctto

The ‘printchar’ subroutine writes a character receivedeigisteraO to the hard-coded
address of a printer device:

printchar: #a0=c"ra=u’

1i vl 0xb0000000 newh vl ... 1 #vli=u';a0=c’ra=u’
sb a0 0(vl) sbth a0 0(vl) #vl=u'!0;a0=c"ra=u’
jr ra return #vl=u'l0;a0 =c’ra=u’

Like halt, it does not use the stack pointer.

8 How does annotation ensure aliasing does not happen?

How to ensure memory aliasing does not happen is intuitisghple: make sure that
each address used can have been calculated in only one veag diie in principle two
constraints that can be enforced directly via annotatiahvelmich will have this effect:

(i) Both stack reads and writes witfetandput may be restricted to offsetsthat lie
in the range permitted by the local stack frame size (loolafstack pointer tower
m on the annotation before the instruction, witkd n < m — 4);

(ii) stack reads witlget may be restricted to offsetsat which writes withput have
already taken place (look forla mark on the annotation before the instruction).

Similarly for strings and arrays. It is (i) that makes memaligising impossible, but (ii)
is also useful because it (a) reduces (i) to be required oesvalone, and (b) prevents
‘read before write’ faults. Without (i), code could validiy to access an element of the
caller’s frame, and that would fail because of aliasing wa tlistinct calculations for
the same address, from caller’'s and callee’s frames regplgct

If these constraints are satisfied, we argue as follows tleabony-aliasing cannot
occur. The base address used for access via the RISCsw instructions is either:

1. The stack pointer (disassembly of the access instruigtitarput, get, putb, getb);

2. the base address of a string, incremented several timielsyring increment (the
disassembly is tputx, getx, putbx, getbx);

3. the base address of an array (the disassemblysisttg sbth, lwfh, Ibfh).

14

and the offset in the instruction is in the first case less tharstack frame size, in the
second case less than the string increment, and in the #selless than the array size.

Why are these and no other case possible? Firstly, if theranogs annotated, then
every use of a base address for the underlying machine leodad sw instructions
matches exactly one of these cases, because the annoté¢ishave no other option.

Next we claim that the annotations on a programsaend This is a technical claim
that we cannot formally substantiate here that says tham iarmotated program the
annotations around each instruction reflect what the iostnu does computationally.
The full statement requires a model of each instruction’sasgics as a state-to-state
transformation (given in Appendix]A) and a proof that the-bigp rules of Sectidn 6
express those semantics. Given that, the three cases alvdfie base address used in
alw andswinstruction may be characterized thus:

1. Itis the stack pointer, which is marked with an asteristhaannotatiion and typed
with ¢/ where the towey consists of the sizes of current and calling stack frames;

2. itis a string pointer, which is typed wiitf” in the annotation and is equal to the
base address of the string plus a finite number of increments

3. itis an array pointer, which is typed witli"* in the annotation and is equal to the
base address of the array, which is of size

In each of those three cases, the offset used ifvttgr swinstruction is only permitted
by the annotation to lie in the rangeto m — 4, wherem is respectively the current
frame size, the string step size, and the array size. Theofithese cases implements
condition (i), and the second and third implement the edeitscondition for strings
and arrays respectively. |.e., there is only one calculgimssible for each address used.

Similar arguments hold for byte-wise accessl@iandsb. In addition, however, one
must require that menory areas accessed via these instrsietie not also accessed via
Iw andsw, in order to avoid different calculations for the addressethe individual
bytes in a word. The simplest way to ensure that is to forbalaféh andsb entirely,
relying instead orlw andsw plus arithmetic operations to extract the byte. The next
simplest alternative is to allo¥ andsb only on strings with step size less thamand
arrays of size less than 4, which word-wise instructionsfargidden from accessing
by the annotation rules.

9 Conclusion and Future Work

We have set out a method of annotation that can ensure th&@ Rhchine-code pro-
gram is safe against ‘hardware’ aliasing. We model aliasisgntroduced by the use
of different arithmetic calculations for the same memorgrads, and successful anno-
tation guarantees that a unique calculation will be usedtime for the address of
each execution stack, string or array element accesseelpralgram. Annotation also
means disassembling the machine code to a slightly highelrdssembly language, for
a stack machine, and a human being is required to certifittileadisassembly matches
the programmer’s intentions.
Note that one may add disassembly rules to the system thdtieliberately) se-

mantically wrong, with the aim of correcting the code. Foaeple, one may choose to

15

(incorrectly) disassemble the RIS@diu sp sp 32 instruction to a stack machirmmp
instruction. The RISC instruction is not a correct implemagion of the higher level
instruction in an aliasing context, although it was likehyended to be. But one may
then replace the original RISC code with a correct implerzgor.

