
ar
X

iv
:1

30
6.

55
85

v2
 [

cs
.L

O
]

18
 A

ug
 2

01
3

Soundness and Completeness of the NRB Verification Logic

Peter T. Breuer1 and Simon J. Pickin2

1 Department of Computer Science, University of Birmingham,UK
ptb@cs.bham.ac.uk

2 Facultad de Informática, Universidad Complutense de Madrid
spickin@ucm.es

Abstract. This short paper gives a model for and a proof of completenessof the
NRB verification logic for deterministic imperative programs, the logic having
been used in the past as the basis for automated semantic checks of large, fast-
changing, open source C code archives, such as that of the Linux kernel source.
The model is a coloured state transitions model that approximates from above the
set of transitions possible for a program. Correspondingly, the logic catches all
traces that may trigger a particular defect at a given point in the program, but may
also flag false positives.

1 Introduction

NRB program logic was first introduced in 2004 [5] as the theory supporting an auto-
mated semantic analysis suite [4] targeting the C code of theLinux kernel. The analyses
performed with this kind of program logic and automatic tools are typically much more
approximate than that provided by more interactive or heavyweight techniques such as
theorem-proving and model-checking [10], respectively, but the NRB combination has
proved capable of rapidly scanning millions of lines of C code and detecting deadlocks
scattered at one per million lines of code [9]. A rough synopsis of the characteristics of
the logic or an approach using the logic is that it is precise in terms of accurately follow-
ing the often complex flow of control and sequence of events inan imperative language,
but not very accurate at following data values. That is fine for a target language like C
[1, 13], where static analysis cannot reasonably hope to follow all data values accu-
rately because of the profligate use of indirection through pointers in a typical program
(a pointer may access any part of memory, in principle, hencewriting through a pointer
might ‘magically’ change any value) and the NRB logic was designed to work around
that problem by focussing instead on information derived from sequences of events.

NRB is a logic with modal operators. The modalities do not denote a full range of
actions as in Dynamic Logic [12], but rather only the very particular action of the final
exit from a code fragment being via areturn , break, or goto. The logic is also config-
urable in detail to support the code abstractions that are ofinterest in different analyses;
detecting the freeing of a record in memory while it may stillbe referenced requires
an abstraction that counts the possible reference holders,for example, not the value
currently in the second field from the right. The technique became known as ‘symbolic
approximation’ [6, 7] because of the foundation in symboliclogic and because the anal-
ysis is guaranteed to be on the alarmist side (‘approximate from above’); the analysis

http://arxiv.org/abs/1306.5585v2

does not miss bugs in code, but does report false positives. In spite of a few years’ pedi-
gree behind it now, a foundational semantics for the logic has only just been published
[8] (as an Appendix to the main text), and this article aims toprovide a yet simpler
semantics for the logic and also a completeness result, withthe aim of consolidating
the technique’s bona fides.

Interestingly, the formal guarantee (‘never miss, over-report’) provided by NRB and
the symbolic approximation technique is said not to be desirable in the commercial con-
text by the very practical authors of the Coverity analysis tool [11, 3], which also has
been used for static analysis of the Linux kernel and many very large C code projects.
Allegedly, in the commercial arena, understandability of reports is crucial, not the guar-
antee that no bugs will be missed. The Coverity authors say that commercial clients
tend to dismiss any reports that they do not understand, turning a deaf ear to expla-
nations. However, the reports produced by our tools have always been filtered before
presentation, so only the alarms that cannot be dismissed asfalse positives are seen.

The layout of this paper is as follows. In Section 2 a model of programs as sets
of ‘coloured’ transitions between states is introduced, and the constructs of a generic
imperative language are expressed in those terms. It is shown that the constructs obey
certain algebraic laws, which soundly implement the established deduction rules of
NRB logic. Section 3 shows that the logic is complete for deterministic programs, in
that anything that is true in the model introduced in Section2 can be proved using the
formal rules of the NRB logic.

Since the model contains at least as many state transitions as occur in reality, ‘sound-
ness’ of the NRB logic means that it may construct false alarms for when a particular
condition may be breached at some particular point in a program, but that it may not
miss any real alarms. ‘Completeness’ means that the logic flags no more false alarms
than are already to be predicted from the model, so if the model says that there ought
to be no alarms at all (which means that there really are no alarms), then the logic can
prove that. Thus, reasoning symbolically is not in principle an approximation here; it
is not necessary to laboriously construct and examine the complete graph of modelled
state transitions in order to be able to give a program a ‘clean bill of health’ with refer-
ence to some potential defect, because the logic can always do the job as well.

2 Semantic Model

This section sets out a semantic model for the full NRBG(E) logic (‘NRB’ for short)
shown in Table 1. The ‘NRBG’ part stands for ‘normal, return,break, goto’, and the ‘E’
part treats exceptions (catch/throw in Java, setjmp/longjmp in C), aiming at a complete
treatment of classical imperative languages. This semantics simplifies atrace model
presented in the Appendix to [8], substituting traces therefor state transitions here.

A natural model of a program is as a relation of typeP(S×S), expressing possible
changes in a state of typeS as a set of pairs of initial and final states. We shall add a
colourto this picture. The ‘colour’ shows if the program has runnormallythrough to the
end (colour ‘N’) or has terminated early via areturn (colour ‘R’), break (colour ‘B’),
goto(colour ‘Gl’ for some labell) or an exception (colour ‘Ek ’ for some exception kind
k). The aim is to document precisely the control flow in the program. In this picture, a

2

Table 1: NRB deduction rules for triples of assertions and programs. Unless explicitly noted,
assumptionsGlpl at left are passed down unaltered from top to bottom of each rule. We letE1

stand for any ofR, B, Gl, Ek; E2 any ofR, Gl, Ek; E3 any ofR. Gl′ for l′ 6= l, Ek; E4 any of
R. Gl, Ek′ for k′ 6= k; [h] the body of the subroutine namedh.

