arXiv:1306.5585v2 [cs.LO] 18 Aug 2013

Soundness and Completeness of the NRB Verification Logic

Peter T. Breuérand Simon J. Pickih

! Department of Computer Science, University of Birmingh&ti,
ptb@cs.bham.ac.uk
2 Facultad de Informatica, Universidad Complutense de Madr
spickin@ucm.es

Abstract. This short paper gives a model for and a proof of completeokte
NRB verification logic for deterministic imperative progna, the logic having
been used in the past as the basis for automated semantksatfdarge, fast-
changing, open source C code archives, such as that of thi karnel source.
The model is a coloured state transitions model that appratas from above the
set of transitions possible for a program. Correspondiripky logic catches all
traces that may trigger a particular defect at a given paittié program, but may
also flag false positives.

1 Introduction

NRB program logic was first introduced in 2004 [5] as the tlyesarpporting an auto-
mated semantic analysis suite [4] targeting the C code dfithex kernel. The analyses
performed with this kind of program logic and automatic safe typically much more
approximate than that provided by more interactive or heaight techniques such as
theorem-proving and model-checking [10], respectivaly,the NRB combination has
proved capable of rapidly scanning millions of lines of C e@hd detecting deadlocks
scattered at one per million lines of code [9]. A rough syi®péthe characteristics of
the logic or an approach using the logic is that it is preaigeims of accurately follow-
ing the often complex flow of control and sequence of everasmiimperative language,
but not very accurate at following data values. That is fireaftarget language like C
[1,13], where static analysis cannot reasonably hope tovioall data values accu-
rately because of the profligate use of indirection througjhters in a typical program
(a pointer may access any part of memory, in principle, heniteng through a pointer
might ‘magically’ change any value) and the NRB logic wasigiesd to work around
that problem by focussing instead on information derivedfisequences of events.
NRB is a logic with modal operators. The modalities do notatera full range of
actions as in Dynamic Logic [12], but rather only the verytjgaitar action of the final
exit from a code fragment being viareturn, break, or goto. The logic is also config-
urable in detail to support the code abstractions that airgerfest in different analyses;
detecting the freeing of a record in memory while it may di#l referenced requires
an abstraction that counts the possible reference holfterexample, not the value
currently in the second field from the right. The techniquedamee known as ‘symbolic
approximation’ [6, 7] because of the foundation in symblagic and because the anal-
ysis is guaranteed to be on the alarmist side (‘approxinrata fibove’); the analysis

http://arxiv.org/abs/1306.5585v2

does not miss bugs in code, but does report false positivapite of a few years’ pedi-
gree behind it now, a foundational semantics for the log&dray just been published
[8] (as an Appendix to the main text), and this article aimgtovide a yet simpler
semantics for the logic and also a completeness result, théttaim of consolidating
the technique’s bona fides.

Interestingly, the formal guarantee (‘never miss, ovgerg) provided by NRB and
the symbolic approximation technique is said not to be dbsrin the commercial con-
text by the very practical authors of the Coverity analysi {11, 3], which also has
been used for static analysis of the Linux kernel and many kagge C code projects.
Allegedly, in the commercial arena, understandabilitysgfarts is crucial, not the guar-
antee that no bugs will be missed. The Coverity authors satydbmmercial clients
tend to dismiss any reports that they do not understandinmiran deaf ear to expla-
nations. However, the reports produced by our tools havayaween filtered before
presentation, so only the alarms that cannot be dismisskdsaspositives are seen.

The layout of this paper is as follows. In Section 2 a model @igpams as sets
of ‘coloured’ transitions between states is introduced] #re constructs of a generic
imperative language are expressed in those terms. It isrstitat the constructs obey
certain algebraic laws, which soundly implement the es&hbtl deduction rules of
NRB logic. Section 3 shows that the logic is complete for datristic programs, in
that anything that is true in the model introduced in SecBaran be proved using the
formal rules of the NRB logic.

Since the model contains at least as many state transitsarcar in reality, ‘sound-
ness’ of the NRB logic means that it may construct false asaionwhen a particular
condition may be breached at some particular point in a pragbut that it may not
miss any real alarms. ‘Completeness’ means that the logjs fi@ more false alarms
than are already to be predicted from the model, so if the fr&ales that there ought
to be no alarms at all (which means that there really are manalathen the logic can
prove that. Thus, reasoning symbolically is not in prineiph approximation here; it
is not necessary to laboriously construct and examine thetie graph of modelled
state transitions in order to be able to give a program archethof health’ with refer-
ence to some potential defect, because the logic can alveaygedob as well.

2 Semantic Model

This section sets out a semantic model for the full NRBG(ig)d¢'NRB’ for short)
shown in Table 1. The ‘NRBG’ part stands for ‘normal, retibreak, goto’, and the ‘E’
part treats exceptions (catch/throw in Java, setjimp/lopgp C), aiming at a complete
treatment of classical imperative languages. This sewmmstmplifies arace model
presented in the Appendix to [8], substituting traces tlierstate transitions here.

