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Abstract. We provide two interpretations, over nondeterministic and
probabilistic processes, of PML, the probabilistic version of Hennessy-
Milner logic used by Larsen and Skou to characterize bisimilarity of
probabilistic processes without internal nondeterminism. We also exhibit
two new bisimulation-based equivalences, which are in full agreement
with the two different interpretations of PML. The new equivalences
are coarser than the bisimilarity for nondeterministic and probabilistic
processes proposed by Segala and Lynch, which instead is in agreement
with a version of Hennessy-Milner logic extended with an additional
probabilistic operator interpreted over state distributions rather than
over individual states. The modal logic characterizations provided for
the new equivalences thus offer a uniform framework for reasoning on
purely nondeterministic processes, reactive probabilistic processes, and
nondeterministic and probabilistic processes.

1 Introduction

Modal logics and behavioral equivalences play a key role in the specification and
verification of concurrent systems. The former are useful for model checking,
in that they can be employed for specifying the properties to be verified. The
latter are ancillary to the former, in the sense that they enable the transforma-
tion/minimization of the models to be checked while guaranteeing that specific
properties are preserved.

Because of this, whenever a new behavioral relation is proposed, the quest
starts for the associated modal logic, i.e., for a logic such that two systems are
behaviorally equivalent if and only if they satisfy the same logical formulae. The
first result along this line is due to Hennessy and Milner [12]. They showed that
bisimilarity over fully nondeterministic processes, modeled as a labeled transition
system (LTS) [15], is in full agreement with a very simple modal logic, now known
as HML. This logic has only four operators: true, - A -, =+, and (a)-, the last one
called diamond and used to describe the existence of a-labeled transitions. After
this result, whenever any of the many quantitative variants of process description
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languages and process models has been introduced, other behavioral equivalences
and modal logics have been defined and analogous results have been established
to handle features such as probability and time.

Most of the works along the lines outlined above take as starting point a be-
havioral equivalence and then look for the logic in agreement with it. Obviously,
it is also interesting, once one has fixed a model and a logic to reason about it,
to find out the “right” behavioral relation. A first work in this direction was [4];
it showed that bisimilarity and stuttering bisimilarity are, respectively, in full
agreement with the logical equivalences induced by CTL* and by CTL* without
the next-time operator when interpreted over Kripke structures (state-labeled
transition systems) [5]. In a subsequent work, it was shown that the equivalence
induced by the probabilistic temporal logic PCTL*, interpreted over probabilis-
tic Kripke structures, coincides with probabilistic bisimilarity [1]. A more recent
work is [25], which introduces new probabilistic bisimilarities that are in full
agreement with the logical equivalences induced by PCTL, PCTL*, and their
variants without the next-time operator interpreted over nondeterministic and
probabilistic Kripke structures [3].

In this paper, we concentrate on the results obtained for extended LTS mod-
els that have been developed to deal with probabilistic systems. We look for
bisimilarities that are in agreement with a probabilistic variant of HML known
as PML [16, 17]. This logic is obtained by simply decorating the diamond opera-
tor with a probability bound. Formula (a),¢ is satisfied by state s if an a-labeled
transition is possible from s after which a set of states satisfying ¢ is reached
with probability at least p.

Modal logic characterizations for probabilistic bisimilarities have been stud-
ied for the first time by Larsen and Skou [16, 17]. They introduced a probabilistic
bisimilarity for reactive probabilistic processes [27] and showed that the consid-
ered probabilistic bisimilarity is in full agreement with PML. Subsequently, De-
sharnais et al. [9] showed that PML without negation is sufficient to characterize
probabilistic bisimilarity for the same class of processes. Reactive probabilis-
tic processes being LTS-based models where (i) every action-labeled transition
reaches a probability distribution over states and (ii) the actions labeling tran-
sitions departing from the same state are all different from each other.

Segala and Lynch [22] defined, instead, a probabilistic bisimilarity for a more
expressive model that also admits internal nondeterminism, i.e., the possibility
for a state to have several outgoing transitions labeled with the same action. For
this probabilistic bisimilarity over nondeterministic and probabilistic processes,
Segala and collaborators [18, 13] exhibited a logical characterization in terms of
an extension of HML, in which formulae satisfaction is defined over probability
distributions on states rather than over single states. The logic is obtained from
HML by giving the diamond operator a universal interpretation (all states in
the support of a distribution must satisfy the formula) and by adding a unary
operator [-], such that [¢], is true on a state distribution whenever the proba-
bility of the set of states that satisfy formula ¢ is at least p. Recently, Crafa and
Ranzato [6] showed an equivalent formulation of the logic that retrieves the HML
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Fig. 1. Two games guaranteeing the same winning probabilities (~pB,gbg,=)-

interpretation of the diamond operator by lifting the transition relation to state
distributions. Following a similar lifting, Hennessy [11] proposed an alternative
logical characterization based on what he calls pHML, where a binary operator
- @) - is added to HML (instead of the unary operator [-],) such that ¢1 &, ¢2
asserts decomposability of a state distribution to satisfy the two subformulae.

Now, the difference between PML and the two probabilistic extensions of
HML in [18] and [11] is quite striking. It is thus interesting to understand whether
such a difference is due to the different expressive power of the models in [16]
and [22] - i.e., the absence or the presence of internal nondeterminism — or to the
way probabilistic bisimilarity was defined on those two models. Since in [18] it
was shown that PML characterizes the probabilistic bisimilarity over processes
alternating nondeterminism and probability defined in [10, 19], we feel it is worth
exploring alternative definitions of probabilistic bisimilarity rather than alterna-
tive models.

The aim of this paper is to show that it is possible to define new proba-
bilistic bisimilarities for non-alternating nondeterministic and probabilistic pro-
cesses [21] that are characterized by PML. Our result is somehow similar to the
one established in [25], where new probabilistic bisimilarities over nondetermin-
istic and probabilistic Kripke structures were exhibited that are characterized
by PCTL and its variants. In both cases, the starting point for defining the
new probabilistic bisimilarities is the consideration (see also [7]) that sometimes
the definition of Segala and Lynch [22] might be over discriminating and thus
differentiate processes that, according to intuition, should be identified.

Indeed, to compare systems where both nondeterminism and probabilistic
choices coexist, in [21,22] the notion of scheduler (or adversary) is used to re-
solve internal nondeterminism. A scheduler can be viewed as an external entity
that selects the next action to perform according to the current state and the
past history. When a scheduler is applied to a system, a fully probabilistic model
called a resolution is obtained. The basic idea is deeming equivalent two systems
if and only if for each resolution of one system (the challenger) there exists a res-
olution of the other (the defender) such that the two resolutions are probabilistic
bisimilar in the sense of [16] (fully matching resolutions).

Let us consider two scenarios modeling the offer to Playerl and Player2 of
three differently biased dice. The game is conceived in such a way that if the
outcome of a throw gives 1 or 2 then Playerl wins, while if the outcome is 5
or 6 Player2 wins. In case of 3 or 4, the result is a draw. The two scenarios
are reported in Fig. 1. For instance, with the biased die associated with the
leftmost branch of the first scenario, it happens that 3 or 4 (draw) will appear
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Fig. 2. Two games guaranteeing the same extremal head/tail probabilities (~pp, gbg,<)-

with probability 0.4, while 1 or 2 (Playerl wins) will appear with probability 0.6.
Numbers 5 and 6 will never appear (no chance for Player2 to win).

The probabilistic bisimilarity proposed in [22] differentiates the models in
Fig. 1 even if in both scenarios each player has the same set of probabilities of
winning /drawing/losing, which is {0.6,0.4,0}. To identify these systems, from a
bisimulation perspective it is needed to weaken the impact of schedulers. Indeed,
while in [22] the challenger and the defender must stepwise behave the same
along two fully matching resolutions, here, in the same vein as [26], we admit
bisimulation games with partially matching resolutions.

Other two systems differentiated (under deterministic schedulers) by the
probabilistic bisimilarity in [22] are those in Fig. 2. In the first scenario, the
two players are offered a choice among a fair coin and two biased ones. In the
second scenario, the players can simply choose between the two biased coins of
the former scenario. In both scenarios, Playerl wins with head while Player2
wins with tail. In our view, the two scenarios could be identified if what matters
is that in both of them each player has exactly the same extremal — i.e., minimal
and mazimal — probabilities of winning (0.3 and 0.7).

The first probabilistic bisimilarity we will introduce — denoted by ~pp ghg, = —
identifies the two systems in Fig. 1, but distinguishes those in Fig. 2. Our second
probabilistic bisimilarity — denoted by ~pp ghg < — instead identifies both the
two systems in Fig. 1 and the two systems in Fig. 2. Notably, the same iden-
tifications are induced by one of the probabilistic bisimilarities in [25]. Indeed,
once the appropriate transformations (eliminating actions from transitions and
labeling each state with the set of possible next-actions) are applied to get non-
deterministic and probabilistic Kripke structures from the four systems in Figs. 1
and 2, we have that no PCTL* formula distinguishes the two systems in Fig. 1
and the two systems in Fig. 2. However, it is worth pointing out that neither
~PB gbg,= NOI ~PB ghe,< coincides with the probabilistic bisimilarities in [25].

We shall show that ~pp ghe,< is precisely characterized by the original PML
as defined by Larsen and Skou [16,17], with the original interpretation of the
diamond operator: state s satisfies (a),¢ if s has an a-transition that reaches
with probability at least p a set of states satisfying ¢. In contrast, ~pp ghe,— is
characterized by a variant of PML having an interval-based operator {(a)(,, p.]-
instead of (a),-: state s satisfies (a)(p, p,)# if s has an a-transition that reaches
with probability between p; and ps a set of states satisfying ¢. We shall refer
to the interpretation of these two diamond operators as existential because it
simply requires that there exists a way to resolve internal nondeterminism that
guarantees satisfaction of formula ¢ within a certain probability range.



For both logics, we shall also provide an alternative interpretation of the di-
amond operator, which is inspired by the actual interpretation of PCTL* in [3].
We shall call universal this interpretation that might appear more appropriate
in a nondeterministic and probabilistic setting. With this interpretation, state
s satisfies (a),¢ (resp. (a)p, p,)@) if it has an a-transition that enjoys the same
property as before and each a-transition departing from s enjoys that property,
meaning that the formula is satisfied by s no matter how internal nondeter-
minism s resolved. We shall see that both universally interpreted variants of
the logic lead to the same equivalence as the one characterized by the original
interpretation of the original PML. Indeed, ~pp ghg,< has also many other char-
acterizations (see App. A), and this leads us to the convincement that it is an
interesting behavioral relation for nondeterministic and probabilistic processes.

The rest of the paper is organized as follows. In Sect. 2, we provide the nec-
essary background. The interpretations of PML over the non-alternating model
are introduced in Sect. 3 and the new probabilistic bisimilarities that they char-
acterize are presented in Sect. 4. Finally, Sect. 5 draws some conclusions. All
proofs of our results are collected in App. B.