⊲ {p}P {Nq∨E1x} ⊲ {q}Q {Nr∨E1x}
⊲ {p}P ;Q {Nr∨E1x}

[seq] ⊲ {p}P {Bq∨Np∨E2x}
⊲ {p}do P {Nq∨E2x}

[do]

⊲ {p} skip {N p}
[skp]

⊲ {p} return {R p}
[ret]

⊲ {p}break {B p}
[brk] [p→pl] Gl pl ⊲ {p}goto l {Gl p}

[go]

⊲ {p} throw k {Ek p}
[throw]

⊲ {q[e/x]} x=e {Nq}
[let]

⊲ {q∧p}P {r}
⊲ {p} q →P {r}

[grd] ⊲ {p}P {q} ⊲ {p}Q {q}
⊲ {p}P pQ {q}

[dsj]

[Npl→q] Gl pl ⊲ {p} P {q}
Gl pl ⊲ {p} P :l {q}

[frm] Gl pl ⊲ {p} P {Glpl∨Nq∨E3x}
⊲ {p} label l.P {Nq∨E3x}

[lbl]

⊲ {p} [h] {Rr∨Ekxk}
Glpl ⊲ {p} call h {Nr∨Ekxk}

[sub] ⊲ {p} P {Nr∨Ekq∨E4x} ⊲ {q} Q {Nr∨Ekxk∨E4x}
⊲ {p} try P catch(k) Q {Nr∨Ekxk∨E4x}

[try]

⊲ {pi} P {q}
⊲ {∨∨pi} P {q}

⊲ {p} P {qi}
⊲ {p} P {∧∧qi}

Gl pli ⊲ {p} P {q}
∨∨Gl pli ⊲ {p} P {q}

[p′→p, q→q′, p′l→pl|Glq
′→Glp

′
l]

Gl pl ⊲ {p} P {q}
Gl p

′

l
⊲ {p′} P {q′}

deterministic program may be modelled as a set of ‘coloured’transitions of type

P(S × ⋆× S)

where the colours⋆ are a disjoint union

⋆ = {N} ⊔ {R} ⊔ {B} ⊔ {Gl | l ∈ L} ⊔ {Ek | k ∈ K}

andL is the set of possiblegoto labels andK the set of possible exception kinds.
The programs we consider are in fact deterministic, but we will use the general

setting. Where the relation is not defined on some initial state s, we understand that
the initial states leads to the program getting hung up in an infinite loop, instead of
terminating. Relations representing deterministic programs thus have a set of images
for any given initial state that is either of size zero (‘hangs’) or one (‘terminates’). Only
paths through the program that do not ‘hang’ in an infinite loop are of interest to us, and
what the NRB logic will say about a program at some point will be true only supposing
control reaches that point, which it may never do.

Programs are put together in sequence with the second program accepting as inputs
only the states that the first program ends ‘normally’ with. Otherwise the state with
which the first program exited abnormally is the final outcome. That is,

JP ;QK = {s0
ι
7→ s1 ∈ JP K | ι 6= N}

∪ {s0
ι
7→ s2 | s1

ι
7→ s2 ∈ JQK, s0

N
7→ s1 ∈ JP K}

3

A skip statement is modelled as

JskipKg = {s
N
7→ s | s ∈ S}

It makes the transition from a state to the
same state again, and ends ‘normally’.

A return statement has the model

JreturnKg = {s
R
7→ s | s ∈ S}

It exits at once ‘via a return flow’ after a sin-
gle, trivial transition.

The model ofskip; return is

Jskip; returnKg = {s
R
7→ s | s ∈ S}

which is the same as that ofreturn . It is made
up of the compound of two trivial state tran-

sitions,s
N
7→ s from skip ands

R
7→ s from re-

turn , the latter ending in a ‘return flow’.

The return; skip compound is modelled
as:

Jreturn; skipKg = {s
R
7→ s | s ∈ S}

It is made up of of just thes
R
7→ s transi-

tions fromreturn . There is no transition that
can be formed as the composition of a tran-
sition from return followed by a transition
from skip, because none of the first end ‘nor-
mally’.

Table 2: Models of simple statements.

This statement is not complete, however, because abnormal exits with a goto from P
may still re-enter inQ if the goto label is inQ, and proceed. We postpone considera-
tion of this eventuality by predicating the model with the sets of statesgl hypothesised
as being fed in at the labell in the code. The model ofP andQ with these sets as
assumptions produce outputs that take account of these putative extra inputs at labell:

JP ;QKg = {s0
ι
7→ s1 ∈ JP Kg | ι 6= N}

∪ {s0
ι
7→ s2 | s1

ι
7→ s2 ∈ JQKg, s0

N
7→ s1 ∈ JP Kg}

Later, we will tie things up by ensuring that the set of statesbound to early exits via a
goto l in P are exactly the setsgl hypothesised here as entries at labell in Q (and vice
versa). The type of theinterpretationexpressed by the fancy square brackets is

J−1K−2
: C→(L 7→ PS)→P(S × ⋆× S)

whereg, the second argument/suffix, has the partial function typeL 7→ PS and the
first argument/bracket interior has typeC , denoting a simple language of imperative
statements whose grammar is set out in Table 3. The models of some of its very basic
statements as members ofP(S× ⋆×S) are shown in Table 2 and we will discuss them
and the interpretations of other language constructs below.

A real imperative programming language such as C can be mapped ontoC – in
principle exactly, but in practice rather approximately with respect to data values, as
will be indicated below. A conventionalif(b) P elseQ statement in C is written as the
nondeterministic choice between two guarded statementsb→P p ¬b→Q in the abstract
languageC ; the conventionalwhile(b) P loop in C is expressed asdo{¬b→break p

b→P}, using the forever-loop ofC , etc. A sequenceP ; l : Q in C with a labell in the

4

Table 3: Grammar of the abstract imperative languageC , where integer variablesx ∈ X, term
expressionse ∈ E , boolean expressionsb ∈ B, labelsl ∈ L, exceptionsk ∈ K, statements
c ∈ C , integer constantsn ∈ Z, infix binary relationsr ∈ R, subroutine namesh ∈ H . Note
that labels (the targets ofgotos) are declared with ‘label’ and a label cannot be the first thing
in a code sequence; it must follow some statement. Instead ofif , C has guarded statements, and
explicit nondeterminism, which, however, is only to be usedhere in the deterministic construct
b→P p ¬b→Q for code fragmentsP , Q.