A natural model of a program is as a relation of types x .S), expressing possible
changes in a state of tygeas a set of pairs of initial and final states. We shall add a
colourto this picture. The ‘colour’ shows if the program has nammallythrough to the
end (colour N’) or has terminated early viaraturn (colour ‘R’), break (colour ‘B’),
goto(colour ‘G;’ for some label) or an exception (coloui;’ for some exception kind
k). The aim is to document precisely the control flow in the paog. In this picture, a

Table 1: NRB deduction rules for triples of assertions anshpms. Unless explicitly noted,
assumption&s, p; at left are passed down unaltered from top to bottom of ealeh Ye let€
stand for any oR, B, G, E;; & any of R, G, Ey; & any of R. G/ forl” # [, Ey; £, any of
R. Gy, E; for k' # k; [h] the body of the subroutine naméd

b {p} P{NqvEiz} b {a}Q{Nrveiz} b {p} P {BqVNpvEsz}
H— ?p} 50 {Nr-qulx} = [seq] 3 {];} do P?{N;)\/E;w} [do]

> {p} skip {N p} [skp] > {p} return {Rp} [ret]

s orbreak (877 K [P Pl G55 rrasto Tra 7190

3 [throw] [let]

> {p}throw k{Epp}t" "0 > {gle/a]} = {Nq}

> {gAp} P {r} > {p} P {a} > {p} @ {a}[dei
S OrETEoICL STl Pra () Lds]]

Gip > {p} P {q} G;p; > {p} P {G;p;VNqVE3x}
Ne—=d gty 7 oy frml ST taber 1P (Nqvesa) LDl

{p} [h] {RrVELz} {p} P {NrVEqV&sz} {¢} Q {NrVE,z,VEsx}
GlplDD ?p} call h {N’:\/’;Ekzk} [SUb] P > {p} try }c:’qcatélch(k) DQ ?Nr\/Ekzk\/§4zk} * [try]

> {pi} P {aq} > {p} P {q;} Gypyi> {p} P {a}
> {Wp;} P {a} > {p} P {Maq;} WGy p; > {p} P {q}

[=P, 4=, pi—=p1|Gig' = Gipll G2y

deterministic program may be modelled as a set of ‘colourad’sitions of type
P(S x x x S)
where the colours are a disjoint union
*={N}U{R}U{B}U{G,|le L}U{E,|k e K}

andL is the set of possiblgotolabels andk the set of possible exception kinds.

The programs we consider are in fact deterministic, but wiewsie the general
setting. Where the relation is not defined on some initislestawe understand that
the initial states leads to the program getting hung up in an infinite loop, mdtef
terminating. Relations representing deterministic paogs thus have a set of images
for any given initial state that is either of size zero (‘hai@r one (‘terminates’). Only
paths through the program that do not ‘hang’ in an infiniteplace of interest to us, and
what the NRB logic will say about a program at some point walithue only supposing
control reaches that point, which it may never do.

Programs are put together in sequence with the second pnagreepting as inputs
only the states that the first program ends ‘normally’ witth@wise the state with
which the first program exited abnormally is the final outcoieat is,

[P; Q] = {sor>s1 € [P] |« # N}

U {So}i}SQ | 81}482 S [[Q]], 80}581 S [[P]]}

A skip statement is modelled as A return statement has the model

R
[skip], = {s>s | s € S} [return], = {s—=s|s e S}
It makes the transition from a state to t]en exits at once ‘via a return flow’ after a sin-
same state again, and ends ‘normally’. gle, trivial transition.
The model ofskip; return is The return;skip compound is modelleg
as:

[skip; return], = {S»E)s | s e S} R
[return;skip]y = {s—s|s € S}
which is the same as that@fturn . Itis made
up of the compound of two trivial state tran: It is made up of of just thes S s transi-
sitions, s N ¢ from skip ands B < fromre- || tions fromreturn. There is no transition that
turn , the latter ending in a ‘return flow’'. can be formed as the composition of a tran-
sition from return followed by a transition
from skip, because none of the first end ‘ngr
mally’.

Table 2: Models of simple statements.

This statement is not complete, however, because abnowxitsivath a goto from P
may still re-enter inQ if the goto label is in@, and proceed. We postpone considera-
tion of this eventuality by predicating the model with théssef stateg;; hypothesised
as being fed in at the labélin the code. The model aP and @ with these sets as
assumptions produce outputs that take account of thestvewtatra inputs at labétl

[P;Qly = {s0r>s1 € [Ply |« # N}

N
U {SO’_L>82 | 81'482 S [[Qﬂg, Sor 81 € [[Pﬂq}

Later, we will tie things up by ensuring that the set of stdtesnd to early exits via a
goto!/ in P are exactly the setg hypothesised here as entries at lakial Q (and vice
versa). The type of thimterpretationexpressed by the fancy square brackets is

[—1]—, : €= (L + PS)—P(S x * x S)

whereg, the second argument/suffix, has the partial function type> P.S and the
first argument/bracket interior has ty@ denoting a simple language of imperative
statements whose grammar is set out in Table 3. The modetsred sf its very basic
statements as memberslpfS x x x S) are shown in Table 2 and we will discuss them
and the interpretations of other language constructs below

A real imperative programming language such as C can be mlapmi® %" — in
principle exactly, but in practice rather approximatelyhmiespect to data values, as
will be indicated below. A conventionéf(b) P else @ statementin C is written as the
nondeterministic choice between two guarded statentent® | —b— (@ in the abstract
language?’; the conventionawhile(b) P loop in C is expressed ak{—-b— break |
b— P}, using the forever-loop of’, etc. A sequenc®;! : Q in C with a labell in the

Table 3: Grammar of the abstract imperative languggevhere integer variables € X, term
expressiong € &, boolean expressioris € 4, labelsl € L, exceptionst € K, statements
c € ¥, integer constants € Z, infix binary relations: € R, subroutine namek € H. Note
that labels (the targets gfotos) are declared withlabel' and a label cannot be the first thing
in a code sequence; it must follow some statement. Instedd®fhas guarded statements, and
explicit nondeterminism, which, however, is only to be ubede in the deterministic construct
b— P 1 ~b—(Q for code fragment®, Q.