Also note that the equational annotations here may be gieseztao quite arbitrary
first-order predicates. It also appears that our systemp#Estynay be generalised to
arrays of arrays and strings of strings, etc, which offeesttospect of a static analysis
technology that can follow pointers.

References

1. Michael BarrProgramming Embedded Systems in C and C®#Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1st edition, 1998.

2. J. P. Bowen. Formal specification of the ProCoS/Safensisuiction set.Micoprocessors
and Microsystemsl4(10):637—-643, December 1990.

3. J. P. Bowen and P. T. Breuer. Decompilation. In H. van Zuyéslitor, The REDO Com-
pendium: Reverse Engineering for Software Maintenaobepter 10, pages 131-138. John
Wiley & Sons, 1993.

4. P. T. Breuer and J. P. Bowen. Decompilation: The enunweraif types and grammars.
ACM Transactions on Programming Languages and SystemsLASP16(5):1613-1647,
September 1994.

5. P. T. Breuer and J. P. Bowen. Typed assembler for a RISGazprpcessor. IProc. ES-
SOS’12: Intl. Symp. on Engineering Secure Software ancé®@gstumber 7159 in LNCS,
pages 22-29. Springer, February 2012.

6. P. T. Breuer and J. P. Bowen. A fully homomorphic cryptogaeissor design: Correctness
of a secret computer. IRroc. ESSOS’13: Intl. Symp. on Engineering Secure Softesde
Systemsnumber 7781 in LNCS. Springer, February 2013.

7. F. H. Fischer, V. Sindalovsky, and S. A. Segan. Memorysali method and apparatus,

August 20 2002. US Patent 6,438,672.
. Bruce Jacob, 2004. http://www.eng.umd.edu/ blj/RIESC-isa.pdf.
9. D. A. Patterson. Reduced instruction set compu@mnmunications of the ACN8(1):8—
21, January 1985.
10. T. Sato. Speculative resolution of ambiguous memoagaig. Ininnovative Architecture for
Future Generation High-Performance Processors and Systeages 17-26. IEEE, 1997.
11. Malcolm J. Wing and Edmund J. Kelly. Method and appar&iusliasing memory data in
an advanced microprocessor, July 20 1999. US Patent 5326,8

(0]

16

APPENDIX — NOT FOR PUBLICATION

A Motivating semantics

We will restrict the commentary here to the ten instructibmosn the 32-bit RISC in-
struction set architecture shown in Table 1. These are héselements of a tiny RISC-
16 machine code/assembly langudde [8]. Because of theiimdRISC-16, we know
that they form a complete set that can perform arbitrary adatfons.

We suppose in this paper that programs are such that the ptéader always re-
mains in thesp register. Copies may be made of it elsewhere usingribee (copy)
instruction, and it may be altered in situ using tiddiu instruction. Adding a nega-
tive amount increases the stack size, and stack convetyigmaws top-down in the
address space. We also suppose thateghean addresgpointer is always in the source
registerr at the point where a (‘jump registeijt) » instruction is executed, so that the
latter may be interpreted as a stack mach@tarn instruction.

A program induces a set afataflow traceghrough registers. A dataflow trace is
a unique path through registers and stack memory cellsrh@ts movement of data.
The segments of the trace may be labelled weitlentsas detailed below, signifying
data transformation, or they may be unlabelled, signifyiagsfer without transforma-
tion. Each trace starts with the introduction of a value iateegister, either from the
instruction itself in the case of tHeand the source is shown as a blank triangle, or by
hypothesis at the start of a subroutine and the source isrshew vertical bar.

um™1x T
x() ()
T

r

lira hypothesis
newhr an [r=7]

The left hand diagram above shows the introduction of theesid of an array of size

n into registerr, theli machine code instruction having been disassemblegtveh.
The indices of those elements already written to the arrayrecorded in the seX.
Usually that is the full set of indices up toand the address is that of an array written
earlier. The label on the arrow isamnotated typéTable [3), indicating an introduction
event. The annotated type brought in with the array poimteoduction is

u™!x

standing for an address that may not subsequently be alteredr ‘uncalculatable’)
of n bytes of memory, that has been written to at each of the sffeghe seiX.