C ::= skip | return | break | goto l | c;c | x=e | b→c | c p c | do c | c : l | label l.c | call h

| try c catch(k) c | throw k

E ::= n | x | n ∗ e | e+ e | b ? e : e

B ::= ⊤ | ⊥ | e r e | b ∨ b | b ∧ b | ¬b | ∃x.b

R ::= < | > | ≤ | ≥ | = | 6=

middle should strictly be expressed asP : l;Q in C , but we regardP ; l : Q as syntactic
sugar for that, so it is still permissible to writeP ; l : Q in C . As a very special syntactic
sweetener, we permitl : Q too, even when there is no preceding statementP , regarding
it as an abbreviation forskip : l;Q.

Curly brackets may be used to group code statements for clarity in C , and paren-
theses may be used to group expressions. The variables are globals and are not formally
declared. The terms ofC are piecewise linear integer forms in integer variables, sothe
boolean expressions are piecewise comparisons between linear forms.

Example 1.A valid integer term is ‘5x + 4y + 3’, and a boolean expression is ‘5x +
4y + 3 < z− 4 ∧ y ≤ x’.

In consequence another valid integer term, taking the valueof the first on the range
defined by the second, and 0 otherwise, is ‘(5x+4y+3 < z−4∧y ≤ x) ? 5x+4y+3 : 0’.

The limited set of terms inC makes it practically impossible to map standard imper-
ative language assignments as simple as ‘x = x ∗ y’ or ‘ x = x | y’ (the bitwise or)
succinctly. In principle, those could be expressed exactlypoint by point using condi-
tional expressions (with at most232 disjuncts), but it is usual to model all those cases
by means of an abstraction away from the values taken to attributes that can be repre-
sented more elegantly using piecewise linear terms The abstraction may be to how many
times the variable has been read since last written, for example, which maps ‘x = x∗y’
to ‘x = x + 1; y = y + 1; x = 0’.

Formally, terms have a conventional evaluation as integersand booleans that is
shown (for completeness!) in Table 4. The reader may note thenotations x for the
evaluation of the variable namedx in states, giving its integer value as result. We say
that states satisfiesboolean termb ∈ B, writtens |= b, wheneverJbKs holds.

The label construct ofC declares a labell ∈ L that may subsequently be used as
the target ingotos. The componentP of the construct is the body of code in which the
label is in scope. A label may not be mentioned except in the scope of its declaration.
The same label may not be declared again in the scope of the first declaration. The
semantics of labels andgotos will be further explained below.

5

Table 4: The conventional evaluation of integer and booleanterms ofC , for variablesx ∈ X,
integer constantsκ ∈ Z, usings x for the (integer) value of the variable namedx in a states. The
form b[n/x] means ‘expressionb with integern substituted for all unbound occurrences ofx’.

J−K : E→S→Z

JxKs = s x
JκKs = κ

Jκ ∗ eKs = κ ∗ JeKs
Je1 + e2Ks = Je1Ks+ Je2Ks

Jb ? e1 : e2Ks = if JbKs thenJe1Ks elseJe2Ks

J−K : B→S→bool
J⊤Ks = ⊤ J⊥Ks = ⊥

Je1 < e2Ks = Je1Ks < Je2Ks
Jb1 ∨ b2Ks = Jb1Ks ∨ Jb2Ks
Jb1 ∧ b2Ks = Jb1Ks ∧ Jb2Ks

J¬bKs = ¬(JbKs)
J∃x.bKs = ∃n ∈ Z.Jb[n/x]Ks

The only way of exiting theC do loop construct normally is viabreak in the body
P of the loop. An abnormal exit other thanbreak from the bodyP terminates the
whole loop abnormally. Terminating the bodyP normally evokes one more turn round
the loop. So conventionalwhile andfor loops need to be mapped to ado loop with a
guardedbreak statement inside, at the head of the body. The precise modelsfor this
and every construct ofC as a set of coloured transitions are enumerated in Table 5.

Among the list of models in Table 5, that oflabel declarations in particular requires
explanation because labels are more explicitly controlledin C than in standard imper-
ative languages. Declaring a labell makes it invisible from the outside of the block
(while enabling it to be used inside), working just the same way as a local variable dec-
laration does in a standard imperative programming language. A declaration removes
from the model of a labelled statement the dependence on the hypothetical setgl of the
states attained atgoto l statements. All the instances ofgoto l statements are inside the
block with the declaration at its head, so we can take a look tosee what totality of states
really do accrue atgoto l statements; they are recognisable in the model because they
are the outcomes of the transitions that are marked withGl. Equating the set of such
states with the hypothesisgl gives the (least) fixpointg∗l required in thelabel l model.

The hypothetical setsgl of states that obtain atgoto l statements are used at the
point where the labell appears within the scope of the declaration. We say that any of
the states ingl may be an outcome of passing through the labell, because it may have
been brought in by agoto l statement. That is an overestimate; in reality, if the statejust
before the label iss1, then at most those statess2 in gl that are reachable at agoto l
from an initial program states0 that also leads tos1 (eithers1 first or s2 first) may
obtain after the labell, and that may be considerably fewers2 than we calculate ing∗l .
Here is a visualisation of such a situation; the curly arrowsdenote a trace:

{s1} l : {s1, s2}

{s0}

{s2} goto l

If the initial precondition on the code admits more than one initial states0 then the
model may admit more statess2 after the labell than occur in reality whens1 precedes
l, because the model does not take into account the dependenceof s2 on s1 through
s0. It is enough for the model thats2 proceeds from somes0 ands1 proceeds from

6

Table 5: Model of programs of languageC , given as hypothesis the sets of statesgl for l ∈
L observable atgoto l statements. A recursive reference means ‘the least set satisfying the
condition’. Forh ∈ H , the subroutine namedh has code[h]. The states altered by the assignment
of n to variablex is writtens[x 7→ n].