2 Background

In this section, we define a model for nondeterministic and probabilistic pro-
cesses. Then, we recast in this general model the bisimilarity in [12] and the
probabilistic bimilarity in [16], together with their HML and PML characteriza-
tions. Finally, we recall the probabilistic bisimilarity in [22] and its modal logic
characterization for both the non-alternating case and the alternating case.

2.1 The NPLTS Model

Processes combining nondeterminism and probability are typically described by
means of extensions of the LTS model, in which every action-labeled transition
goes from a source state to a probability distribution over target states rather
than to a single target state. The resulting processes are essentially Markov
decision processes [8] and are representative of a number of slightly different
probabilistic computational models including internal nondeterminism such as,
e.g., concurrent Markov chains [28], strictly alternating models [10], probabilistic
automata in the sense of [21], and the denotational probabilistic models in [14]
(see [24] for an overview). We formalize them as a variant of simple probabilistic
automata [21].

Definition 1. A nondeterministic and probabilistic labeled transition system,
NPLTS for short, is a triple (S, A,—>) where:

— S is an at most countable set of states.

— A is a countable set of transition-labeling actions.

— — C Sx Ax Distr(S) is a transition relation, where Distr(S) is the set of
probability distributions over S. [ |



A transition (s,a, D) is written s — D. We say that s’ € S is not reachable
from s via that a-transition if D(s") = 0, otherwise we say that it is reachable
with probability p = D(s’). The reachable states form the support of D, i.e.,
supp(D) = {s' € S | D(s') > 0}. We write s — to indicate that s has an
a-transition. The choice among all the transitions departing from s is external
and nondeterministic, while the choice of the target state for a specific transition
is internal and probabilistic.

The notion of NPLTS yields a non-alternating model [21] and embeds the
following restricted models:

— Fully nondeterministic processes: every transition is Dirac, i.e., it leads to a
distribution that concentrates all the probability mass into one target state.

— Fully probabilistic processes: every state has at most one outgoing transition.

— Reactive probabilistic processes: no state has two or more outgoing transitions
labeled with the same action [27]. These processes include the probabilistic
automata in the sense of [20].

— Alternating processes: every state that enables a non-Dirac transition enables
only that transition. Similar to [29, 19], these processes consist of a non-strict
alternation of fully nondeterministic states and fully probabilistic states,
with the addition that transitions departing from fully probabilistic states
are labeled with actions.

An NPLTS can be depicted as a directed graph-like structure in which ver-
tices represent states and action-labeled edges represent action-labeled transi-
tions. Given a transition s — D, the corresponding a-labeled edge goes from the
vertex representing state s to a set of vertices linked by a dashed line, each of
which represents a state s’ € supp(D) and is labeled with D(s’) — label omitted
if D(s') = 1. Four NPLTS models are shown in Figs. 1 and 2.

We say that an NPLTS (S, A,—>) is image finite iff for all s € S and
a € A the set {D € Distr(S) | s — D} is finite. Following [16], we say that it
satisfies the minimal probability assumption iff there exists € € R such that,
whenever s — D, then for all s’ € S either D(s') = 0 or D(s’) > ¢; this implies
that supp(D) is finite because it can have at most [1/e] elements. If D(s') is
a multiple of € for all s’ € S, then the minimal deviation assumption is also
satisfied.

Sometimes, instead of ordinary transitions, we will consider combined tran-
sitions [22], each being a convex combination of equally labeled transitions.
Given an NPLTS (S, 4,—), s € S, a € A, and D € Distr(S), in the follow-
ing we write s —. D iff there exist n € Nsg, {p; € Rjo,;p | 1 <@ < n}, and

{s—%D;|1<i<n}suchthat > p;=1and >  p;-D;=D.

2.2 Bisimilarity for Fully Nondeterministic Processes

We recast in the NPLTS model the definition of bisimilarity for fully nondeter-
ministic processes in [12]. In this case, the target of each transition is a Dirac
distribution & for s € S, i.e., d5(s) =1 and d5(s’) =0 for all s € S\ {s}.



Definition 2. Let (S, A,—) be an NPLTS in which the target of each transi-
tion is a Dirac distribution. A relation B over S is a bisimulation iff, whenever
(s1,82) € B, then for all actions a € A it holds that:

— For each s; —% ds, there exists so 5 ds, such that (s, s5) € B.
— For each sy — 0, there exists sy — 0y, such that (s}, s5) € B.

We denote by ~p the largest bisimulation. ]

Given an image-finite NPLTS (S, A,—) in which the target of each tran-
sition is a Dirac distribution, the relation ~p is characterized by the so-called
Hennessy-Milner logic (HML) [12]. The set Fypyy, of its formulae is generated by
the following grammar (a € A):

b = true | 0 | 4N G| (a)o
The semantics of HML can be defined through an interpretation function My,
that associates with any formula in Fyyp, the set of states satisfying the formula:
M [true] = S
Mame[-¢] = S\ MauL[¢]
Maumrér A ¢2] = Mawmw[é1] N Muaww[¢2]
MHML[[<CL>¢]] = {S es ‘ 3s' € MHML[[¢5]]S LN (55/}

2.3 Bisimilarity for Reactive Probabilistic Processes

We recast in the NPLTS model also the definition of probabilistic bisimilarity
for reactive probabilistic processes in [16]. In the following, we let D(S’) =
Y weg D(s') for D € Distr(S) and S" C S.

Definition 3. Let (S, A,—) be an NPLTS in which the transitions of each
state have different labels. An equivalence relation B over S is a probabilistic
bisimulation iff, whenever (s1, s2) € B, then for all actions a € A and equivalence
classes C € S/B it holds that for each s1 25 D, there exists so —s Dy such that
D1 (C) =Dy(C). We denote by ~pp the largest probabilistic bisimulation. [ ]

Given an NPLTS (S, A,—) satisfying the minimal deviation assumption
in which the transitions of each state have different labels, the relation ~pg is
characterized by PML [16, 17]. The set Fpyy, of its formulae is generated by the
following grammar (a € A, p € Ry 1)):

6 = true |~ | 6 A6 | ()0
The semantics of PML can be defined through an interpretation function Mpyr,
that differs from My, only for the last clause, which becomes as follows:

Moy [{a)p,d] = {s € S| 3ID € Distr(S).s - D AD(Mpui[¢]) > p}
Note that, in this reactive setting, if an a-labeled transition exists that goes from
s to D, then it is the only a-labeled transition departing from s, and hence D
is unique. In [9], it was subsequently shown that probabilistic bisimilarity for
reactive probabilistic processes can be characterized by PML without negation
and that the existence of neither a minimal deviation nor a minimal probability
needs to be assumed to achieve the characterization result.



2.4 Bisimilarity for Non-Alternating and Alternating Processes

For NPLTS models in their full generality, we now recall two probabilistic bisim-
ulation equivalences defined in [22]. Both of them check whether the probabilities
of all classes of equivalent states — i.e., the class distributions — reached by the
two transitions considered in the bisimulation game are equal.

The first equivalence relies on deterministic schedulers for resolving nondeter-
minism. This means that, when responding to an a-transition of the challenger,
the defender can only select a single a-transition (if any).

Definition 4. Let (S, A,—) be an NPLTS. An equivalence relation B over S
is a class-distribution probabilistic bisimulation iff, whenever (s1,s2) € B, then
for all actions a € A it holds that for each sy —s D there exists so —s Dy such
that, for all equivalence classes C € S/B, D1(C) = Do(C). We denote by ~pp dis
the largest class-distribution probabilistic bisimulation. [ |

While in Def. 3 the quantification over C' € S/B can be placed before or after
the transitions because s; and s; can have at most one outgoing a-transition
each, in Def. 4 it is important for the quantification to be after the transitions.

The second equivalence relies instead on randomized schedulers. This means
that, when responding to an a-transition of the challenger, the defender can select
a convex combination of a-transitions (if any). In the following, the acronym ct
stands for “based on combined transitions”.

Definition 5. Let (S, A,—) be an NPLTS. An equivalence relation B over S
is a class-distribution ct-probabilistic bisimulation iff, whenever (s1,s2) € B,
then for all actions a € A it holds that for each s1 — D there exists so —¢ Do
such that, for all equivalence classes C € S/B, D1(C) = Da(C). We denote by
~Pp.ais the largest class-distribution ct-probabilistic bisimulation. u

In order to obtain a modal logic characterization for ~pg qis and ~°PtB7dis,
in [18,13] an extension of HML much richer than PML was defined. The main
differences are that (i) formulae are interpreted over probability distribution on
states rather than over single states and (ii) the modal operator (a),- is split
into the original modal operator (a)- of HML and an additional unary operator
[]p such that state distribution D satisfies [¢], if D associates with the set of
states satisfying ¢ a probability that is at least p.

In [11], the same equivalences (lifted to state distributions) were differently
characterized by adding to HML a binary operator - @, -, where ¢; @, ¢ asserts
decomposability of a state distribution to satisfy the two subformulae.

For alternating processes, i.e., NPLTS models in which every state that en-
ables a non-Dirac transition enables only that transition, the following holds:

— ~pp.dis and ~pp g, collapse into a single equivalence that coincides with
those defined in [10, 19] for alternating processes, as shown in [23].
— ~pB,dis 1S again characterized by the original PML, as shown in [18].



3 Interpreting PML over NPLTS Models

PML was originally interpreted in [16, 17] on reactive probabilistic processes and
then in [18] on alternating processes. The same interpretation can be applied to
general NPLTS models by establishing that state s satisfies formula (a),¢ iff
there exists a resolution of internal nondeterminism such that s can perform an
a-transition and afterwards reaches with probability at least p a set of states
that satisfy ¢. This existential interpretation only provides a weak guarantee of
fulfilling properties, as it depends on how internal nondeterminism is resolved.
A different interpretation can be adopted by following [3]: s satisfies (a),¢
iff, for each resolution of internal nondeterminism, s can perform an a-transition
and afterwards reaches with probability at least p a set of states that satisfy ¢.
The resulting universal interpretation provides a strong guarantee of fulfilling
properties because, no matter how internal nondeterminism is resolved, a certain
behavior is ensured.
We denote by PML5 > and PMLy > the logics resulting from the two differ-
ent interpretations of the diamond operator, which we formalize as follows:
Mpwmrs 5 [(a)p¢] = {s€S|3D.s DA D(MPMLE,Z [¢]) = p}
M, - [(@)p8] = {s € S| 5% AVD.s - D = D(Mpwi, . [¢]) > p}

Finally, we denote by PML3 1 and PMLy ;1 two further variants generalizing
the previous two logics, in which the probability value p is replaced by a prob-
ability interval [p1, p2] — where p1,p2 € Rpg 1) are such that p; < py — and the
resulting diamond operator is interpreted as follows:

Memvrs, [(@)ipy p2)0] = {5 € S| ID.s — D Ap1 < D(Mpmrs,[4]) < p2}
Memry, [(@)py pa10] = {s €5 |s — AVD.s =D = p1 < D(Mpywy i [¢]) < p2}
Note that (a),¢ can be encoded as (a)[, 1)¢ because p is a lower bound.