€ ::=skip | return | break | goto [| ¢;c | x=e |b—c|cic|doc|c:l|label l.c|call h
| try c catch(k) c | throw k

Ex=n|z|nxelete|ble:e

B:=T|L|lere|bVb|bADb]|—b|Iz.b

Ri=<|>|<|2|=|#

middle should strictly be expressedas [; Q in €, but we regard’; [:) as syntactic
sugar for that, so it is still permissible towritg [: @ in . As a very special syntactic
sweetener, we permit () too, even when there is no preceding stateni&émegarding
it as an abbreviation faskip : [; Q.

Curly brackets may be used to group code statements fotyclari’, and paren-
theses may be used to group expressions. The variableoaaghnd are not formally
declared. The terms &f are piecewise linear integer forms in integer variableshso
boolean expressions are piecewise comparisons betwean forms.

Example 1.A valid integer term is5x + 4y + 3’, and a boolean expression isx +
dy+3<z—4Ny <X,

In consequence another valid integer term, taking the \aftige first on the range
defined by the second, and 0 otherwise(fs‘+4y+3 < z—4Ay < x) ? bx+4y+3 : 0.

The limited set of terms i’ makes it practically impossible to map standard imper-
ative language assignments as simplexas='x x y’ or ‘x = x | y’ (the bitwise or)
succinctly. In principle, those could be expressed exgmiyt by point using condi-
tional expressions (with at mog2t? disjuncts), but it is usual to model all those cases
by means of an abstraction away from the values taken tdatids that can be repre-
sented more elegantly using piecewise linear terms Thegadbistn may be to how many
times the variable has been read since last written, for pi@mwhich mapst = xxy’
to'x=x+1Ly=y+ 1;x=0"

Formally, terms have a conventional evaluation as integads booleans that is
shown (for completeness!) in Table 4. The reader may notentitations = for the
evaluation of the variable namedin states, giving its integer value as result. We say
that states satisfiedboolean ternb € 4, writtens = b, whenevelfb]s holds.

Thelabel construct ofs” declares a labél € L that may subsequently be used as
the target igotos. The componen® of the construct is the body of code in which the
label isin scope A label may not be mentioned except in the scope of its detitar.
The same label may not be declared again in the scope of theldictaration. The
semantics of labels argbtos will be further explained below.

Table 4: The conventional evaluation of integer and booteams of%’, for variablesz € X,
integer constants € Z, usings x for the (integer) value of the variable nameh a states. The
form b[n/x] means ‘expressiohwith integern substituted for all unbound occurrencesiof

-] : &=5S—7 [-] : $—S—bool
[z]s = sz [Tls=T [L]s=L
[6]s =& [er < e2]s=[ei]s < [ez2]s
[k *e]s =k« [e]s [o1 Vb2]s = [bi]s V [b2]s
[er + e2]s = [e1]s + [ez2]s [o1 Ab2]s = [bi]s A [b2]s
[b7 e : e2x]s = if [b]s then[e1]s else[ez]s [—b]s = —([b]s)

[Bz.b]s = 3n € Z.[b[n/x]]s

The only way of exiting th&” do loop construct normally is viareak in the body
P of the loop. An abnormal exit other thdsireak from the bodyP terminates the
whole loop abnormally. Terminating the bodd/normally evokes one more turn round
the loop. So conventionathile andfor loops need to be mapped tala loop with a
guardedbreak statement inside, at the head of the body. The precise mémtetsis
and every construct & as a set of coloured transitions are enumerated in Table 5.

Among the list of models in Table 5, thatlafoel declarations in particular requires
explanation because labels are more explicitly contratied than in standard imper-
ative languages. Declaring a labeinakes it invisible from the outside of the block
(while enabling it to be used inside), working just the sanag &s a local variable dec-
laration does in a standard imperative programming languAgleclaration removes
from the model of a labelled statement the dependence oryfiwhretical set); of the
states attained @to/ statements. All the instances@dto/ statements are inside the
block with the declaration at its head, so we can take a logk¢owhat totality of states
really do accrue agoto!/ statements; they are recognisable in the model because they
are the outcomes of the transitions that are marked @ithEquating the set of such
states with the hypothesjs gives the (least) fixpoing; required in thdabel i model.

The hypothetical setg; of states that obtain ajoto [statements are used at the
point where the labdl appears within the scope of the declaration. We say that finy o
the states iy; may be an outcome of passing through the ldpbEcause it may have
been broughtin by gotol statement. That is an overestimate; in reality, if the gtege
before the label i$;, then at most those states in g; that are reachable atgoto
from an initial program statg, that also leads t@; (eithers; first or ss first) may
obtain after the labél, and that may be considerably fewsrthan we calculate ig; .
Here is a visualisation of such a situation; the curly arrdesote a trace:

l: 1
s {s1,s2}
{so} §
{s2} gotol
If the initial precondition on the code admits more than am&al states, then the
model may admit more statag after the label than occur in reality wher, precedes

[, because the model does not take into account the dependerg®n s; through
sg. It is enough for the model that, proceeds from some, ands; proceeds from

Table 5: Model of programs of langua@g, given as hypothesis the sets of stagedor | €

L observable agoto | statements. A recursive reference means ‘the least sefysiagi the
condition’. Forh € H, the subroutine namédhas codé¢h]. The states altered by the assignment
of n to variablez is writtens[z — n].