J−Kg : C→P(S × ⋆× S)

JskipKg = {s0
N
7→ s0 | s0 ∈ S}

JreturnKgs0 = {s0
R
7→ s0 | s0 ∈ S}

JbreakKg = {s0
B
7→ s0 | s0 ∈ S}

Jgoto lKg = {s0
Gl7→ s0 | s0 ∈ S}

Jthrow kKg = {s0
Ek7→ s0 | s0 ∈ S}

JP ;QKg = {s0
ι
7→ s1 ∈ JP Kg | ι 6= N}

∪ {s0
ι
7→ s2 | s1

ι
7→ s2 ∈ JQKg, s0

N
7→ s1 ∈ JP Kg}

Jx = eKgs0 = {s0
N
7→ s0[x 7→ JeKs0]} | s0 ∈ S}

Jp→P Kg = {s0
ι
7→ s1 ∈ JP Kg | JpKs0}

JP p QKg = JP Kg ∪ JQKg

Jdo P Kg = {s0
N
7→ s1 | s0

B
7→ s1 ∈ JP Kg}

∪ {s0
ι
7→ s1 ∈ JP Kg | ι 6= N,B}

∪ {s0
ι
7→ s2 | s1

ι
7→ s2 ∈ Jdo P Kg, s0

ι
7→ s1 ∈ JP Kg}

JP : lKg = JP Kg

∪ {s0
N
7→ s1 | s0 ∈ S, s1 ∈ gl}

Jlabel l P Kg = JP Kg∪{l 7→g∗
l
} − g∗l

whereg∗l = {s1 | s0
Gl7→ s1 ∈ JP Kg∪{l 7→g∗

l
}}

Jcall hKg = {s0
N
7→ s1 | s0

R
7→ s1 ∈ J[h]K{ }}

∪ {s0
Ek7→ s1 ∈ J[h]K{ } | k ∈ K}

Jtry P catch(k) Q Kg = {s0
ι
7→ s1 ∈ JP Kg | ι 6= Ek}

∪ {s0
ι
7→ s2 | s1

ι
7→ s2 ∈ JQKg, s0

Ek7→ s1 ∈ JP Kg}

some (possibly different)s0 satisfying the same initial condition. In mitigation,gotos
are sparsely distributed in real codes and we have not found the effect pejorative.

Example 2.Consider the codeR and suppose the input is restricted to a unique states:

label A,B.

P
︷ ︸︸ ︷

skip; goto A; B : return; A
︸ ︷︷ ︸

Q

: goto B

with labelsA,B in scope in bodyP , and the marked fragmentQ. The single transitions
made in the codeP and the corresponding statement sequences are:

s
N
7→ s

GA7→ s # skip; goto A;

s
N
7→ s

N
7→ s

GB7→ s # skip; goto A;A : goto B

s
N
7→ s

N
7→ s

N
7→ s

R
7→ s # skip; goto A;A : goto B;B : return

7

Table 6: Extending the languageB of propositions to modal operatorsN, R, B, Gl, Ek for
l ∈ L, k ∈ K. An evaluation on transitions is given forb ∈ B, b∗ ∈ B

∗.

B
∗ ::– b | N b∗ | R b∗ | B b∗ | Gl b

∗ | Ek b
∗ | b∗ ∨ b∗ | b∗ ∧ b∗ | ¬b∗

JbK(s0
ι
7→ s1) = JbKs1

JN b∗K(s0
ι
7→ s1) = (ι = N) ∧ Jb∗K(s0

ι
7→ s1)

JR b∗K(s0
ι
7→ s1) = (ι = R) ∧ Jb∗K(s0

ι
7→ s1)

JB b∗K(s0
ι
7→ s1) = (ι = B) ∧ Jb∗K(s0

ι
7→ s1)

JGl b
∗K(s0

ι
7→ s1) = (ι = Gl) ∧ Jb∗K(s0

ι
7→ s1)

JEk b
∗K(s0

ι
7→ s1) = (ι = Ek) ∧ Jb∗K(s0

ι
7→ s1)

with observed statesgA = {s}, gB = {s} at the labelsA andB respectively.
ThegotoB statement is not in the fragmentQ so there is no way of knowing about

the set of states atgoto B while examiningQ. Without that input, the traces ofQ are

s
N
7→ s

GA7→ s # skip; goto A

s
N
7→ s

N
7→ s # skip; goto A;A :

There are no possible entries atB originating from withinQ itself. That is, the model
JQKg ofQ as a set of transitions assuminggB = { }, meaning there are no entries from

outside, isJQKg = {s
N
7→ s, s

GA7→ s}.
When we hypothesisegB = {s} forQ, thenQ has more traces:

s
N
7→ s

N
7→ s

N
7→ s

R
7→ s # skip; goto A;A : goto B;B : return

corresponding to these entries atB from the rest of the code proceeding to thereturn

in Q, andJQKg = {s
N
7→ s, s

GA7→ s, s
R
7→ s}. In the context of the whole codeP , that is

the model forQ as a set of initial to final state transitions.

Example 3.Staying with the code of Example 2, the set{s
GA7→ s, s

GB7→ s, s
R
7→ s} is the

modelJP Kg of P starting at states with assumptionsgA, gB of Example 2, and the
setsgA, gB are observed at the labelsA, B in the code under these assumptions. Thus
{A 7→ gA, B 7→ gB} is the fixpointg∗ of the label declaration rule in Table 5.

That rule says to next remove transitions ending atgotoAs andBs from visibility
in the model of the declaration block, because they can go nowhere else, leaving only

JRK{ } = {s
R
7→ s} as the set-of-transitions model of the whole block of code, which

corresponds to the sequenceskip;goto A;A : goto B;B : return.