In the following, if L is one of the above variants of PML, then we denote
by F1(s) the set of formulae in Fy, satisfied by state s and we let s; ~y, s iff
F1(s1) = Fr(s2). Interestingly enough, the equivalences induced by the univer-
sally interpreted variants are the same and coincide with the equivalence induced
by the existentially interpreted variant with probabilistic bound. In contrast, the
equivalence induced by PML3 is finer (see App. A).

4 Bisimilarities Characterized by PML

In this section, we introduce the probabilistic bisimilarities for NPLTS models
that are characterized by PML as interpreted in the previous section. Before
presenting their definition, we highlight the differences with respect to ~pg,dis-

Firstly, instead of comparing the probability distributions over all classes of
equivalent states reached by the transitions considered in the bisimulation game,
the new equivalences focus on a single equivalence class at a time. Therefore,
similar to [26], given an action a the probability distribution over all classes
of equivalent states reached by an a-transition of the challenger can now be
matched by means of several (not just by one) a-transitions of the defender,
each taking care of a different class.



Secondly, the new equivalences take into account the probability of reaching
groups of equivalence classes rather than individual classes. This would make
no difference in the case of ~pg gis, while here it significantly changes the dis-
criminating power (see App. A). Due to the previous and the current difference
with respect to ~pp.ais, we call these equivalences group-by-group probabilistic
bisimilarities.

Thirdly, the new equivalences come in several variants depending on whether,
in the bisimulation game, the probabilities of reaching a certain group of classes
of equivalent states are compared based on = or <. Again, this would make no
difference in the case of ~pp gis.

In the following, we let |JG = (Joeg C when G € 25/B is a group of equiva-
lence classes with respect to an equivalence relation B over S.

Definition 6. Let (S, A,—>) be an NPLTS and the relational operator <€
{=,<}. An equivalence relation B over S is a p<-group-by-group probabilistic
bisimulation iff, whenever (s1,s2) € B, then for all actions a € A and groups
of equivalence classes G € 25/B it holds that for each s; — D, there exists
sy — Dy such that D1(|JG) < D2(lUG). We denote by ~PB gbga the largest
D-group-by-group probabilistic bisimulation. ]

The definition of ~pp ghg,» assumes the use of deterministic schedulers, but
it can be easily extended to the case of randomized schedulers by analogy with
~Pp.dis thus yielding ~Fp p0 .

Note that, while in Def. 4 the quantification over C' € S/B is after the
transitions, in Def. 6 the quantification over G € 25/8 is before the transitions
thus allowing a transition of the challenger to be matched by several transitions
of the defender depending on the target groups.

The relation ~pg gpe,— identifies the two systems in Fig. 1, whilst the relation
~PB,ghg,< also identifies the two systems in Fig. 2. The following theorem shows
that ~pg gis is finer than ~pp ghe,— and that the latter is finer than ~pp ghe <.

Theorem 1. Let (S, A,—) be an NPLTS and s1,$2 € S. Then:

1. s1 ~pB,dis 82 = 51 ~PB,gbg,= 52-
2. 81 ~PB,gbg,= 52 = S1 ~PB,ghg,< 52- u

The two implications above cannot be reversed: Fig. 1 shows that ~pp qis
is strictly finer than ~pp ghe,— and Fig. 2 shows that ~pp ghe,— is strictly finer
than ~PB,gbg,<-

In [22], it is also shown that Nf}&dis, the variant of ~pp g5 that relies on
randomized schedulers (see Def. 5), is strictly finer than ~pp_g;s. On the contrary,
we have that ~pp g < coincides with its ct-variant, and hence it is insensitive
to the choice between deterministic or randomized schedulers used to resolve
nondeterminism. This is not the case for ~pp ghg =. Indeed, the ct-variants of
~PB,gbg,— coincides with ~pp ghg,<, meaning that, in the bisimulation game,
randomized schedulers reduce the discriminating power of the =-comparison of
probabilities to that of the <-comparison. As expected, the ct-variant of ~pp gis
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Fig. 3. Relating group-by-group and distribution-based probabilistic bisimilarities

is coarser than that of ~pp gpg —, and thus also coarser than ~pgghg < and

ct
"~PB,gbg,<"

Theorem 2. Let U = (S, A,—) be an NPLTS and s1,s2 € S. Then:

t
1. 51 ~PB,gbg,= S2 = S1 N%’B,gbg,: S2.
ct ct
2. 81 ~PB dis 52 = 51 ~PB ghg,— 52
t t .
3. 81 ~PBghg,< S2 < 51 NCPngg,g So < s1 N%ng&: So when U 1is
image-finite. [ |

The inclusions of ~pp ghg,= in N%B,gbg,: is strict. This can be proved by
using the systems in Fig. 2. Indeed, s1 /pp gbg,= 52 while s1 ~8p , _ so; the
latter holds because the central offer-transition of s; can be matched by a con-
vex combination of the two offer-transitions of s both weighted by 0.5. Also
the inclusion of ~gg 4 in ~pB gbg < is strict. This is evidenced by the systems
in Fig. 1; no transition of s; can be obtained as the convex combination of
transitions of sy and thus sy %§p 4, s2. Finally, it also holds that ~y 4 and
~PB,gbg,— are incomparable. Indeed, the two systems in Fig. 1 are equated by
~PB,gbg,— and distinguished by NCPtB’diS, while the two systems in Fig. 2 are dis-
tinguished by ~pp ghe,— and equated by N%tB, dqis- These results are summarized
in Fig. 3.

For the new probabilistic bisimilarities, different alternative definitions can
be obtained by varying the requirements on the comparison between sets of
probabilities by considering not only = and < but also >, or by comparing only
extremal probabilities (U and/or M). Quite surprisingly, all relations but the one
based on = do collapse. Due to lack of space, we do not consider these variants
in the present paper (see App. A).

Before moving to the modal logic characterization results, we show that the
two group-by-group probabilistic bisimilarities and their ct-variants collapse on
existing bisimilarities when one considers NPLTS models with a restricted in-
terplay between probabilistic and non-determinism. In particular they coincide
with: (i) the bisimilarity in [12] for fully nondeterministic processes (see Def. 2);
(ii) the probabilistic bisimilarity in [16] for reactive probabilistic processes (see
Def. 3); (iii) the probabilistic bisimilarities in [22] when alternating processes
are considered. These results provide additional evidences that PML can be a
uniform framework for reasoning on different classes of processes including prob-
ability and various degrees of nondeterminism.



Theorem 3. Let (S, A, —) be an NPLTS in which the target of each transition
is a Dirac distribution. Let s1,s2 € S and <€ {=,<}. Then:
51 ~PB,ghg,x S2 < S1 N%t&gbgw 83 <= 81 ~B S2 [ |

Theorem 4. Let (S, A,—) be an NPLTS in which the transitions of each state
have different labels. Let s1,s2 € S and <€ {=,<}. Then:
51 ~PB,gbg,x 52 < S1 N%tgygbg,m S§2 <= S1 ~VPB S2 [ |

Theorem 5. Let (S, A,—>) be an NPLTS in which every state that enables a
non-Dirac transition enables only that transition. If s1,s2 € S and <€ {=,<}
then:

81 ~PB,gbg,xa 52 < S1 ~PB,dis 52

51 ~PB gbgsa 52 = S1 VPR dis 52 n

We are now ready to establish our logical characterization results and to show
that ~pp ghe,— is characterized by PML3 1 while ~pp ghe < is characterized by
PML3 >, under the image finiteness and minimal probability assumptions.

Theorem 6. Let (S, A,—>) be an image-finite NPLTS satisfying the minimal
probability assumption. Let s1,s2 € S. Then:
$1 ~PB,gbg,= 52 < S1 ~PML3; 52 ]

Theorem 7. Let (S, A, —) be an image-finite NPLTS satisfying the minimal
probability assumption. Let s1,s9 € S. Then:
81 ~PB,gbg,< 82 < S1 ~“PMLg > 52 [ |

Given the importance of these results in the economy of the paper, below we
sketch the proof of Thm. 6; the one for Thm. 7 follows the same pattern. First,
we need to provide an alternative characterization of ~pp ghg,— as the limit of a
sequence of equivalence relations N%’B,gbg,:'

For an NPLTS (S, A, —), the family {~pp ,,, | i € N} of equivalence
relations over S is inductively defined as follows:

~ ~Ppghg == 5 X 5.
i+l

PB,gbg,= ;
a € A and groups of equivalence classes G € 25/~FB.ebs.= it holds that for
each s; —= D there exists sy — Dy such that D (|JG) = Do(JG).

is the set of all pairs (s1,52) € ~pp 4, — such that for all actions

Each equivalence relation N{)B,gbg,: identifies those states that cannot be
distinguished within ¢ steps of computation. The following lemma guarantees
that two states of an image-finite NPLTS are equivalent according to ~pp ghg,—
iff they are equivalent according to all the relations NiPB,gbg7:'

Lemma 1. Let (S, A,—>) be an image-finite NPLTS. Then:

~Y = NZ
PB,gbg,= — PB,gbhg,=
i€EN |



The second step of the proof is to show that two states are equated by
~pB,gbg,— 1l they satisfy the same formulae in Fpy;_,, which is the set of
formulae in FpumLs, whose maximum number of nested diamond operators is at
most 1.

Lemma 2. Let (S, A,—) be an image-finite NPLTS satisfying the minimal
probability assumption. Let s1,s2 € S. Then for all i € N:
51 ~PB ghg,= 52 flgMLg,I(sl) = ]:%MLH,I(32) ]

Now Thm. 6 directly follows from Lemma 1 and Lemma 2. The same result
would not hold if PML5 > was used. For instance, the two states s; and s»
in Fig. 2, which are not related by ~ppgps,— as can be seen by considering
the PMLg 1 formula (offer) g 5,0.5)(head); qjtrue, cannot be distinguished by any
PML3 > formula.

It is easy to see that NCPtB7gbg,: and "’(fﬂtB,gbg,g are respectively characterized
by PML%EI and PML%‘;, in which the interpretation of the diamond operator
relies on combined transitions instead of ordinary ones.

5 Conclusion

We have addressed the problem of defining behavioral relations for nondetermin-
istic and probabilistic processes that are characterized by modal logics as close as
possible to PML, the natural probabilistic version of the by now standard HML
for fully nondeterministic processes. We have introduced two new probabilistic
bisimilarities (~pB ghg,< and ~ppghg,—) following a group-by-group approach
and studied their relationships with an existential and a universal interpretation
of two variants of PML, in which the diamond is respectively decorated with
a probability lower bound and a probability interval. All the resulting logical
equivalences, except the one based on existential interpretation and probability
intervals, do coincide with ~pp ghg <. Interestingly enough, ~pg gpg —, which is
finer than ~pp gbe, <, has naturally emerged in a framework recently developed
to provide a uniform model and uniformly defined behavioral equivalences for
different classes of (nondeterministic, stochastic, probabilitic) processes [2].