[-1g: €—=P(S x*x5)
[skip]y = {sogso | so € S}
[return]gso = {so L | so € S}
[break], = {so B 50 | so € S}
[goto], = {so&so | so € S}
[throw k]g = {so&so | so € S}
[P;Qlg = {so+>s1 € [Py | « # N}
U {s0+> s2 | 51> 52 € [Q] 4, s0rs sy € [Pls}
[z = €e]gs0 = {so0 gso[m — [ellso]} | so € S}
[p—Plg = {s0 > s1 € [Pl | [p]so}
[P1Qls =[P, U[Qls
[do Ply = {som> s1 | sorss1 € [Plg}
U{so+>s1 € [P]y | + # N,B}
U {so+>s2 | s1+> 82 € [do P]g, so+>s1 € [Py}
[P :1]q =[P,
U{sots1 | s0 €S, 1€ g}
[labell Ply = [Plougi-gry — 90
Wheregl* = {81 | SOOC—;>l81 € [[P}]gu{b—ml*}}
[call h], = {so > s1 | sorss1 € [[All(y}
U{So%sl S [[[h”]{} | kGK}
[try P catch(k) Q], = {so+>s1 € [P]y | ¢ # Ex}
U {sor>s2 | s1+2s2 € [Q4, S0 sy € [Plq}

some (possibly differenty, satisfying the same initial condition. In mitigatiogotos
are sparsely distributed in real codes and we have not fdwundffect pejorative.

Example 2.Consider the cod®& and suppose the input is restricted to a unique state
P
label A, B. skip; goto A; B : return; A: goto B
Q

with labelsA, B in scope in bodyP, and the marked fragme@t The single transitions
made in the cod® and the corresponding statement sequences are:

PRAQRCE # skip; goto A;
PRAQRL QRS # skip; goto A; A : goto B
s s NN R # skip; goto A; A : goto B; B : return

Table 6: Extending the languagg of propositions to modal operatols, R, B, G;, E; for
l € L, k € K. An evaluation on transitions is given forc %, b* € £*.

B —b | Nb* | RO | Bb* | Gib" [Epb™ | b Vb | b" AL | —b
ﬂb]sl
(b=

[b)(s0 > s1) =
IIN b*]] (80 0i> 81)
[[R b*]] (So ’i> 81)
IIB b*]] (80 0i> 81)

()=
()=

) A [b*]] So 0481)
t=R) A[b*](s0+> 1)
L= B) A [5(s0 - 51)
L= Gl)Aﬂb*ﬂ(Soésl)
L= Ek)A[[b*}](Soii>81)

—~ o~

[[Gl b*]] S0 ’i> S1
[[Ek b*]] So ’i> S1

~ o~~~

with observed stategs = {s}, g = {s} at the labelsA and B respectively.
Thegoto B statement is not in the fragmeRtso there is no way of knowing about
the set of states goto B while examining. Without that input, the traces ¢J are

PRAQR # skip; goto A
P QL O # skip; goto A; A :

There are no possible entriestoriginating from withinQ itself. That is, the model
[Q], of @ as a set of transitions assuming = { }, meaning there are no entries from
outside, igQ], = {s N s, s8¢ s}

When we hypothesisgs = {s} for Q, then@ has more traces:

s s NN R # skip; goto A; A : goto B; B : return

corresponding to these entriesfatfrom the rest of the code proceeding to tiegurn

in @, and[Q], = {s Ns s8s, s8 s}. In the context of the whole cod®, that is
the model forQ as a set of initial to final state transitions.

Example 3.Staying with the code of Example 2, the $et(»;—§’ S, S Ep S, S it s}isthe
model [P], of P starting at state with assumptiong 4, gz of Example 2, and the
setsg 4, gp are observed at the labefs B in the code under these assumptions. Thus
{A — ga, B — ggp} is the fixpointg* of thelabel declaration rule in Table 5.

That rule says to next remove transitions endingab As andBs from visibility
in the model of the declaration block, because they can gdhamelse, leaving only

[Rl¢y = {sgs} as the set-of-transitions model of the whole block of codeictv
corresponds to the sequerntdp; goto A; A : goto B; B : return.

We extend the propositional language# which includes the modal operatah$,
R,B, G, E,forl € L,k € K, as shown in Table 6, which defines a model#f
on transitions. The predical¥p informally should be read as picking out from the
set of all coloured state transitions ‘those normal-caoutransitions that produce a
state satisfying’, and similarly for the other operators. The modal opemsatisfy the
algebraic laws given in Table 7. Additionally, however, fmm-modap € %,

p=NpVRpVBpVWGpWEip (1)

Table 7: Laws of the modal operatd§ R, B, G;, E;, with M, M, M> € {N,R,B, G, Ey, |
leL,keK}andM, # M.