We extend the propositional language toB∗ which includes the modal operatorsN,
R, B, Gl, Ek for l ∈ L, k ∈ K, as shown in Table 6, which defines a model ofB∗

on transitions. The predicateNp informally should be read as picking out from the
set of all coloured state transitions ‘those normal-coloured transitions that produce a
state satisfyingp’, and similarly for the other operators. The modal operators satisfy the
algebraic laws given in Table 7. Additionally, however, fornon-modalp ∈ B,

p = Np ∨Rp ∨Bp ∨ ∨∨Glp ∨∨Ekp (1)

8

Table 7: Laws of the modal operatorsN, R, B,Gl, Ek with M,M1,M2 ∈ {N,R,B,Gl,Ek |
l ∈ L, k ∈ K} andM1 6= M2.

M(⊥) = ⊥ (flatness)

M(b1 ∨ b2) = M(b1) ∨M(b2) (disjunctivity)

M(b1 ∧ b2) = M(b1) ∧M(b2) (conjunctivity)

M(Mb) = Mb (idempotence)

M2(M1b) = M1(b) ∧M2(b) = ⊥ (orthogonality)

because each transition must be some colour, and those are all the colours. The decom-
position works in the general case too:

Proposition 1. Everyp ∈ B∗ can be (uniquely) expressed as

p = NpN ∨RpR ∨BpB ∨ ∨∨GlpGl
∨∨EkpEk

for somepN, pR, etc that are free of modal operators.

Proof. Equation(1) gives the result forp ∈ B. The rest is by structural induction on
p, using Table 7 and boolean algebra. Uniqueness follows becauseNpN = Np′

N
, for

example, applyingN to two possible decompositions, and applying the orthogonality
and idempotence laws; apply the definition ofN in the model in Table 6 to deduce
pN = p′

N
for non-modal predicatespN, p′

N
. Similarly forB, R, Gl, Ek.

So modal formulaep ∈ B∗ may be viewed as tuples(pN, pR, pB, pGl
, pEk

) of non-
modal formulae fromB for labelsl ∈ L, exception kindsk ∈ K. That means that
Np∨Rq, for example, is simply a convenient notation for writing down two assertions
at once: one that assertsp of the final states of the transitions that end ‘normally’, and
one that assertsq on the final states of the transitions that end in a ‘return flow’. The
meaning ofNp ∨ Rq is the union of the set of the normal transitions with final state
that satisfyp plus the set of the transitions that end in a ‘return flow’ and whose final
states satisfyq. We can now give meaning to a notation that looks like (and is intended
to signify) a Hoare triple with an explicit context of certain ‘gotoassumptions’:

Definition 1. Let gl = JplK be the set of states satisfyingpl ∈ B, labelsl ∈ L. Then
‘Gl pl ⊲ {p} a {q}’, for non-modalp, pl ∈ B, P ∈ C andq ∈ B∗, means:

JGl pl ⊲ {p} P {q}K = J{p} P {q}Kg

= ∀s0
ι
7→ s1 ∈ JP Kg. JpKs0 ⇒ JqK(s0

ι
7→ s1)

That is read as ‘the triple{p} P {q} holds under assumptionspl atgoto l when every
transition ofP that starts at a state satisfyingp also satisfiesq’. The explicit Gentzen-
style assumptionspl are free of modal operators. What is meant by the notation is that

9

those states that may be attainable as the program traces pass throughgoto statements
are assumed to be restricted to those that satisfypl.

TheGl pl assumptions may be separated by commas, asGl1 pl1 ,Gl2 pl2 , . . . , with
l1 6= l2, etc. Or they may be written as a disjunctionGl1 pl1 ∨ Gl2 pl2 ∨ . . . because
the information in this modal formula is only the mappingl1 7→ pl1 , l2 7→ pl2 , etc. If
the samel appears twice among the disjunctsGl pl, then we understand that the union
of the twopl is intended.

Now we can prove the validity of laws about triples drawn fromwhat Definition 1
says. The first laws are strengthening and weakening resultson pre- and postconditions:

Proposition 2. The following algebraic relations hold:

J{⊥} P {q}Kg ⇔ ⊤ (2)

J{p} P {⊤}Kg ⇔ ⊤ (3)

J{p1 ∨ p2} P {q}Kg ⇔ J{p1} P {q}Kg ∧ J{p2} P {q}Kg (4)

J{p} P {q1 ∧ q2}Kg ⇔ J{p} P {q1}Kg ∧ J{p} P {q2}Kg (5)

(p1→p2) ∧ J{p2} P {q}Kg ⇒ J{p1} P {q}Kg (6)

(q1→q2) ∧ J{p} P {q1}Kg ⇒ J{p} P {q2}Kg (7)

J{p} P {q}Kg′ ⇒ J{p} P {q}Kg (8)

for p, p1, p2 ∈ B, q, q1, q2 ∈ B∗, P ∈ C , andgl ⊆ g′l ∈ PS.

Proof. (2-5) follow on applying Definition 1. (6-7) follow from (4-5) on considering the
casesp1 ∨ p2 = p2 andq1 ∧ q2 = q1. The reason for(8) is thatg′l is a bigger set than
gl, soJP Kg′ is a bigger set of transitions thanJP Kg and thus the universal quantifier in
Definition 1 produces a smaller (less true) truth value.

Theorem 1 (Soundness).The following algebraic inequalities hold, forE1 any ofR,
B, Gl, Ek; E2 any ofR, Gl, Ek; E3 any ofR, B, Gl′ for l′ 6= l, Ek; E4 any ofR, B,
Gl, Ek′ for k′ 6= k; [h] the code of the subroutine calledh:

10

J{p}P {Nq ∨ E1x}Kg
∧ J{q}Q {Nr ∨ E1x}Kg

}

⇒ J{p}P ;Q {Nr ∨ E1x}Kg (9)

J{p}P {Bq ∨Np ∨ E2x}Kg ⇒ J{p}do P {Nq ∨ E2x}Kg (10)

⊤ ⇒ J{p} skip {N p}Kg (11)

⊤ ⇒ J{p} return {R p}Kg (12)

⊤ ⇒ J{p}break {B p}Kg (13)

⊤ ⇒ J{p}goto l {Gl p}Kg (14)

⊤ ⇒ J{p} throw k {Ek p}Kg (15)

J{b ∧ p}P {q}Kg ⇒ J{p} b→P {q}Kg (16)