These results, together with backward compatibility of our equivalences with
those already defined for models with a restricted interplay between probability
and nondeterminism, provide additional evidences that PML can be a uniform
framework for reasoning on different classes of processes including probability
and various degrees of nondeterminism.

We have also considered variants of our equivalences that rely on combined
transitions and have proved that all such variants collapse on ~pp ghg,<. This
suggests that, in the group-by-group approach, resolving nondeterminism with
deterministic or randomized schedulers leads to the same identifications except
when checking for equality of probabilities.

Our work has some interesting points in common with [25], where new prob-
abilistic bisimilarities over nondeterministic and probabilistic Kripke structures



have been defined that are in full agreement with PCTL, PCTL*, and their
variants without the next-time operator. Indeed, both [25] and our work witness
that, in order to characterize the equivalences induced by PCTL/PCTL*/PML
in a nondeterministic and probabilistic setting, it is necessary to: (1) Anticipate
the quantification over the sets of equivalent states to be reached in the bisimu-
lation game, as done in [26]; (2) Consider groups of classes of equivalent states
rather than only classes; (3) Compare for equality only the extremal probabilities
of reaching certain sets of states rather than all the probabilities.

It is, however, worth noting that both our equivalences differ from those
of [25]. There, to define probabilistic bisimilarities a multistep and inductive
approach has been used and only their strong multistep 1-depth bisimulation is
strongly related to ~pp ghg <. In contrast, the general probabilistic bisimilarity
of [25], obtained as the limit of the chain of n-depth bisimulations, is provably
finer than both our group-by-group probabilistic bisimilarities once the appro-
priate model transformation from Kripke structures to NPLTS is performed.

Our results and those in [25] also show that, in the case of nondeterminis-
tic and probabilistic processes, it is not possible to define a single probabilistic
bisimilarity that is characterized by both PML — as interpreted in this paper —
and PCTL* — as interpreted in [3]. Thus, for nondeterministic and probabilistic
processes the situation is quite different from the case of fully nondeterministic
processes, where probabilistic bisimilarity is characterized by both HML [12] and
CTL* [4], and from the case of reactive probabilistic processes, where probabilis-
tic bisimilarity is characterized by both PML [16,17] and PCTL* [1].

References

1. A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. It
usually works: The temporal logic of stochastic systems. In Proc. CAV 1995,
volume 939 of LNCS, pages 155-165. Springer, 1995.

2. M. Bernardo, R. De Nicola, and M. Loreti. A uniform framework for modeling
nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral
equivalences. Information and Computation, 225:29-82, 2013.

3. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proc. FSTTCS 1995, volume 1026 of LNCS, pages 499-513. Springer,
1995.

4. M. Browne, E. Clarke, and O. Griimberg. Characterizing finite Kripke structures
in propositional temporal logic. Theoretical Computer Science, 59:115-131, 1988.

5. E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. on Programming
Languages and Systems, 8:244-263, 1986.

6. S. Crafa and F. Ranzato. A spectrum of behavioral relations over LTSs on probabil-
ity distributions. In Proc. CONCUR 2011, volume 6901 of LNCS, pages 124-139.
Springer, 2011.

7. L. de Alfaro, R. Majumdar, V. Raman, and M. Stoelinga. Game refinement rela-
tions and metrics. Logical Methods in Computer Science, 4(3:7):1-28, 2008.

8. C. Derman. Finite State Markovian Decision Processes. Academic Press, 1970.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled Markov
processes. Information and Computation, 179:163-193, 2002.

H. Hansson and B. Jonsson. A calculus for communicating systems with time and
probabilities. In Proc. RTSS 1990, pages 278-287. IEEE-CS Press, 1990.

M. Hennessy. Exploring probabilistic bisimulations, part I. Formal Aspects of
Computing, 24:749-768, 2012.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32:137-162, 1985.

H. Hermanns, A. Parma, R. Segala, B. Wachter, and L. Zhang. Probabilistic logical
characterization. Information and Computation, 209:154-172, 2011.

H. Jifeng, K. Seidel, and A. Mclver. Probabilistic models for the guarded command
language. Science of Computer Programming, 28:171-192, 1997.

R. Keller. Formal verification of parallel programs. Communications of the ACM,
19:371-384, 1976.

K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94:1-28, 1991.

K. Larsen and A. Skou. Compositional verification of probabilistic processes. In
Proc. CONCUR 1992, volume 630 of LNCS, pages 456-471. Springer, 1992.

A. Parma and R. Segala. Logical characterizations of bisimulations for discrete
probabilistic systems. In Proc. FOSSACS 2007, volume 4423 of LNCS, pages 287—
301. Springer, 2007.

A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic systems.
In Proc. CONCUR 2000, volume 1877 of LNCS, pages 334-349. Springer, 2000.
M. Rabin. Probabilistic automata. Information and Control, 6:230-245, 1963.

R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD Thesis, 1995.

R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
Proc. CONCUR 1994, volume 836 of LNCS, pages 481-496. Springer, 1994.

R. Segala and A. Turrini. Comparative analysis of bisimulation relations on al-
ternating and non-alternating probabilistic models. In Proc. QEST 2005, pages
44-53. IEEE-CS Press, 2005.

A. Sokolova and E. de Vink. Probabilistic automata: System types, parallel compo-
sition and comparison. In Validation of Stochastic Systems, volume 2925 of LNCS,
pages 1-43. Springer, 2004.

L. Song, L. Zhang, and J. Godskesen. Bisimulations meet PCTL equivalences for
probabilistic automata. In Proc. CONCUR 2011, volume 6901 of LNCS, pages
108-123. Springer, 2011.

M. Tracol, J. Desharnais, and A. Zhioua. Computing distances between proba-
bilistic automata. In Proc. QAPL 2011, volume 57 of EPTCS, pages 148-162,
2011.

R. van Glabbeek, S. Smolka, and B. Steffen. Reactive, generative and stratified
models of probabilistic processes. Information and Computation, 121:59-80, 1995.
M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In Proc. FOCS 1985, pages 327-338. IEEE-CS Press, 1985.

W. Yi and K. Larsen. Testing probabilistic and nondeterministic processes. In
Proc. PSTV 1992, pages 47-61. North-Holland, 1992.



A Variants of Group-by-Group Bisimilarities

In this appendix, we present further motivations, alternative characterizations
based on extremal probabilities and universal interpretations, relationships de-
termined by the distinguishing power, and multistep variants for the group-by-
group probabilistic bisimilarities.

A.1 Class-by-Class Probabilistic Bisimilarities

In order to motivate the use of groups of equivalence classes in Def. 6, we now
introduce class-by-class variants of ~pp qis by simply anticipating the quantifi-
cation over equivalence classes of target states in Def. 4.

Definition 7. Let (S, A,—) be an NPLTS and the relational operator <€
{=,<,>}. An equivalence relation B over S is a <class-by-class probabilistic
bisimulation iff, whenever (s1,s2) € B, then for all actions a € A and equiv-
alence classes C € S/B it holds that for each s —25 Dy there exists so — Dy
such that D1(C) 1 Dy(C). We denote by ~pp chesa the largest x-class-by-class
probabilistic bisimulation. [ ]

The relations ~pp chea are too coarse. For example, in Fig. 4 it holds that
51 ~PB,cbe,= S2, as witnessed by the equivalence relation that pairs states with
identically labeled transitions. However, after performing a, from s it is always
possible to reach a state in which ¢’ or ¢” is enabled, whereas this is not the case
from sj.

From a modal logic perspective, none of the relations ~pg che s is character-
ized by the PML variants of Sect. 3. For instance, in Fig. 4 it holds that only
s1 satisfies the following existentially interpreted formulae:

PML3 > : (a)o.5({c')1true V {(¢")1true)
PMLH,S : <a>0(<c'>1true \Y (c”)ltrue)
PMLs1: —({a)0.2,03 () ytrue V (¢") i 1ytrue)
while only so satisfies the following universally interpreted formulae:
PMLy > : (a)o.7({b)1true V (d)true)
PMLV7S : <a>0,8(<b>1true V (d)ltrue)

PMLy1: (a)[0.7,0.8/((b)[1,1true V (d)[1 1ytrue)
where as usual ¢ V ¢ stands for —(—¢; A —¢2). The presence of the logical

St 9

a a a a
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Fig. 4. Models related by ~pg,cbe,= and distinguished by all PML variants



disjunction in the distinguishing formulae above clearly indicates that — having
anticipated the quantification over the target states — it is necessary to group
equivalence classes together if one wants to obtain the same identifications as
the equivalences induced by the variants of PML.

A.2 Group-by-Group Bisimilarities and Extremal Probabilities

The group-by-group probabilistic bisimilarities of Def. 6 are directly character-
ized by the ezistentially interpreted variants of PML. We consider below variants
of the group-by-group approach in which only the supremum (U) and/or the infi-
mum (M) of the probabilities of reaching a certain group after a certain action are
considered. It turns out that the resulting probabilistic bisimilarities are directly
characterized by the universally interpreted variants of PML.

Definition 8. Let (S, A,—) be an NPLTS. An equivalence relation B over S
is a UM-group-by-group probabilistic bisimulation iff, whenever (s1,s2) € B,
then for all actions a € A and groups of equivalence classes G € 25/8 it holds
that s; —» mmplies s 25 with:

LU U9 = U DU9)

S1 L} D1 S2 L> Do
[ DuU9) = [1 D2AU9)
S1 L} D1 S2 L> Do
We denote by ~pB ghg,un the largest Ur-group-by-group probabilistic bisimula-
tion. ]

Theorem 8. Let (S, A, —) be an image-finite NPLTS satisfying the minimal
probability assumption. Let s1,s0 € S. Then:
51 ~PB,gbg,UN S2 <= S1 ~PMLy 1 52 [ |

Definition 9. Let (S, A,—) be an NPLTS and symbol # € {U,M}. An equiv-
alence relation B over S is a #-group-by-group probabilistic bisimulation iff,
whenever (s1,s2) € B, then for all actions a € A and groups of equivalence
classes G € 25/B 4t holds that s1 — implies s 2 with:

# DilU9) = # DU9)

S1 L Dl S2 L> D2
We denote by ~pp gbg,4 the largest #-group-by-group probabilistic bisimulation.
|

Theorem 9. Let (S, A,—>) be an image-finite NPLTS satisfying the minimal
probability assumption. Let s1,s2 € S. Then:

81 ~PB,gbg,l §2 < S1 ~PMLy < 52

81 ~PB,gbg,n $2 < S1 ~PMLy > 52 |

A.3 Relating the Various Probabilistic Bisimilarities

If we investigate the spectrum of relations considered so far, we discover that
five of the six group-by-group probabilistic bisimilarities boil down to the same
equivalence, and this extends to the corresponding PML-based equivalences.