M(L)y=_1 (flatness)
M(by V b2) = M(b1) vV M(b2) (disjunctivity)
M (b1 Ab2) = M(b1) A M(b2) (conjunctivity)
M(Mb) = Mb (idempotence)
My (M1ib) = My(b) A Ma(b) = L (orthogonality)

because each transition must be some colour, and thosé tire @blours. The decom-
position works in the general case too:

Proposition 1. Everyp € %#* can be (uniquely) expressed as
p=NpnV Rpr V Bps VW Gipa, WE,pE,
for somepn, pr, etc that are free of modal operators.

Proof. Equation(1) gives the result fop € %. The rest is by structural induction on
p, using Table 7 and boolean algebra. Uniqueness follows bsedpn = Npy, for
example, applyindN to two possible decompositions, and applying the ortholigna
and idempotence laws; apply the definitionMfin the model in Table 6 to deduce
pN = py for non-modal predicategy, py- Similarly forB, R, Gy, E. []

So modal formulag € %* may be viewed as tupl€®n, pr, pB, PG,, PE,) Of non-
modal formulae from# for labels! € L, exception kinds: € K. That means that
NpV Ry, for example, is simply a convenient notation for writingrdotwo assertions
at once: one that assepiof the final states of the transitions that end ‘normally’dan
one that assertg on the final states of the transitions that end in a ‘return’fldle
meaning ofNp V Ry is the union of the set of the normal transitions with finatesta
that satisfyp plus the set of the transitions that end in a ‘return flow’ arttbse final
states satisfy. We can now give meaning to a notation that looks like (andtisrided
to signify) a Hoare triple with an explicit context of ceridgoto assumptions’:

Definition 1. Letg; = [p;] be the set of states satisfyipg e £, labelsl € L. Then
‘Gipi > {p}a{q}, fornon-modalp,p, € B, P € ¢ andq € %*, means:

[Gip>{p} P {q}] = [{p} P {a}],
=Vso+> 51 € [Py- [p]so = [q](s0+> s1)

Thatis read as ‘the triplép} P {¢} holds under assumptiops at goto [when every
transition of P that starts at a state satisfyipglso satisfieg’. The explicit Gentzen-
style assumptiong; are free of modal operators. What is meant by the notatidmais t

those states that may be attainable as the program tracethpaisghgoto statements
are assumed to be restricted to those that satjsfy

TheG; p; assumptions may be separated by comma&;ag:, , Gi, pi,, - - -, With
l1 # Iy, etc. Or they may be written as a disjuncti@Gn, p;, V G, pi, V ... because
the information in this modal formula is only the mappig— pi,, l2 — pi,, etc. If
the samé€ appears twice among the disjun€s p;, then we understand that the union
of the twop; is intended.

Now we can prove the validity of laws about triples drawn framat Definition 1
says. The first laws are strengthening and weakening resufise- and postconditions:

Proposition 2. The following algebraic relations hold:

{L} P{a}]y & T (2)
[{p} P{T}, & T 3)
[{p1 v 2} P{at]y = [} P{a}]s A Up2} P{a}]y (4)
[{p} P{ar Na2}ly < [{p} P {a}]s A {p} P {a2}]s (%)

(pr—=p2) NP2} P{a}ly = [{p1} P{a}]y (6)
(a—a2) AN[{p} P{ar}]y = [{p} P {a2}y (7)
[{pr} P{a}le = [{p} P {4}], (8)

fOI’p,pl,pQ €EB,q,q1,q2 € B*, P € €, andgl - gl’ e PS.

Proof. (2-5) follow on applying Definition 1. (6-7) followofn (4-5) on considering the
caseg: V p2 = p2 andg; A g2 = ¢1. The reason fo(8) is that g is a bigger set than
g1, SO[P], is a bigger set of transitions thdiP], and thus the universal quantifier in
Definition 1 produces a smaller (less true) truth value. []

Theorem 1 (Soundness)The following algebraic inequalities hold, fér, any ofR,
B, G, E;; & any ofR, Gy, E; &3 any ofR, B, G for I’ #£ [, Ey; £, any of R, B,
G, Ey for k¥’ # k; [h] the code of the subroutine calléd

10

[{p} P{NgV &z}], } = [{p} P;Q {Nrv &z}, ©

AN{a} @ {Nr v &z},
[{r} P{BqV NpV &a}]y = [{p}do P{NqV &xl], (10)
T = [{p}skip {Np}], (11)
T = [{p}return {Rp}], (12)
T = [{p} break {Bp}[, (13)
T = [{p}goto [{Gip}], (14)
T = [{p} throw k{Exp}]s (15)
[{oAp}P{qt]s = [{p}o—P {a}], (16)
[{r} P {a}]s A [{r} Q {a}]s = [{p} P1Q {a}]s 17)
T = [{qle/=]} z=e {Ng}], (18)
[{p} P{a}ls A gt S {s1 | 01 € [al} = [{p} P: 1 {a}], (19)
[{p} P {Gipi VNqV E3x}]suqip,3 = [{p} labell.P {NqV E3x}], (20)
[{p} (W] {Rr v Exa}](y = [{p} call h {NrV Epar}], (21)

[{p} P {NrV Exq V Eaz}],
A [[{2} Q {Nrv Ekgk V Eaz], } = [{p} try P catch(k) Q {Nr V Exzy V Eaz}]y

(22)

Proof. By evaluation, given Definition 1 and the semantics from &ahl []

The reason why the theorem is titled ‘Soundness’ is thahitg|ualities can be read
as the NRB logic deduction rules set out in Table 1, via Definitl. The fixpoint
requirement of the model at thabel construct is expressed in the ‘arrival frorgatoat
alabel’ law (19), where it is stated thiithe hypothesised statgsat agoto!/ statement
are covered by the statgsmmediately after code blocR and preceding labé| then

q holds after the labél too. However, there is no need for any such predication when
theg; are exactly the fixpoint of the map

fel
g {s1|s0ss1 € [Py}

because that is what the fixpoint condition says. Thus, wthdanodel in Table 5 satis-
fies equations (9-22), it satisfies more than they requiranesaf the hypotheses in the
equations could be dropped and the model would still satisfyn. But the NRB logic
rules in Table 1 are validated by the model and thus are sound.