J{p}P {q}Kg ∧ J{p}Q {q}Kg ⇒ J{p}P pQ {q}Kg (17)

⊤ ⇒ J{q[e/x]} x=e {Nq}Kg (18)

J{p} P {q}Kg ∧ gl ⊆ {s1 | s0
N
7→ s1 ∈ JqK} ⇒ J{p} P : l {q}Kg (19)

J{p} P {Glpl ∨Nq ∨ E3x}Kg∪{l 7→pl} ⇒ J{p} label l.P {Nq ∨ E3x}Kg (20)

J{p} [h] {Rr ∨Ekxk}K{ } ⇒ J{p} call h {Nr ∨Ekxk}Kg (21)

J{p} P {Nr ∨ Ekq ∨ E4x}Kg
∧ J{q} Q {Nr ∨Ekxk ∨ E4x}Kg

}

⇒ J{p} try P catch(k) Q {Nr ∨Ekxk ∨ E4x}Kg

(22)

Proof. By evaluation, given Definition 1 and the semantics from Table 5.

The reason why the theorem is titled ‘Soundness’ is that its inequalities can be read
as the NRB logic deduction rules set out in Table 1, via Definition 1. The fixpoint
requirement of the model at thelabel construct is expressed in the ‘arrival from agotoat
a label’ law (19), where it is stated thatif the hypothesised statesgl at agoto l statement
are covered by the statesq immediately after code blockP and preceding labell, then
q holds after the labell too. However, there is no need for any such predication when
thegl are exactly the fixpoint of the map

gl 7→ {s1 | s0
Gl7→ s1 ∈ JP Kg}

because that is what the fixpoint condition says. Thus, whilethe model in Table 5 satis-
fies equations (9-22), it satisfies more than they require – some of the hypotheses in the
equations could be dropped and the model would still satisfythem. But the NRB logic
rules in Table 1 are validated by the model and thus are sound.

3 Completeness for deterministic programs

In proving completeness of the NRB logic, at least for deterministic programs, we will
be guided by the proof of partial completeness for Hoare’s logic in K. R. Apt’s survey
paper [2]. We will need, for every (possibly modal) postcondition q ∈ B∗ and every
constructR of C , a non-modal formulap ∈ B that is weakest inB such that ifp holds

11

of a states, ands
ι
7→ s′ is in the model ofR given in Table 5, thenq holds ofs

ι
7→ s′.

This p is written wp(R, q), the ‘weakest precondition onR for q’. We construct it via
structural induction onC at the same time as we deduce completeness, so there is an
element of chicken versus egg about the proof, and we will notlabour that point.

We will also suppose that we can prove any tautology ofB andB∗, so ‘complete-
ness of NRB’ will be relative to that lower-level completeness.

Notice that there is always a setp ∈ PS satisfying the ‘weakest precondition’ char-
acterisation above. It is{s ∈ S | s

ι
7→ s′ ∈ JRKg ⇒ s

ι
7→ s′ ∈ JqK}, and it is called the

weakestsemanticprecondition onR for q. So we sometimes refer to wp(R, q) as the
‘weakestsyntacticprecondition’ onR for q, when we wish to emphasise the distinction.
The question is whether or not there is a formula inB that exactly expresses this set. If
there is, then the system is said to beexpressive, and that formulais the weakest (syn-
tactic) precondition onR for q, wp(R, q). Notice also that a weakest (syntactic) precon-
dition wp(R, q) must encompass the semantic weakest precondition; that is because if
there were a states in the latter and not in the former, then we could form the disjunction
wp(R, q)∨(x1 = sx1∧. . . xn = sxn)where thexi are the variables ofs, and this would
also be a precondition onR for q, hencex1 = sx1 ∧ . . . xn = sxn→wp(R, q) must
be true, as the latter is supposedly the weakest precondition, and sos satisfies wp(R, q)
in contradiction to the assumption thats is not in wp(R, q). For orientation, then, the
reader should note that ‘there is a weakest (syntactic) precondition inB’ means there
is a unique strongest formula inB covering the weakest semantic precondition.

We will lay out the proof of completeness inline here, in order to avoid excessively
overbearing formality, and at the end we will draw the formalconclusion.

A completeness proof is always a proof by cases on each construct of interest. It
has the form ‘suppose thatfoo is true, then we can prove it like this’, wherefoo runs
through all the constructs we are interested in. We start with assertions about the se-
quence constructionP ;Q. We will look at this in particular detail, noting where and
how the weakest precondition formula plays a role, and skip that detail for most other
cases. Thus we start withfoo equal toGl gl ⊲ {p} P ;Q {q} for some assumptions
gl ∈ B, but we do not need to take the assumptionsgl into account in this case.

CaseP ;Q. Consider a sequence of two statementsP ;Q for which{p} P ;Q {q}
holds in the model set out by Definition 1 and Table 5. That is, suppose that initially
the states satisfies predicatep and that there is a progression froms to some final
states′ throughP ;Q. Thens

ι
7→ s′ is in JP ;QKg ands

ι
7→ s′ satisfiesq. We will consider

two subcases, the first whereP terminates normally froms, and the second whereP
terminates abnormally froms. A third possibility, thatP does not terminate at all, is
ruled out because a final states′ is reached.

Consider the first subcase, which means that we think ofs as confined to wp(P,N⊤).
According to Table 5, that means thatP started in states0 = s and finished normally
in some states1 andQ ran on from states1 to finish normally in states2 = s′. Let
r stand for the weakest precondition wp(Q,Nq) that guarantees a normal termina-
tion ofQ with q holding. By definition of weakest precondition,{r} Q {Nq}, is true
ands1 satisfiesr (if not, thenr ∨ (x1 = sx1 ∧ x2 = sx2 ∧ . . .) would be a weaker
precondition forNq thanr, which is impossible). The latter is true whatevers0 satis-
fying p and wp(P,N⊤) we started with, so by definition of weakest precondition,p ∧

12

wp(P,N⊤)→wp(P,Nr) must be true, which is to say that{p∧wp(P,N⊤)} P {Nr}
is true.