If the li instruction is instead interpreted as introducing the eglslr of a ‘string-
like’ object, then the annotated type broughtin is

cIX

standing for an address that may be altereq ¢r ‘calculatable’) and stepped in incre-
ments ofn bytes. TheX again stands for a set of offsets from the base (upltgtes) at

17

which the structure has been written. The same paXeapplies at every increment

along the string. The formi’ is meant to be understood as™ ’, with the n repeated
an indefinite number of times. This may be viewed as a varififitsoannotated type

"k

¢ IX

that the stack pointer is associated with (for some finitaieagen,,. .. ,n;, as super-
scripts) and which records a historical sequence of loaakdtames created one within
the scope of the other culminating in a current stack franwzafn, bytes.

Each trace that we consider ends withteirn from a subroutine call. Only traces
that have reached some registeiat that moment are ‘properly terminated’. Any other
trace (i.e., one that has reached a stack cell) is not caresidierther. In the call protocol
that we allow here, the subroutine’s local frame is createenéry and destroyed at
return and the data in it is not shared with the caller:

Jrrp
return

T2

We aim to constrain the possible sequences of events alacgstrThe events are:

. 1k for a write at stack offset with put » k£ (or putx, swth for strings, arrays);

. 7k for aread at stack offsétwith getr k (or getx, lwfh for strings, arrays);

u™ for the introduction of an array data addresga newhr a n;

c” for the introduction of a ‘string’ data addresyia newxr a n;

. 7 for the introduction of data of any kind‘by hypothesis’;

. ¢ for the production of new data via tleeldaiu or other arithmetic instruction;

. n? for the creation of a new stack frame of sizéytes viapushn;

. nl. for restoring the previous stack frame, terminating a frarihsizen bytes via
rspf n. (or stepxwhen moving along a string);

9. nothing, for maintaining the data as-is or copying it.

ONOUTAWN P

An event does not always occur on the link one might expecexample, reading data
tor; with lw r; 4k(sp) evokes an event on apto sp' link in Fig. 2] not on the (k) to

r1’ (‘stack slotk to registerr;’) link that the data flows along. We wish to enforce the
following restrictions. First, on the stack pointer:

(a) everylk and?k eventis preceded by a last event that has —w > k > 0 (where
w is the number of bytes written), so stack reads and writesotigtep outside the
local frame of the subroutine;

(b) every?k event is preceded by!a event that takes place after the last precedihg
event, so every read is of something that has been written;

(c) everyn] eventis preceded by a last! event withm = n, and so on recursively
so stack pushes and pops match up like parentheses;

18

sp sp 5P
or CE10,
- T2 T2
@H@ n/a) (n—4) @H@

CO
N starte : N\
=10 » @
" k) (k) (0) " m
lir k swry k(sp) addiu sp sp—n addiu rq 72 k
newhri kn putri k pushn addaiur; r2 k

Fig. 1: Dataflow semantics of machine code/assembly larginagructions.

(d) no trace containing & or u event other than an originatingg may eventually
pass through the stack pointer register, so the only opasmtllowed on the stack
pointer are shifts up and down;

(e) everynt eventis withn > 0.

Secondly, on the traces through registers containingrgspointer:

(a) every!k and?k event is within the bound established by the introductia® on
the trace, in that — w > k > 0, wherew is the width of the transferred data;

(b) there is no[{b) constraint;

(c) everyn] eventis withn equal to the string increment established by the introduc-
tion ¢ on the trace;

(d) no trace containing any other event than tfieintroduction and subsequent,
shifts may later pass through the string pointer registethe only modifications
allowed to the string pointer are shifts down;

(e) there is nodfe) constraint.

The constraints applied to traces through array pointerstaicter:

(a) everylk and?k event is within the bound established by the preceding introduc-
tionu™ on the trace, in that —w > k& > 0.

(b) there is no[{b) constraint;

(c) there are naJ or n1 events allowed:;

(d) no trace containing any other event thanuafentroduction may later pass through
the array pointer register, so no modifications to the argtpr are allowed;

(e) there is nodfe) constraint.