3 Completeness for deterministic programs

In proving completeness of the NRB logic, at least for detristic programs, we will
be guided by the proof of partial completeness for Hoaraji&clin K. R. Apt’s survey
paper [2]. We will need, for every (possibly modal) postcitind ¢ € %#* and every
constructR of ¢, a non-modal formula € 2 that is weakest it¥ such that ifp holds

11

of a states, ands— s is in the model ofR given in Table 5, thery holds of s — s’.
This p is written w R, ¢), the ‘weakest precondition oR for ¢’. We construct it via
structural induction or¥” at the same time as we deduce completeness, so there is an
element of chicken versus egg about the proof, and we willatamtur that point.

We will also suppose that we can prove any tautologyfodnd %*, so ‘complete-
ness of NRB’ will be relative to that lower-level completese

Notice that there is always a get P S satisfying the ‘weakest precondition’ char-
acterisation above. Itigs € S | s+> s’ € [R], = s+> s € [¢]}, and it is called the
weakestsemantigprecondition onR for ¢. So we sometimes refer to WR, ¢) as the
‘weakestsyntactigprecondition’ onR for ¢, when we wish to emphasise the distinction.
The question is whether or not there is a formuladrthat exactly expresses this set. If
there is, then the system is said tod@ressiveand that formulas the weakest (syn-
tactic) precondition o for ¢, wp(R, ¢). Notice also that a weakest (syntactic) precon-
dition wp(R, ¢) must encompass the semantic weakest precondition; thataube if
there were a statein the latter and not in the former, then we could form theutisfion
Wp(R, q)V(z1 = sz1A. ..z, = sz,) Where ther; are the variables of, and this would
also be a precondition oR for ¢, hencer; = sz A ...z, = sz, —Wp(R,q) must
be true, as the latter is supposedly the weakest precongditiml so; satisfies WpR, q)
in contradiction to the assumption thats not in wp(R, ¢). For orientation, then, the
reader should note that ‘there is a weakest (syntacticlopiition in %’ means there
is a unigue strongest formula i# covering the weakest semantic precondition.

We will lay out the proof of completeness inline here, in ardeavoid excessively
overbearing formality, and at the end we will draw the foric@hclusion.

A completeness proof is always a proof by cases on each cehstrinterest. It
has the form ‘suppose th&do is true, then we can prove it like this’, whef@o runs
through all the constructs we are interested in. We statt agisertions about the se-
quence constructio®; (). We will look at this in particular detail, noting where and
how the weakest precondition formula plays a role, and sidp detail for most other
cases. Thus we start wifboo equal toG; g; > {p} P;Q {q} for some assumptions
g1 € A, but we do not need to take the assumptignisto account in this case.

CaseP; Q. Consider a sequence of two statemeRts) for which{p} P;Q {q}
holds in the model set out by Definition 1 and Table 5. Thatuppsse that initially
the states satisfies predicate and that there is a progression fromto some final
states’ throughP; Q. Thens+> s isin [P; Q], ands+> s’ satisfies;. We will consider
two subcases, the first wheféterminates normally from, and the second wher®
terminates abnormally from. A third possibility, thatP does not terminate at all, is
ruled out because a final statéis reached.

Consider the first subcase, which means that we thinksfconfined to w@, NT).
According to Table 5, that means th&tstarted in states; = s and finished normally
in some state; and @ ran on from states; to finish normally in state; = s’. Let
r stand for the weakest precondition p Ng) that guarantees a normal termina-
tion of @ with ¢ holding. By definition of weakest preconditidm} @ {Ng}, is true
and s, satisfiesr (if not, thenr v (z1 = sz1 A 2 = sza A ...) would be a weaker
precondition forNg thanr, which is impossible). The latter is true whatewvgrsatis-
fyingp and wd P, N'T) we started with, so by definition of weakest preconditjon,

12

wp(P, NT)—wp(P, Nr) must be true, which is to say thgt Awp(P,NT)} P {Nr}
is true.

By induction, it is the case that there are deductiongp A wp(P,NT)} P {Nr}
andr {r} Q {Ng} in the NRB system. But the following rule

{pAwp(P,NT)} P{Nr} {r}Q{Ngq}
{pAwp(P,NT)} P;Q {Ng}

is a derived rule of NRB logic. It is a specialised form of trengral NRB rule of
sequence. Putting these deductions together, we have atimdof the truth of the
assertiondpAwp(P,NT)} P; @ {INg}. By weakening on the conclusion, sifée— ¢
is (always) true, we have a deduction{gfA wp(P,NT)} P;Q {q}.