Theorem 10. Let U = (S, A,—>) be an NPLTS and s1,s2 € S. Then:

. 81 ~PB,dis 52 = S1 ~PB,gbg,= S2 = S1 ~YPB,gbg,Ln 52-

. 81 ~PB,gbg,< 52 <= S1 ~PBgbg,u S2 when U is image finite.

. 51 ~PB,gbg,> 52 <= S1 ~PB,ghg,n S2 When U is image finite.

S1 ~PB,gbg,l 52 <= 51 ~PB gbg,M $2 <= S1 ~PB,gbg,un S2- u

oo~

The two implications above cannot be reversed: Fig. 1 shows that ~pp qis is
strictly finer than ~pg gg — and Fig. 2 shows that ~pp gpe — is strictly finer than
~PB,gbe,un- Note that the result relating ~pp gbe,us ~PB,gbe,n, and ~PB ghe, LN
holds because groups of equivalence classes are considered. Analogous bisimilar-
ities defined in a class-by-class fashion would not coincide.

Another interesting property is that the five coinciding group-by-group prob-
abilistic bisimilarities are the same as their ct-variants, and hence are insensitive
to whether deterministic or randomized schedulers are employed to resolve non-
determinism. This is not the case with ~pp gis and ~pp ghg,—. Moreover, the
ct-variants of all the six group-by-group probabilistic bisimilarities boil down
to the same equivalence (~pg gbg <), meaning that, in the bisimulation game,
randomized schedulers reduce the discriminating power of the =-comparison of
probabilities to that of the <-comparison.

Theorem 11. LetU = (S, A,—>) be an NPLTS and s1,s2 € S. Then:

1. s1 ~pBqS2 = $1 NCPtBN s9 for < € {7dis”,”gbg,="}.
2. 81 ~PBgbgs S2 < S1 Nfat&gbgp sy for > € {<,>,UM,U,N} when U is
image finite.
ct ct
3. 51 ~PbB dis 52 = 51 “PB ghg,= 52-
4+ 81 ~Pp ghg— 52 <= 51 ~Bp ghg.un 52 wWhen U is image finite. |

The inclusions of ~pp dis and ~pp ghg= i ~fp 4 and ~Py 1, _, Tespec-
tively, are strict, as shown by Fig. 2; the central offer-transition of s; can be
matched by a convex combination of the two offer-transitions of s both weighted
by 0.5. Moreover, Fig. 1 shows that the inclusion of ~§p 4 in ~5p , _ is strict.
Finally, Figs. 1 and 2 show that N%tB,dis and ~pp ghg,— are incomparable with
each other.

A.4 Multistep Variants of Probabilistic Bisimilarities

Further relations can be defined by considering entire computations instead of in-
dividual transitions in the bisimulation game. Given an NPLTS U = (S, A, —),

ai az An . .
we say that ¢ = sg——> §1 =+ Sa...8,_1 =+ Sp, 1S a computation of U of length

n going from sq to s, iff for all 4 = 1,...,n there exists a transition s;_; — D;

such that s; € supp(D;), with D;(s;) being the execution probability of step
a; .

si_1 —— s; of ¢ conditioned on the selection of transition s;,_; —» D; of U at

state s;_1. We call combined computation a computation in which every step

arises from a combined transition.



The multistep variants of probabilistic bisimilarities for NPLTS models can
be defined in different ways. The first option, inspired by bisimilarity for fully
nondeterministic processes, consists of changing the one-step definitions by con-
sidering traces o € A* in place of actions a € A and == in place of —*+ (resp.
== in place of —%5, ), where s == D means that there exists a computation
from s labeled with a whose last step is originated by a transition reaching distri-
bution D. When « is the empty sequence €, we let s == §,. It was shown in [12]
that the discriminating power of bisimilarity for fully nondeterministic processes
does not change if the multistep transition relation == is used instead of the
one-step relation — . As expected, this result carries over class-distribution and
group-by-group probabilistic bisimilarities for nondeterministic and probabilistic
processes (see App. C).

The second option, inspired by probabilistic bisimilarity for reactive prob-
abilistic processes, does not only compare the probability values arising from
the last step of the computations, but additionally considers the probability of
performing the entire computations. While it can be shown that the discrimi-
nating power of the probabilistic bisimilarity for reactive probabilistic processes
in [16] and of class-distribution probabilistic bisimilarities for nondeterministic
and probabilistic processes does not change if multistep probability values are
compared instead of one-step values, this is not the case with the group-by-group
probabilistic bisimilarities (see App. D).
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Fig. 5. Two models identified by ~pB gbg,= and ~ppgbe,< that are distinguished by
PCTL*



Finally, the third option, which is orthogonal to the previous two, consists
of imposing some constraints along the computations, such as passing through
specific sets of states at each step. This is the idea exploited in [25] in order
to define probabilistic bisimilarities — following the second option above — over
nondeterministic and probabilistic Kripke structures that are precisely charac-
terized by PCTL, PCTL*, and their variants without the next-time operator,
as interpreted in [3]. We note that the strong 1-depth bisimulation in [25] and
our ~ppghe,< are strongly related. In contrast, the probabilistic bisimilarities
built on the strong 1-depth bisimulation in [25] are finer than our group-by-
group probabilistic bisimilarities. Consider for instance the two NPLTS models in
Fig. 5. We have that s; ~pB gbg,— S2 — and hence s; ~pB ghg,< 52 — as witnessed
by the equivalence relation that pairs states with identically labeled transitions
and, in the case of b-transitions, identical target distributions. However, s; and
s are distinguished by the probabilistic bisimilarity in [25] that is characterized
by PCTL*. In fact, let us view the two NPLTS models as two nondeterministic
and probabilistic Kripke structures by eliminating actions from transitions and
labeling each state with the set of its next-actions. Then the PCTL* formula
Pr<o.61(XX¢) is satisfied by so but it is not satisfied by s1, because the prob-
ability of reaching in two steps a state that enables ¢ in the maximal resolution
of s; starting with the rightmost a-transition is 0.8 - 0.7 + 0.2 - 0.6 = 0.68 and
hence it is greater than 0.61.



B Proofs of Results

Proof of Thm. 1. Directly from Thm. 10. ]
Proof of Thm. 2. Directly from Thm. 11. [ |

Proof of Thm. 3. Since every transition of this specific NPLTS can reach
with probability greater than 0 a single state and hence a single class of any
equivalence relation — which are thus reached with probability 1 — the reflex-
ive, symmetric, and transitive closure of a bisimulation is trivially a =-group-
by-group (ct-)probabilistic bisimulation, a <-group-by-group (ct-)probabilistic
bisimulation, and a >-group-by-group (ct-)probabilistic bisimulation. ]

Proof of Thm. 4. Since every state of this specific NPLTS has at most one
transition labeled with a certain action, a probabilistic bisimulation is triv-
ially a =-group-by-group (ct-)probabilistic bisimulation, a <-group-by-group
(ct-)probabilistic bisimulation, and a >-group-by-group (ct-)probabilistic bisim-
ulation. -
Proof of Thm. 5. Since every state of this specific NPLTS has either zero
or more Dirac transitions or a single non-Dirac transition, a class-distribution
(ct-)probabilistic bisimulation is trivially a =-group-by-group (ct-)probabilistic
bisimulation, a <-group-by-group (ct-)probabilistic bisimulation, and a
>-group-by-group (ct-)probabilistic bisimulation. [ |

Proof of Lemma 1. Denoting by ~' the relation [,y NiPB,gbg,:» we prove
that ~' = ~PB,ghg,=- Firstly, we observe what follows:

— ~/' is an equivalence relation because so is N%’ngg,: for all - € N.

— Given C € S/~ and i € N, there exists a unique element C; in S/ ~%y
such that C; O C, and hence C' = ﬂieN C; with C;; D G}, for i1 < is.

— As a consequence, given G € 25/~ and i € N, there exists a unique element

,gbg,=

G; in 25/PBeve,= such that every class in G; contains some class in G, and
hence UG = ;en(UG:) with UG, 2 UG, for iy <.

— Moreover, if s — D, then D(|JG) = inf;en D(|JG;). In fact, observing that
for all 4 € N it holds that D(JG;) > D(UG) because UG; 2 UG, if we let
p = inf;en D(UGi), then p > D(|J G) because D(|J G) is a lower bound of the
sequence (D(|JGi))ien and p is the greatest lower bound of that sequence.
Suppose p > D(|JG) and let 6 = p — D(IJG). Since § > 0 and the sum-
mation D(S\ [JG) satisfies 3 ¢\ ;g P(s) < 1 and hence converges, there
exists a finite subset X of S\ |JG such that the rest D((S\ JG) \ X) of
the previously considered summation satisfies > c g\(jgnx DP(s) < 4. Let
Y =(S\UG)\ X. For all i € N, it holds that:

Ug =uJgu¥nUég)uXnUg)
where the three sets on the right-hand side are pairwise disjoint and hence:
D(UG:) = DUG) +DY nUG) +D(X NUG)

DUG)+ DY)+ DX NnUG)

DUY) +6+ DX NUG)

p+ DX NUG)

A A



From the inequality above and D(|JG;) > p, we derive that:

DX NUG) > DUG) —p > 0
and hence X N|JG; # 0 for all i € N. As a consequence, X N|JG # 0 be-
cause X is finite and |JGy 2 |JG1 D .... This contradicts the fact that X is
a subset of S\ |JG. Therefore, it must be p = D(|JG).

Secondly, it holds that ~' D ~ppg ghe — because N%nggz D~PpB,ghg,— foralli € N
as we now show by proceeding by induction on :

— If i =0, then N%’B,gbg,: =SxS5D ~PB,gbg,=-
— Let 7 be an element of N for which the result holds and consider 7 + 1. If
51,52 € S satisfy s1 ~pB ghg,— S2, then:
e Forall a € A and G € 25/PB.sba= it holds that for each s; — Dy there
exists sy — Dy such that D;(|JG) = Do(JG).
°* 5 NiPB,gbg,: so because N%B,gbg,: D ~pB ghg,—~ by the induction hypoth-
esis.
Since every equivalence class of ~§,B7gbg7: is equal to the union of some equiv-
alence classes of ~pp ghg,— and hence the union of equivalence classes in every
group G’ of NiPB,gbg,: is equal to the union of the equivalence classes in some

group G of ~pp ghe =, we derive that for all a € A and G’ € 25/~B s = it
holds that for each s; —s D; there exists so — Dy such that:

DiU9) = DiU9) = D2(U9) = D2(UYG)

This means that s; Nf;}élgbg _ So.