We express these constraints formally below. Starting thighevent that introduces an
annotated type we accumulate a running ‘total’ annotated type along eamtetrThe

19

first two equations and their guards express the consti@iras array pointer. Shifts of
the base address are not allowed and reads and writes aieteelso the array bound:

uIX - 1k = u™(X U {k}) n—w>k>0 (1)
umIX - 7k = umIX X5k>0)

The next three equations express the constraints on a gwinter. Additionally, over
the array pointer equations, shifts-down on (increasing)ointer are allowed:

c'IX - nl =ch n>0 3)
CUX 1k = c(XU{k}) n—w>k>0 (4)
cUX - 7k = cIX X3k>0 (5)

The next four equations express the constraints on the ptanker. Additionally, over
the string pointer equations, shifts-up on (decreasingpthinter are allowed. The first
two equations make shifts nest like parentheses:

Cf!X-nT:C”f n>0 (6)
IX nl =cf n>0 (7)
M IX ke = (XU {k)D) n—w>k>0 ®)
¢V IX 7% = ¢V IX X35k>0 9)

These calculations bind an annotated type to each registiestack cell at each point
in the program.

Does the same register get the same type in every traceatided! Traces converge
only after anand (when the type computed &, so ‘yes it does’ in this case) and after
a jump or branch. In these latter two cases we specify:

The calculated type at the same registers or stack slots leutdte same across
different traces starting from the same entry point for tregpams considered. (*)

The programs in which (*) is true are the only programs we imersThey are programs
that re-establish the same pattern of annotated typestapeat at every pass through
a loop and no matter which path through to a given point isrtake

The annotated types that get bound to registers and statskai® the values in
the states of ambstract stack machinehose instruction semantics is described by
Figs.d andR. That may be shown to be an abstract intergretafithe instruction
trace semantics in a stack machine. That in turn abstraceschinme code processor via
disassembly.

Call an attempt in the stack machine to read or write beyoedtirent local frame
out-of-boundsThat the abstract stack machine that calculates with atewtypes is
an abstract interpretation of the stack machine that catiesiwith integer words means
that an out-of-bounds access in the stack machine must elélk® 7k event on a trace
through the abstract stack machine whieiis not bounded by the size of the lastnt

20

event on the trace. But that is forbidden BJ[{1-9) in the a@aststack machine. So if
we can verify that{{{{39) hold of a program in the abstractistaachine, out-of-bounds
accesses cannot happen in the stack machine.

If out-of-bounds accesses in the stack machine cannot hafipen we argue that
aliasing cannot happen in the machine code processor. Gaenant goes as follows:
the base address used for access via the RISE swinstructions must be either

1. the stack pointer (disassembly ispot, get, putb, getb and the base address reg-
ister gets the annotated typ&X for some finite tower of frame sizef;

2. the base address of a string, incremented several timbe Isyring increment (dis-
assembly is t@utx, getx, putbx, getbx and the base address register gets the an-
notated typee™!X for some string step);

3. the base address of an array (disassemblyssith, sbth, lwfh, Ibfh and the base
address register gets the annotated type for some array size).

Those are the only annotated types allowed iyl (1-9) on thezatbstack machine to be
bound to the pointer’s register at the moment the elfent 7k happens.

In the first case, the offset in the accessing instructiorss than the stack frame
size, in the second case less than the string incrementnathé ithird case less than
the array size. Those calculations are the only ones thabeanade for the address
of the accessed element, and they are each unique. For exampase 1, the address
used iss + k, wheres is the stack pointer andl < & < n — w, wheren is the local
frame size andv is the size of the data accessed. If two such accesses frosathe
frame are at arithmetically equal address aliasesk; = s + ko buts + k1 # s + ko
identically. Sok; = ko arithmetically butk; # ko identically. Butk; andk, are small
numbers in the rangeéto n, wheren is the frame size. If they cannot be distinguished
by the processor arithmetic, then something is deeply wrdgtigthe processor design.
Accessing an element of a parent frame witht- k1 = so + ks wheres; = so — n is
simply out of the question becaukegis restricted to the randgeto n.

We conclude that accessing different aliases of the sameesslis impossible if
the abstract interpretation of the program as set out by. Bigad 2 can be verified to

satisfy [AE9).

21

sp sp

0.0
50 OO0 OO
O H. 06

: finished
: ni /‘Co
0
L L] LW-O
ra (k) (k) (0) T2 T2
jal b Iw r1 k(sp) move spra nandry r2 r3
gosubb getry k rspf ro nandry r2 73

Fig. 2: Dataflow semantics of four more machine code instvost

22

	Certifying Machine Code Safe from Hardware Aliasing