Now consider the second subcase, when the final stateached froms = s
through P obtains via an abnormal flow out d?. This means that we think efas
confined to wpP, -NT). Now the transitions, + s, in [P], satisfiesg, and s is
arbitrary in p A wp(P,—NT), so{p A wp(P,—mNT)} P {q}. However, ‘not ending
normally’ (and getting to a termination, which is the cased)aneans ‘ending abnor-
mally’,i.e., RT VBT V... through all of the available colours, as per Proposition 1,
and we may write the assertion out §sA wp(P,RT VBT ...)} P {q}. Consider-
ing the cases separately, one higsA wp(P,RT)} P {Rq} (sinceRgq is the compo-
nent ofq that expects alR-coloured transition), andp A wp(P,BT)} P {Bgq}, and
so on, all holding. By induction, there are deductiongp A wp(P,RT)} P {Rq},
F{pAwp(P,BT)} P {Bq}, etc. But the following rule

{p Awp(P,ET)} P {Eq}
{pAWP(P,ET)} P;Q {Eq}

is a derived rule of NRB logic for each ‘abnormal’ colouridg and hence we have
a deduction= {p A wp(P,ET)} P;Q {Eq} for each of the ‘abnormal’ colourg.
By weakening on the conclusion, singe—¢q, for each of the colourg, we have a
deductiort- {p Awp(P,ET)} P;Q {q} for each of the colour§.

By the rule on disjunctive hypotheses (fourth from last ibl@d) we now have a
deduction- {p A (Wwp(P,NT)Vwp(P,RT) V...)} P;Q {q}. But the weakest pre-
condition is monotonic, so WP, NT) vVwp(P,RT) V... is covered by wgP, N T V
RTV...),whichiswgP, T) by Proposition 1. But for a deterministic prograf the
outcome from a single starting statecan only be uniquely a normal termination, or
uniquely a return termination, etc, and Wg NT) Vwp(P,RT)V--- =wp(P,NT Vv
RTV...) =wp(P, T)exactly. The latter is just, so we have a proof {p} P; Q {¢}.
As to what the weakest preconditioni @, q) is, itis wp(P, Nwp(Q, q)) vwp(P, Rq)V
wp(P,Bgq) V ..., the disjunction being over all the possible colours.

That concludes the consideration of the c&sé). The existence of a formula ex-
pressing a weakest precondition is what really drives tleofpabove along, and in
lieu of pursuing the proof through all the other construstesa we note the important
weakest precondition formulae below:

— The weakest precondition for assignment iSwp- ¢, Ngq) = ¢[e/x] for ¢ without
modal components. In general {up= ¢, q) = Ngle/x].

13

— The weakest precondition forraturn statement is wireturn, ¢) = Rq.

— The weakest precondition fortaeak statement is wibreak, ¢) = Bg. Etc.

— The weakest precondition Wglo P,Ng) for a do loop that ends ‘normally’ is
wp(P,Bq)Vwp(P,Nwp(P,Bq))Vwp(P,Nwp(P,Nwp(P,Bg)))V.... That
is, we might break fron® with ¢, or run through” normally to the precondition for
breaking fromP with ¢ next, etc. Writewp (P, Bg) asp and writewp (P, Nr) A
—p as(r), Then wigdo P,Ngq) can be writterp V ¢(p) V ¥(p V (p)) V
which is the strongest solution to= (7) no stronger thap. This is the weakest
precondition forp afterwhile(—p) P in classical Hoare logic. It is an existentially
quantified statement, stating that an initial staggves rise to exactly somepasses
throughP before the conditiop becomes true for the first time. It can classically
be expressed as a formula of first-order logic and it is thekestgprecondition for
Ny afterdo P here.
The preconditions fo€ ¢ for each ‘abnormal’ coloured endirgof the loopdo P
are similarly expressible ig8, and the precondition far is the disjunction of each
of the preconditions foN¢, Rq, By, etc.

— The weakest precondition for a guarded statemer(pwqP, q) is p—wp(P, q),
as in Hoare logic; and the weakest precondition for a digjanovp(P 1 Q,q)
iswp(P,q) Awp(Q, q), as in Hoare logic. However, we only use the deterministic
combinatiorp— P | —=p— @ for which the weakest precondition(is—wp(P, ¢))A

(—p—=wp(Q, q)), i.e.p AWp(P, q) V —p AWp(Q, q).

To deal with labels properly, we have to extend some of thesems and notations
to take account of the assumptioBsg; that an assertio;g; > {p} P {q} is made
against. The weakest preconditipon P for g is thenp = wp, (P, ¢), with theg, as ex-
tra parameters. The weakest precondition for a label ugeivpl, ¢) is thenwp (P, q),
provided thatg;— ¢, since the stateg, attained bygoto | statements throughout the
code are available after the label, as well as those obt#imedghP. The weakest pre-
condition in the general situation where it is not necegstre case thaj;— ¢ holds is
wp, (P, q A (9i—q)), which is wp, (P, q).

Now we can continue the completeness proof through thenséates of the form
P : [(alabelled statement) andbel [. P (a label declaration).

Case labelled statementlf [{p} P : I {¢}], holds, then every state = s, sat-
isfying p Ieads throughP with so ~ s; satisfyingg, and alsog must contain all the

transitionssg N s1 Wheres; satisfiesy;. Thuss satisfies wp(P q) andNg;—q holds.
Sinces is arbitrary in p, sop—wp, (P, g) holds and by induction; Gyg; > {p} P {q}.
Then, by the ‘frm’ rule of NRB (Table 1), we may dedud&;g; > {p} P :1{q}.