Thirdly, we prove that ~' C ~pg gbe = by showing that ~' is a =-group-by-group
probabilistic bisimulation. Suppose that s1,s. € S satisfy s; ~' sy and, given
a € Aand G € 25/ assume that s; — D;. Then D1(UG) = inf,en D1(U G:)
where each G; is the unique element in 25/~PB.gve.= guch that every class in G;
contains some class in G.
Observing that NOPngg,: induces a single equivalence class equal to S and hence
D1(UGo) = Di(S) = 1, from s; ~' sy and s; — D; it follows that for all
i € N> there exists sy LN D, ; such that Dy (|JGi—1) = Da2,;(IJGi—1). Since the
NPLTS is image finite, the set {Dy; | ¢ € N>1} is finite and we enumerate it
as {D3,...,D5}. For each j € {1,...,k}, we also let I; be the set of indexes
i € N>q such that D1(JGi—1) = D3(UJGi—1). At least one set in {I1,...,I;} is
infinite. Indeed, if every I; were finite, then there would exist an integer 7 such
that ¢ ¢ I, for each j € {1,...,k}. Hence, there would exists a group G;_; such
that Dy (JGi_1) # D5(UGi_1) for each j € {1,...,k}. However, this implies
S1 %%ngg’: s9, which whould contradict the assumption s; ~' s5.
Let 5’ be such that I, is infinite. We have that:
D1(G) = infienD1(UGs)

= infier, D1(UG:) (1)

= infier, Dé Ugi) ,

= infienD3 (UG:) = D3(G)  (2)



where the equalities (1) and (2) above derive from the fact that (D1(G;)):e 1; and

(D} (QZ))ZEp are infinite subsequences of (D1(G;))ien and (DJ (Gi))ien, respec-

tlvely, and therefore they have the same infimum.

In conclusion, we have that ~' is a =-group-by-group probabilistic bisimulation.
|

Proof of Lemma 2. Given an image-finite NPLTS (S, A, —) satisfying the
minimal probability assumption, and given s1,se € S, we proceed by induction
on i € N.
Base of Induction (i = 0): Since ~pp 4, - = S x S and ngLa,I(S) = {¢ €
o, | ¢ = true} for all s € S, it trivially holds that:
~pp gbg,= 52 < ‘FBMLH (51) = ]:l(D)MLg 1(52)
Induction Hypothesm Given ¢ € N, we assume that for all j =0,.
~bp gbg,= 52 < ‘FPMLH 1(51) ]:PMLH 1(52)
Induction Step: We prove both implications for i + 1 by reasoning on their cor-
responding contrapositive statements, i.e., we prove that:
i+1 i+1 1
R, (1) # Pl (52) = s A
(=) If fg{,}h (s1) # f;‘{,}LH _(s2), then there are two cases:

— If Fpnirs, (51) # Fharna, (52), then by the induction hypothesis it holds that
s1 %FB gbg,— 52 and hence s; %PB ebg.— S2-

- If fPMLlI( 1) = .FPMLEI‘I(SQ) then from ]—'ffl(/[lLa‘I(sl) # f;ﬁLHYI(SQ) it fol-
lows that there exists ¢ € FQ\/}L such that s; € Mpyws,[¢] and sy &

Mpmis, [¢]. We now proceed by 1nduction on the syntactical structure of
¢. Here we only consider the case ¢ = (a); 19" because the other cases
are routine.

From s1 € MpmLa, [(a)p, p,)¢'] and so & Mpnps,[(a)p, pa)@]; it follows
that:

e p1 < Di(Mpyr, [¢]) < ps for some Dy such that s; — Dy,
e Dy(Mpwmrs,[¢']) < p1 or Da(Mpara, [¢']) > p2 for all Dy such that
So i) DQ .

Since ¢’ € IFPMLH .» by the induction hypothesis there exists G € 29/ ~PB gbe.=
such that (Joeg C= Mpmis, [¢']. Then:

o DI(UG) = q € Ry, ).

e Dy(lJG) # q for all Dy such that sy —— Ds.
Therefore s; 25 ebg.— S2-

[p1,p2]

(=) If s; %},‘E{gbg; S2, then there are two cases:

—Ifs; %%ngg’: S92, then by the induction hypothesis it holds that f};MLH (s1)
+ fliMLayI (s2) and hence .7-']?1(/[1]43’1(31) #+ ]:}Z;K/%LH’I(SQ).
—If 51 N%B,gbg,: s9, then from s 76??31,gbg,= sy it follows that there exist

pERpand G € 25/~bp.evs.= such that:



e Di(lJG) = p for some D; such that s; 25 D;.

e Dy(|JG) # p for all Dy such that so 25 Ds.
Let G = {C € S/ N%B,gbg,:| Di1(C) > 0} and Gy = {C € S/ NiPngbg,:|
IDy. 55— Dy ADy(C) > 0}. Thanks to the assumptions of image finiteness
and minimal probability, both G; and G5 are finite.
By the induction hypothesis, there exists a distinguishing formula ¢, c,> €
IF{;MLHI for all Cy and Cy in S/ N%’B,gbg,: such that Cy # Cy, i.e.:

C1 € Mpniis,[¢<cy,005]

Can MPML3,1H¢<C1,02>]] =0
Then:

C1eG1\{C} C2eG2\{C}
where \/,;o; ¢i = = \;c; ~¢i for I finite and A, ¢; = true for I =0, yields
a distinguishing formula for s; and s, because:
e 51 € Mpmrs, [{@)p.pPc]-
e so & Mpars,[(@)p 1 90]-

Since (@), 06 € F?I_\/}Llp we derive that fliJﬂdng,I(sl) # ‘FIZ')—K/}LSYI(SQ). |

¢Q = V ( /\ ¢<C,Cl> A /\ ¢<C,Cz>>
ceg

Proof of Thm. 7. The proof of the first result is similar to the proof of Thm. 6 —
based on Lemmata 1 and 2 — up to the use of < in place of = when comparing the
probabilities of reaching a group of equivalence classes and the use of N%B, b, <
FbMLs > > MpyLs -, and (a), in place of ~PBghg,= J PMLa> Mpyrs ;. and
(a)(p, ps) Wherever necessary.

In particular, for the induction step of Lemma 2 we point out that:

— In the (=) part, from s; € MpmLs [{a)p¢'] and so & MpmLs - [{a)pd'],
it follows that:

e Di(Mpwmis - [¢']) > p for some D; such that s, - D.

o Dy(Mpwir, - [¢']) < p for all Dy such that s, — D;.
Since ¢’ € ]F‘iPMLH,>, by the induction hypothesis there exists G € 95/ ~bB gbg, <
such that (Joeg C = MpmLs » [¢']. Then:

e Di(UG) >p.

e Dy(lJG) < p for all Dy such that sy —= Ds.

— In the («<=) part, if s; NiPB,gbg,g s2, then there exist p € Ry ;) and G €

95/~bB,ebs < such that:

e Di(lJG) = p for some D; such that s; 25 Dy.

e Dy(lJG) < p for all Dy such that sy —= Ds.

The distinguishing formula in ]F?N}le for s; and ss is then (a)p¢g.

The proof of the second result is similar to the proof of the first one up to the
use of > in place of < and > in place of < wherever necessary. [ ]



Proof of Thm. 8. Similar to the proof of Thm. 6 — based on Lemmata 1 and 2
— up to the use of | | and [] in place of individual values when comparing the
probabilities of reaching a group of equivalence classes and the use of NiPB,gbg,um
}—lgMLv,ﬂ and Mpyr,; in place of ~PB.ghg,— fléMLll, and Mpyr,, wherever
necessary.

In particular, for the induction step of Lemma 2 we point out that:

—In the (=) part, from s €  Mbpwmr,, [{a)[p, p)®'] and
52 & MpumLy ; [(@)[p, po)@'], it follows that:
o 51— and py <D (MpmLy [¢']) < p2 for all Dy such that s; 25D,
o 55— or Dy(MpwmLy, [¢']) < p1 or Da(Mpwmr,, [¢']) > pa for some D,
such that sy — Ds.
Since ¢’ € IFiPMLvYI, by the induction hypothesis there exists G € 25/~bB,gbg,un
such that (Joeg C = Mpmw, ,[¢']- Then:
esi——and || DiUG =¢" [1 DiUG) = ¢ with ¢,¢" €

a a
81—)D1 51_)D1

Rp, p,] such that ¢’ < ¢”.

essfror || D(UG)>q"or 1 D(UG) <.

s2 —% Dy 53— Ds
— In the (<=) part, if 51 ~bp 4, 52, then there exist pf, pf,ph, py € Ryg 1)
— with p} < p/ and py < p§ — and G € 2%/~Pe.spe.in such that:
esi—and || Di(UG=p, [1 DiUYG) =1t

s1 — Dy 51— Dy
esofror || D(UG)=py #plor [1 DUJG) =01h #p).
s9 —= Dy s2 — Dy

Let G = {O € S/N%’B,gbg,uﬂ | dD;. s1 L>'D1 A Dl(C’) > O} and Go = {C S
S/ NiPngg,un | IDy. 53— Dy A Do(C) > 0}. The distinguishing formula in

IF};IFV}LV . for s1 and sz is then:

e (a)pp, g if s2 —7%+ or it is not the case that p| < p), and pf < p/.
o (a)ppy py10g if s2 %5 and it is the case that pj < p and pj < pf. ]

Proof of Thm. 9. The proof of the first result is similar to the proof of Thm. 6
— based on Lemmata 1 and 2 — up to the use of | | in place of individual values
when comparing the probabilities of reaching a group of equivalence classes and
the use of ~pg 41010 Fpur, oo and Mpur, o in place of ~pg o, ) Fpyr,
and ./\/lpMLE’I wherever necessary.

In particular, for the induction step of Lemma 2 we point out that:

—In the (=) part, from s € Mpn, - [(a)pd']  and
59 & Mpmwy - [(a)pd'], it follows that:

® 5 L> and D (MPMLv,g [[¢/]]) <p for all Dy such that s; i> D;.
e 53—/ or Dy (MpmL, - [¢']) > p for some Dy such that sy - Ds.



Since ¢’ € IF{;MLV _, by the induction hypothesis there exists G € 95/~PB gbg,u
such that Joeg C = Mpar, . [¢/]. Then:
es;——and || Di(UG) <p.
81— D1
e sy—tor || D(UG) >p.
So —=3 Do )
— In the («<=) part, if s; ~pp gbg,u 52, then there exist p € Rjgq and G €
25/~pB.gbs.u such that:
e s and || Di(UG) =p.
s1 — Dy
e soror || DAUG) =g #p
S0 -2 Dy
Let Gi = {C € S/ ~pp gngu| FD1.51 > D1 ADI(C) > 0} and G = {C €
S/ ~bp.gbg. | ID2. 82— Dy A D3(C) > 0}. The distinguishing formula in

i+1 . )
IFPML%S for s; and sy is then:

o (a),dg if s3> or p < q.
o (a),¢¢ if 52— and ¢ < p.