By induction, it is the case that there are deductions⊢ {p ∧ wp(P,N⊤)} P {Nr}
and⊢ {r} Q {Nq} in the NRB system. But the following rule

{p ∧ wp(P,N⊤)} P {Nr} {r} Q {Nq}

{p ∧ wp(P,N⊤)} P ;Q {Nq}

is a derived rule of NRB logic. It is a specialised form of the general NRB rule of
sequence. Putting these deductions together, we have a deduction of the truth of the
assertions{p∧wp(P,N⊤)} P ;Q {Nq}. By weakening on the conclusion, sinceNq→q
is (always) true, we have a deduction of{p ∧ wp(P,N⊤)} P ;Q {q}.

Now consider the second subcase, when the final states1 reached froms = s0
throughP obtains via an abnormal flow out ofP . This means that we think ofs as
confined to wp(P,¬N⊤). Now the transitions0

ι
7→ s1 in JP Kg satisfiesq, and s is

arbitrary in p ∧ wp(P,¬N⊤), so {p ∧ wp(P,¬N⊤)} P {q}. However, ‘not ending
normally’ (and getting to a termination, which is the case here) means ‘ending abnor-
mally’, i.e.,R⊤∨B⊤∨ . . . through all of the available colours, as per Proposition 1,
and we may write the assertion out as{p ∧ wp(P,R⊤ ∨ B⊤ . . .)} P {q}. Consider-
ing the cases separately, one has{p ∧ wp(P,R⊤)} P {Rq} (sinceRq is the compo-
nent ofq that expects anR-coloured transition), and{p ∧ wp(P,B⊤)} P {Bq}, and
so on, all holding. By induction, there are deductions⊢ {p ∧ wp(P,R⊤)} P {Rq},
⊢ {p ∧ wp(P,B⊤)} P {Bq}, etc. But the following rule

{p ∧ wp(P, E⊤)} P {Eq}

{p ∧ wp(P, E⊤)} P ;Q {Eq}

is a derived rule of NRB logic for each ‘abnormal’ colouringE , and hence we have
a deduction⊢ {p ∧ wp(P, E⊤)} P ;Q {Eq} for each of the ‘abnormal’ coloursE .
By weakening on the conclusion, sinceEq→q, for each of the coloursE , we have a
deduction⊢ {p ∧ wp(P, E⊤)} P ;Q {q} for each of the coloursE .

By the rule on disjunctive hypotheses (fourth from last in Table 1) we now have a
deduction⊢ {p ∧ (wp(P,N⊤) ∨ wp(P,R⊤) ∨ . . .)} P ;Q {q}. But the weakest pre-
condition is monotonic, so wp(P,N⊤) ∨ wp(P,R⊤) ∨ . . . is covered by wp(P,N⊤ ∨
R⊤∨ . . .), which is wp(P,⊤) by Proposition 1. But for a deterministic programP , the
outcome from a single starting states can only be uniquely a normal termination, or
uniquely a return termination, etc, and wp(P,N⊤)∨wp(P,R⊤)∨ · · · = wp(P,N⊤∨
R⊤∨ . . .) = wp(P,⊤) exactly. The latter is just⊤, so we have a proof⊢ {p}P ;Q {q}.
As to what the weakest precondition wp(P ;Q, q) is, it is wp(P,Nwp(Q, q))∨wp(P,Rq)∨
wp(P,Bq) ∨ . . . , the disjunction being over all the possible colours.

That concludes the consideration of the caseP ;Q. The existence of a formula ex-
pressing a weakest precondition is what really drives the proof above along, and in
lieu of pursuing the proof through all the other construct cases, we note the important
weakest precondition formulae below:

– The weakest precondition for assignment is wp(x = e,Nq) = q[e/x] for q without
modal components. In general wp(x = e, q) = Nq[e/x].

13

– The weakest precondition for areturn statement is wp(return, q) = Rq.
– The weakest precondition for abreak statement is wp(break, q) = Bq. Etc.
– The weakest precondition wp(do P,Nq) for a do loop that ends ‘normally’ is
wp(P,Bq)∨wp(P,Nwp(P,Bq))∨wp(P,Nwp(P,Nwp(P,Bq)))∨ That
is, we might break fromP with q, or run throughP normally to the precondition for
breaking fromP with q next, etc. Writewp(P,Bq) asp and writewp(P,Nr) ∧
¬p asψ(r), Then wp(do P,Nq) can be writtenp ∨ ψ(p) ∨ ψ(p ∨ ψ(p)) ∨ . . . ,
which is the strongest solution toπ = ψ(π) no stronger thanp. This is the weakest
precondition forp afterwhile(¬p) P in classical Hoare logic. It is an existentially
quantified statement, stating that an initial states gives rise to exactly somen passes
throughP before the conditionp becomes true for the first time. It can classically
be expressed as a formula of first-order logic and it is the weakest precondition for
Nq afterdo P here.
The preconditions forEq for each ‘abnormal’ coloured endingE of the loopdo P
are similarly expressible inB, and the precondition forq is the disjunction of each
of the preconditions forNq, Rq, Bq, etc.

– The weakest precondition for a guarded statement wp(p→P, q) is p→wp(P, q),
as in Hoare logic; and the weakest precondition for a disjunction wp(P p Q, q)
is wp(P, q) ∧ wp(Q, q), as in Hoare logic. However, we only use the deterministic
combinationp→P p ¬p→Q for which the weakest precondition is(p→wp(P, q))∧
(¬p→wp(Q, q)), i.e.p ∧ wp(P, q) ∨ ¬p ∧ wp(Q, q).

To deal with labels properly, we have to extend some of these notions and notations
to take account of the assumptionsGlgl that an assertionGlgl ⊲ {p} P {q} is made
against. The weakest preconditionp onP for q is thenp = wpg(P, q), with thegl as ex-
tra parameters. The weakest precondition for a label use wpg(P : l, q) is then wpg(P, q),
provided thatgl→q, since the statesgl attained bygoto l statements throughout the
code are available after the label, as well as those obtainedthroughP . The weakest pre-
condition in the general situation where it is not necessarily the case thatgl→q holds is
wpg(P, q ∧ (gl→q)), which is wpg(P, q).