Case label declarationThe weakest precondition for a declaration Miabel . P, q)
is simplyp = wp,, (P, q), where the assumptions after the declarationgre- gU{l —
g1} andg; is such thaiG,g; > {p} P {q}. In other wordsp and g, are simultaneously
chosen to make the assertion hghdnaximal andg,; the least fixpoint describing the
states atgoto [statements in the codB, given that the initial state satisfigsand
assumption€s;g; hold. Theg;y are the statements that after exactly some IN more
traversals throughP via goto [, the trace from state will avoid anothergoto [for
the first time and exiP normally or via an abnormal exit that is notgoto I.

14

If it is the case thaf{p} label I.P {¢}], holds then every state= s, satisfying
p leads througHabel [.P with so — s, satisfyingg. That means that, — s, leads
through P, but it is not all that do; there are extra transitions with= G, that are not
considered. The ‘missing’ transitions are precisely @gy; whereg; is the appropriate

. . G, L . .
least fixpoint forg; = {s1 | so++s1 € [P]gu{i-g,3, Which is a predicate expressing
the idea thats; at agoto [initiates some exactly traversals back througl® again
before exitingP for a first time other than via goto [. The predicatg cannot mention
G, since the label is out of scope for it, but it may permit some, all or Gg-coloured
transitions. The predicate v G,g;, on the other hand, permits all th&;-coloured
transitions that exitP. transitions. Thus addin€x,; g; to the assumptions means thgt
traversesP via sq — s, satisfyingg vV G;g; even though more transitions are admitted.
Sinces = s is arbitrary in p, SO p—Wp, 1,4, (P g V Gigi) and by inductiort-
G; > {p} P {qV Gyg;}, and then one may deduke{p} label [.P {q} by the ‘bl
rule.

That concludes the text that would appear in a proof, but whie have abridged
and presented as a discussion here! We have covered thaltgpse P; Q) and the
unusual casedH: [, label [.P). The proof-theoretic content of the discussion is:

Theorem 2 (Completeness)The system of NRB logic in Table 1 is complete for deter-
ministic programs, relative to the completeness of firskeoitogic.

We do not know if the result holds for non-deterministic mamgs too, but it seems
probable. A different proof technique would be needed fjilshowing that attempting
to construct a proof backwards either succeeds or yieldsiateomodel).

Along with that we note

Theorem 3 (Expressiveness)he weakest precondition B, ¢) forq € #*, P € ¢
in the interpretation set out in Definition 1 and Table 5 is egsible in%.

The observation above is that there is a formulgithat expresses the semantic weak-
est precondition exactly.

4 Summary

We have proven the NRB logic sound with respect to a simplesttian-based model
of programs, and showed that it is complete for determmgtograms.

References

1. American National Standards Institute. American natigtandard for information systems
— programming langu age C, ANSI X3.159-1989, 1989.

2. Krzysztof R. Apt. Ten years of Hoare's logic: A survey: HaiACM Trans. Program. Lang.
Syst, 3(4):431-483, October 1981.

3. Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan FultoerttSHallem, Charles Henri-
Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A feliohilines of code later:
using static analysis to find bugs in the real worGommun. ACM53(2):66—75, February
2010.

15

10.

11.

12.

13.

Peter Breuer and Simon Pickin. Checking for deadlockblinfree and other abuses in the
linux kernel source code. IRroc. Computational Science — ICCS 20®6imber 3994 in
LNCS, pages 765—-772. Springer, May 2006.

Peter T Breuer and Marisol Garcia Valls. Static deadlcetection in the linux kernel. In
Proc. Reliable Software Technologies/Ada-Europe 20@4nber 3063 in LNCS, pages 52—
64. Springer Berlin/Heidelberg, June 2004.

Peter T Breuer and Simon Pickin. Symbolic approximatamapproach to verification in
the large.Innovations in Systems and Software Engineer2{g):147—-163, 2006.

Peter T Breuer and Simon Pickin. Verification in the largesymbolic approximation. In
Proc. 2nd International Symposium on Leveraging Applaraiof Formal Methods, Verifi-
cation and Validation, 2006 (ISoLA 2006ages 408-415. IEEE, 2006.

Peter T Breuer and Simon Pickin. Open source verificatioan anonymous volunteer
network. Science of Computer Programmirp13. To appear.

Peter T Breuer, Simon Pickin, and Maria Larrondo Petrietebting deadlock, double-free
and other abuses in a million lines of linux kernel source.Ptac. 30th Annual Software
Engineering Workshop 2006 (SEW'0fages 223-233. IEEE/NASA, 2006.

E. Clarke, E. Emerson, and A. Sistla. Automatic verifarabf finite-state concurrent sys-
tems using tempora | logic specificationACM Transactions on Programming Languages
and Systems (TOPLAS)(2):244-253, 1986.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking eystules using system-specific,
programmer-written compiler extensions. MRmoc. 4th Symposium on Operating System
Design and Implementati on (OSDI 200@ages 1-16, October 2000.

David Harel, Jerzy Tiuryn, and Dexter Kozédynamic Logic MIT Press, Cambridge, MA,
USA, 2000.

International Standards Organisation. ISO/IEC 98%@91 programming languages - C,
1999.

16