The proof of the second result is similar to the proof of the first one up to the
use of [ in place of | |, > in place of <, < in place of >, and > in place of <
wherever necessary. [ |

Proof of Thm. 10. Let & = (S, A, —) be an NPLTS and s1,s2 € S:

1. The fact that s; ~pp,gis S2 implies S ~ppghe,= S2 is a straightforward
consequence of the fact that a class-distribution probabilistic bisimulation is
trivially a =-group-by-group probabilistic bisimulation.

Suppose now that s; ~pp ghg,= S2. This means that there exists a =-group-
by-group probabilistic bisimulation B over S such that (s1, s3) € B. In other
words, whenever (s/, s5) € B, then for all a € A and G € 25/5:

— For each s} —%+ Dy there exists s, — Dy such that Dy (|JG) = D2(UJG).

— For each s —*+ D, there exists s} — D; such that Dy(|JG) = D1(UG).
This means that, whenever (s}, s5) € B, then for all a € A and G € 25/5:

— If 8§ %, then s5 = with U {Di(UG)}C U {D=(UG)})

S/IL>D1 SIQL)D2
— If s %5, then sf = with U {D(UG)}C U {D1(U9)})
SéL)DQ S/li)Dl

Equivalently, if both s} and s}, have at least one outgoing a-transition, then:
1 2

U ¢l = U {D(U9))

S/l i)Dl 8/2 i>D2
and hence:
U DwU9) = U D2(U9)
sy 2Dy sh =5 Dy
N DU = [1 D2AU9)
sh 25Dy st 25 D,

Therefore, B is also a UrM-group-by-group probabilistic bisimulation, i.e.,
S1 ~PB,gbg,Un S2-



2. Suppose that s; ~pp ghg,< S2. This means that there exists a <-group-by-
group probabilistic bisimulation B over S such that (s1,s2) € B. In other
words, whenever (s}, s5) € B, then for all a € A and G € 25/5:

— For each s} -+ D; there exists s, — Dy such that D;(|JG) < D2(UG).

— For each s —%+ D, there exists s} — D; such that Dy(|JG) < D1(UG).
This means that, whenever (s}, s5) € B, then for all a € A and G € 25/5:

— If 8§ %5, then s, —» with || Di(UG < | D(UJG).

sy - Dy sy~ Dy
— If s -, then sf = with || D(UG) < | Di(UG).
s, — Do sh —* Dy

Equivalently, if both s} and s} have at least one outgoing a-transition, then:
U U9 = U D(U9)
8/1 i) Dl 8/2 i} D2

Therefore, B is also a U-group-by-group probabilistic bisimulation, i.e.,
S1 ~PB,gbg,U S2-

The reverse implication holds too when the NPLTS I/ is image finite. In fact,
this property guarantees that the following two sets:

U {?U9)} and U {D:(U9)}
s) - Dy sl —%5 Do

are finite. In turn, the finiteness of those two sets ensures that their suprema
respectively belong to the two sets themselves. As a consequence, starting

from:
U U9 = U D(U9)

s) —% Dy st~ Ds

L DU9) LI D2(U9)

S/IL>D1 S,2L>'D2

U 2U9 < U DiU9)
s~ Da st =Dy
when both s} and s}, have at least one outgoing a-transition, the following
holds:
— If 85 - D}, then sh) - D) with Dy (IJG) < DyH(UG) because we can
take D) such that D4(JG) = || D2AUJG).
sh 25 D,
— If s, %5 D}, then s} % D! with Dy(JG) < D) (JG) because we can
take D] such that DI(JG)= || Di(UG).
s 2Dy

3. Similar to the previous proof up to the use of > in place of < and M in place
of LI wherever necessary.

4. Suppose that s; ~ppgbe,u S2. This means that there exists a L-group-by-
group probabilistic bisimulation B over S such that (s1,s2) € B. In other
words, whenever (s}, sb) € B, then for all a € A and G € 298 it holds that
s %5 implies s, —— with:

U DU9) = U DU9)

S/IL>D1 S/QL>D2

or equivalently:

IN



Then B must be a M-group-by-group probabilistic bisimulation as well and
hence s1 ~pB ghg,n S2. In fact, if this were not the case, then there would

exist ' € A and G’ € 25/8 such that s %>, s %, and:

[ DuU9) # 11 DAUY)

, , o
Sl—)'Dl SZHD2

As a consequence, denoting by G” the group of all the equivalence classes
not in G’, it would hold that s} =+, s, —%, and:

LU DUe") =1- 11 DulUY)

st a—/) D1 s a—/) D1
#1- [1 D(U9)
sh Ll) Do
= U D(U9")
E L,> Do
thus contradicting the fact that B is a Ll-group-by-group probabilistic bisim-

ulation.

By proceeding in a similar way, we can prove that s; ~ppghe,n S2 implies
51 ~PB,gbg,u S2. Therefore, ~pp ghe 1 a0d ~pB ghg,n coincide.

Finally, we prove that ~PB,gbg,LN and ~PB,gbg,L coincide. If s ~PB,gbg,LN 52,
then s1 ~pB,gbg,u 2 because a LIM-group-by-group probabilistic bisimulation
is trivially a L-group-by-group probabilistic bisimulation. Suppose now that
51 ~PB,gbg,u S2- This means that there exists a Ll-group-by-group proba-
bilistic bisimulation B over S such that (s1,s2) € B. Since B must also be a
M-group-by-group probabilistic bisimulation, whenever (s}, s5) € B, then for
all a € A and G € 29/8 it holds that s} — implies s — with:

U U9 = U DU9)

Sll i) Dl 8,2 _a) D2
M DuU9 = 11 D(U9)
8/1 i} D1 8,2 i) D2
This means that B is also a LIM-group-by-group probabilistic bisimulation,
L.e., $1 ~PB gbg,un S2- n

Proof of Thm. 11. Let U = (S, A,—) be an NPLTS and s1,s2 € S:

1. Since an ordinary transition is a special case of combined transition in which
a single transition is taken with weight 1, it trivially holds that (i) a class-
distribution  probabilistic =~ bisimulation is a  class-distribution
ct-probabilistic bisimulation and (ii) a =-group-by-group probabilistic bisim-
ulation is a =-group-by-group ct-probabilistic bisimulation.

2. The inclusion of ~pp ghe,> in NCPtB,gbg,D is a straightforward consequence of
the fact that an ordinary transition is a special case of combined transition
in which a single transition is taken with weight 1. We now prove the reverse
inclusions:

— Suppose that s; NCPthbgé s2. This means that there exists a <-group-
by-group ct-probabilistic bisimulation B over S such that (s1,s2) € B.
In other words, whenever (s7,s5) € B, then for all @ € A and G €



25/B it holds that for each st =% D there exists sh 25Dy such that
Di1(UG) < D2(UG). On the side of sf, this means that there exist
n € Nso, {pi € Rjgy | 1 <7 < n}, and {sh Dy, | 1 < i < n}
such that Y1 p; =1 and >, p; - Da; = Ds. As a consequence:

Dy(UG) < 3 pi- max Dy(UG)
i=1 1<i<n
= max Dy;(UG)- > pi
i=1

1<i<n

= max DQ’Z‘(U g)

1<i<n
and hence there exists D} such that s, %+ D}, with D1 (JG) < Dy(UG).
This means that B is also a <-group-by-group probabilistic bisimulation,
i.e., 81 ~“PB,gbg,< S2-

The proof that s; N%tB,gbg,z Sy == S1 ~PBghg,> S2 is similar to the
previous proof up to the use of > in place of < and min in place of max
wherever necessary.

Suppose that 51 ~$5 g | S2. This means that there exists a UM-group-
by-group ct-probabilistic bisimulation B over S such that (s1,s2) € B.
In other words, whenever (s},s5) € B, then for all a € A and G € 25/8
it holds that s} —~ implies s} — with:

U U9 = U DU9)

S/1 L)C’DI 8/2 i)CD2
M o9 = 11 DAU9)
s —2. Dy sh—23. Ds

Given a € A, G € 258 and s € S having at least one outgoing
a-transition, when I/ is image finite it holds that:

L PU9 = U DU9)

s—.D s D
[T DUG) = T1 DUY)
s—.D s D

because the supremum and the infimum on the left are respectively
achieved by two ordinary a-transitions of s. In fact, let Dy, (resp. Dn)
be the target of an a-transition of s assigning the maximum (resp. min-
imum) value to |JG among all the a-transitions of s and consider an
arbitrary convex combination of a subset {s — D; | 1 <4 < n} of those
transitions, with weights p1,...,p, and n € N5g. Then:

n n

0 DiU9) € L w-DuU9) = DuUI)
:lem-(ug) > :zlpi-wug) - Da(U9)

As a consequence, whenever (s}, s5) € B, thenforalla € Aand G €
it holds that sj —~+ implies s} — with:

L DU9) = U DAU9)

5,1 Ha Dl 5/2 4)[1 D2

[T DiU9) = T1 DAU9)

S,IL>'D1 S/ZL)DQ

25/8



This means that B is also a LIM-group-by-group probabilistic bisimula-
tion, i.e., s1 ~PB,gbg,LIN S2-
— The proof that s; N%tB,gbg,u Sy = S1 ~PBgbg,u S2 is similar to the
proof that s ~fp o, n 52 == 51 ~PB,gbg,un 52
— The proof that s1 ~f5 gpe 52 = 51 ~PBgbg,n S2 is similar to the
proof that s; ~fp ., jn 52 == 51 ~PB,gbg,un 52
3. The fact that s ~pp g, s2 implies s1 ~Pp . — S2 is a straightforward
consequence of the fact that a class-distribution ct-probabilistic bisimulation
is trivially a =-group-by-group ct-probabilistic bisimulation.
4. Suppose that s; N(F:’tB,gbg,: $o. This means that there exists a =-group-by-
group ct-probabilistic bisimulation B over S such that (s1,s2) € B. In other
words, whenever (s}, s5) € B, then for all a € A and G € 25/5:

— For each s} - D; there exists s, —. Dy such that D1 (|JG) = D2(UJG).

— For each s}, — D, there exists s} —. Dy such that Dy(|JG) = D1(UG).
This implies that, whenever (s}, s5) € B, then for all a € A and G € 25/5:

— For each s} %+ Dy there exists s, . Dy such that D1 (JG) = D2(UG).

— For each s, %+ Dy there exists 8] —. Dy such that Dy (JG) = D1 (U G).
This means that, whenever (s}, s5) € B, then for all a € A and G € 25/5:

— If 8§ %, then s = with | {Di(UG}IC U {DUG)}

S,1 i}g Dl 8,2 —a)c D2
— If sh -5, then s} % with ~ J {D2(UG)}C U {D1(U9G)}
5,2 L)c D2 8,1 i)g Dl

quivalently, 1 (@) S7 and s ave at least one outgoing a-transition, €1
Equivalently, if both s} and s} have at least tgoing a-transition, th

U duU9)r = U {P(U9)}

8/1 i)c Dl 8/2 i>c D2
and hence:
U D.U9 = U DAU9)
S/l iﬂ; Dl 5/2 ih: D2
M DU9 = [1 D2AU9)
S/l ih: Dl 3/2 ih: DQ

Therefore, B is also a LM-group-by-group ct-probabilistic bisimulation, i.e.,
51 N(f)tB,gbg,uﬂ $2.