Now we can continue the completeness proof through the statements of the form
P : l (a labelled statement) andlabel l.P (a label declaration).

Case labelled statement. If J{p} P : l {q}Kg holds, then every states = s0 sat-
isfying p leads throughP with s0

ι
7→ s1 satisfyingq, and alsoq must contain all the

transitionss0
N
7→ s1 wheres1 satisfiesgl. Thuss satisfies wpg(P, q) andNgl→q holds.

Sinces is arbitrary in p, sop→wpg(P, q) holds and by induction,⊢ Glgl ⊲ {p} P {q}.
Then, by the ‘frm’ rule of NRB (Table 1), we may deduce⊢ Glgl ⊲ {p} P : l {q}.

Case label declaration. The weakest precondition for a declaration wpg(label l.P, q)
is simplyp = wpg′(P, q), where the assumptions after the declaration areg′ = g∪{l 7→
gl} andgl is such thatGlgl ⊲ {p} P {q}. In other words,p andgl are simultaneously
chosen to make the assertion hold,p maximal andgl the least fixpoint describing the
states atgoto l statements in the codeP , given that the initial state satisfiesp and
assumptionsGlgl hold. Thegly are the statements that after exactly somen ∈ N more
traversals throughP via goto l, the trace from states will avoid anothergoto l for
the first time and exitP normally or via an abnormal exit that is not agoto l.

14

If it is the case thatJ{p} label l.P {q}Kg holds then every states = s0 satisfying
p leads throughlabel l.P with s0

ι
7→ s1 satisfyingq. That means thats0

ι
7→ s1 leads

throughP , but it is not all that do; there are extra transitions withι = Gl that are not
considered. The ‘missing’ transitions are precisely theGlgl wheregl is the appropriate

least fixpoint forgl = {s1 | s0
Gl7→ s1 ∈ JP Kg∪{l 7→gl}, which is a predicate expressing

the idea thats1 at a goto l initiates some exactlyn traversals back throughP again
before exitingP for a first time other than via agoto l. The predicateq cannot mention
Gl since the labell is out of scope for it, but it may permit some, all or noGl-coloured
transitions. The predicateq ∨ Glgl, on the other hand, permits all theGl-coloured
transitions that exitP . transitions. Thus addingGlgl to the assumptions means thats0
traversesP via s0

ι
7→ s1 satisfyingq ∨Glgl even though more transitions are admitted.

Sinces = s0 is arbitrary in p, so p→wpg∪{l 7→gl}
(P, q ∨ Glgl) and by induction⊢

Gl ⊲ {p} P {q ∨Glgl}, and then one may deduce⊢ {p} label l.P {q} by the ‘lbl’
rule.

That concludes the text that would appear in a proof, but which we have abridged
and presented as a discussion here! We have covered the typical case (P ;Q) and the
unusual cases (P : l, label l.P). The proof-theoretic content of the discussion is:

Theorem 2 (Completeness).The system of NRB logic in Table 1 is complete for deter-
ministic programs, relative to the completeness of first-order logic.

We do not know if the result holds for non-deterministic programs too, but it seems
probable. A different proof technique would be needed (likely showing that attempting
to construct a proof backwards either succeeds or yields a counter-model).

Along with that we note

Theorem 3 (Expressiveness).The weakest precondition wp(P, q) for q ∈ B∗, P ∈ C

in the interpretation set out in Definition 1 and Table 5 is expressible inB.

The observation above is that there is a formula inB that expresses the semantic weak-
est precondition exactly.

4 Summary

We have proven the NRB logic sound with respect to a simple transition-based model
of programs, and showed that it is complete for deterministic programs.

References

1. American National Standards Institute. American national standard for information systems
– programming langu age C, ANSI X3.159-1989, 1989.

2. Krzysztof R. Apt. Ten years of Hoare’s logic: A survey: Part I. ACM Trans. Program. Lang.
Syst., 3(4):431–483, October 1981.

3. Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-
Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of code later:
using static analysis to find bugs in the real world.Commun. ACM, 53(2):66–75, February
2010.

15

4. Peter Breuer and Simon Pickin. Checking for deadlock, double-free and other abuses in the
linux kernel source code. InProc. Computational Science – ICCS 2006, number 3994 in
LNCS, pages 765–772. Springer, May 2006.

5. Peter T Breuer and Marisol Garcia Valls. Static deadlock detection in the linux kernel. In
Proc. Reliable Software Technologies/Ada-Europe 2004, number 3063 in LNCS, pages 52–
64. Springer Berlin/Heidelberg, June 2004.

6. Peter T Breuer and Simon Pickin. Symbolic approximation:an approach to verification in
the large.Innovations in Systems and Software Engineering, 2(3):147–163, 2006.

7. Peter T Breuer and Simon Pickin. Verification in the large via symbolic approximation. In
Proc. 2nd International Symposium on Leveraging Applications of Formal Methods, Verifi-
cation and Validation, 2006 (ISoLA 2006), pages 408–415. IEEE, 2006.

8. Peter T Breuer and Simon Pickin. Open source verification in an anonymous volunteer
network.Science of Computer Programming, 2013. To appear.

9. Peter T Breuer, Simon Pickin, and Maria Larrondo Petrie. Detecting deadlock, double-free
and other abuses in a million lines of linux kernel source. InProc. 30th Annual Software
Engineering Workshop 2006 (SEW’06), pages 223–233. IEEE/NASA, 2006.

10. E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concurrent sys-
tems using tempora l logic specifications.ACM Transactions on Programming Languages
and Systems (TOPLAS), 8(2):244–253, 1986.

11. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. InProc. 4th Symposium on Operating System
Design and Implementati on (OSDI 2000), pages 1–16, October 2000.

12. David Harel, Jerzy Tiuryn, and Dexter Kozen.Dynamic Logic. MIT Press, Cambridge, MA,
USA, 2000.

13. International Standards Organisation. ISO/IEC 9899-1999, programming languages - C,
1999.

16