Suppose now that si ~Pp ., q S2. This means that there exists a UM-
group-by-group ct-probabilistic bisimulation B over S such that (s1, s2) € B.
Given a € A and G € 258, assume that there exists s; — D; such that
Di1(UG) = p. Since (s1,s2) € B and the NPLTS is image finite, there
exist sy —=. Db such that Dy(JG) = p' < p and sy —+. DY such that
DY(JG) = p” > p. If p' = p (resp. p" = p), then s; —— Dy is trivially
matched by sy ——+. D} (resp. sy —. DY) with respect to ~PB gbg,— When
considering G.

Assume that p’ < p < p” and note that s ——. (z - Dy +y - DY) for all
7,y € Ry such that x +y = 1. Indeed, directly from the definition of
combined transition, we have that:



— Since sy —%+. DY, there exist n € Nsg, {p} € Ryg,1) | 1 <4 < n}, and
{s2 D! |1<i<n}suchthat Y.  p.=1and Y  p, D] =D).
— Since sy —. DY, there exist m € Nsg, {Pj € Rpqy |1 <j <m}, and
{s2 =D} [1<j <m}suchthat 7", pf = 1and Y 7", p/ - D} = Dj.
Hence, (z- D) +y-DY) can be obtained from the appropriate combination of:
{53 - D! |1§i§n}U{SQL>D§/|1§j§m}
with coefficients:
{z-p;eRygq |1 Sign}u{y-pg’eR]oﬂ |1<j<m}

1 ’ 1 /
_ p —p _ Dp—p a p_—p / p—p /"
If we take x = P and y = T then so —¢ (p'up' - D5 + P 'DQ)

with:
" e "_ o
Bon Dy + 52Dy ) (UG) = 57Dy (UG + 5 - DY)
1 /
Y A 4 / p—p i
- //_/'p+ 77D
— P —pp 4pp =
1" Il)”ip,
_ . P =p
- p p//_p/
=p=D1(U9)

Due to the generality of (s, s2) € B, a € A, and G € 25/B it turns out that B
is also a =-group-by-group ct-probabilistic bisimulation, i.e., s1 ~§B7gbg7: So.
|



C Multistep Variants Inspired by ~g

We start by introducing the multistep variant of ~g and proving that it coincides
with ~p itself.

Definition 10. Let (S, A,—) be an NPLTS in which the target of each tran-
sition is a Dirac distribution. A relation B over S is a multistep bisimulation
iff, whenever (s1,s2) € B, then for all traces a € A* it holds that:

— For each s, == O, there exists sz = ds, such that (s, s5) € B.
— For each sy == ds, there exists s1 = ds; such that (s, s5) € B.

We denote by ~p.m the largest multistep bisimulation. ]

Theorem 12. Let (S, A,—>) be an NPLTS in which the target of each transi-
tion is a Dirac distribution. Let s1,s5 € S. Then:
S1 ~B,m S2 <= S1 ~B S2

Proof. Suppose that s; ~B.m S2. This means that there exists a multistep bisim-
ulation B over S such that (s1,s2) € B. As a consequence, it holds in particular
that for all (s},sh) € B and a € A:

— For each s) == ds there exists s5 = dsy such that (sY,sy) € B.
— For each sh==> 0§, there exists s} == 0,1 such that (s/,s4) € B.
2 2 1 1 1792

Since == coincides with —, we have that B is also a bisimulation and hence
S1 ~B S2.

Suppose now that s1 ~g Sso. This means that there exists a bisimulation B over S
such that (s1,s2) € B. We prove that B is also a multistep bisimulation, so that
$1 ~B,m S2 will follow. Given s},sy € S such that (s}, s5) € B and oo € A*, we
proceed by induction on |al:

— If |a] = 0, then s) == ds; and sb = dsy, are the only possible computations
from s and s} labeled with o, hence the result trivially holds.

— Let || = n € Nsg and suppose that the result holds for all traces of length
n—1. Assume oo = a . Since (s}, s5) € B and B is a bisimulation, it holds
that for each s) — gy there exists sh -4 dsyr — and symmetrically for each
sh -2 dsyr there exists sy - dgyr — such that (s{’,sy') € B.

Suppose that s == sy with sy = gy and sy’ = dsy. Then there erists

n "

sh 2 dsyr such that (s{’,sy') € B and by the induction hypothesis there

’
. « .
exists sy == 0sy such that (s{,sy) € B. As a consequence, there exists

sh == dsy such that (s, s5) € B. Symmetrically, with a similar argument we

derive that for each s == dsy there eists s} = dsy such that (s, s5) € B.
|



We now provide the ~p n,-inspired definition of each of the probabilistic
bisimilarities considered in this paper and prove that it coincides with the original
one-step equivalence. The ct-variants of the ~g ,-inspired probabilistic bisimi-
larities can be defined similarly and satisfy an analogous coincidence property
with respect to the original one-step ct-equivalences.

Definition 11. Let (S, A,—) be an NPLTS. An equivalence relation B over S
is a multistep class-distribution probabilistic bisimulation iff, whenever
(s1,82) € B, then for all traces a € A* it holds that for each s == D, there exists
sy ==> Dy such that, for all equivalence classes C € S/B, D1(C) = Da(C). We
denote by ~pB.dis,m the largest multistep class-distribution probabilistic bisimu-
lation. [ ]

Theorem 13. Let (S, A,—) be an NPLTS and s1,s2 € S. Then:
$1 ~PB,dis,m S2 <= S1 ~PB,dis 52

Proof. Suppose that s1 ~pB dis,m S2. This means that there exists a multistep
class-distribution probabilistic bisimulation B over S such that (s1,s2) € B. As a
consequence, it holds in particular that for all (s}, s,) € B and a € A, whenever
s} == Dy, then sh== Dy such that, for all C € S/B, Di(C) = Dy(C). Since
== coincides with —, we have that B is also a class-distribution probabilistic
bisimulation and hence s1 ~pB dis S2.

Suppose now that s1 ~pp,dis S2. This means that there exists a class-distribution
probabilistic bisimulation B over S such that (s1,s2) € B. We prove that B is also
a multistep class-distribution probabilistic bisimulation, so that s1 ~pB dis,m 52
will follow. Given s}, s5 € S such that (s}, s5) € B and oo € A*, we proceed by
induction on |al:

— If |a| = 0, then s} == ds; and sy = dsy are the only possible computations
from s} and sb labeled with o and for all C' € S/B it holds that:
_ _J1 if{sispcC
94 (0) = 04(C) = {o if {sh.50) N C =0
because (s}, s5) € B and C' is an equivalence class with respect to B.

— Let |a] = n € Nsg and suppose that the result holds for all traces of length
n—1. Assume o = a . Since (s}, s5) € B and B is a class-distribution prob-
abilistic bisimulation, it holds that for each s} -+ D) there exists s — D
such that, for all C € S/B, D{(C) = D,(C).

Suppose that sy == Dy with s} — D4, si == D1, and Di(s}) > 0. Then
there exists sh— D} such that, for all C € S/B, D}(C) = DL(C). If we
take sy such that (s}, s5) € B and Dj(sy) > 0, by the induction hypothesis
there exists sl == Do such that, for all C € S/B, D1(C) = Do(C). As a con-
sequence, there exists sl == Dy such that, for all C € S/B, D1(C) = Dy(C).

|

Definition 12. Let (S, A,—) be an NPLTS and the relational operator <€
{=,<,>}. An equivalence relation B over S is a multistep p<i-group-by-group



probabilistic bisimulation iff, whenever (s1,s2) € B, then for all traces a € A*
and groups of equivalence classes G € 25/B it holds that for each s; == D, there
exists sy == Dy such that Di(UG) = D2 (IUG). We denote by ~pB ghga,m the
largest multistep D<i-group-by-group probabilistic bisimulation. ]

Theorem 14. Let (S,A,—) be an NPLTS, s1,s2 € S, and e {=,<,>}.
Then:
81 ~PB,gbg,><,m S2 <= S1 ~PB,gbg,x 52

Proof. Suppose that s1 ~pB gbg,sa,m S2. This means that there exists a multistep
>-group-by-group probabilistic bisimulation B over S such that (s1,s2) € B. As
a consequence, it holds in particular that for all (s},s,) € B, a € A, and G €
25/B whenever s} == D, then sh==> Dy such that D1(|JG) > D2(lJG). Since
== coincides with ——, we have that B is also a ><-group-by-group probabilistic
bisimulation and hence s1 ~PB gbg, 52

Suppose now that s1 ~pBgheq S2. This means that there exists a ><-group-
by-group probabilistic bisimulation B over S such that (s1,s2) € B. We prove
that B is also a multistep >-group-by-group probabilistic bisimulation, so that
$1 ~PB,gbg,sa,m S2 Will follow. Given s7,s5 € S such that (s},s5) € B, a € A*,
and G € 25/B | we proceed by induction on |al:

— If |a| = 0, then s} == ds, and sy = ds, are the only possible computations

from s and s labeled with « and it holds that:
1 if {s],s5} C C for some C € G
05, (U9) = 05, (U9) = {o zf}sisﬁ NC =0 foralCeg

because (s, s5) € B and G is a group of equivalence classes with respect to B.

— Let |a| = n € Ny and suppose that the result holds for all traces of length
n — 1. Assume o = ad’. Since (s},s5) € B and B is a >-group-by-group
probabilistic bisimulation, for all G' € 25/8 it holds that for each s|, —+ D
there exists sy — D} such that D} (|JG") > DL(JG").
Suppose that s} == Dy with s}, —% Dy, s < D1, and Di(s]) > 0. Let G’ =
{C"} with C" being the equivalence class containing sy. Then there exists
sh %5 DY such that Dy (UG") > DL(UG'). If we take sl such that (s},sy) €
B and Dj(sy) > 0 — it obviously exists in the case that <€ {=, <} because
Di(sf) > 0, and it also exists in the case that < is > because, if s5 had no
a-transition reaching G' with probability greater than 0, then all a-transitions
of sy would reach G" = 25/B\G' with probability 1 and hence for the transition
s % D} we would have Dy (JG") =1 -Dy(UG") < 1="DyUJG") for all
transitions sy —— Db, i.e., B would not be a >-group-by-group probabilistic
bisimulation — by the induction hypothesis there exists S’Q’é Do such that
D1(UJG) > Do(UG). As a consequence, there exists sy ==> Dy such that
D1(UG) = D2 (U9). u

Definition 13. Let (S, A,—) be an NPLTS. An equivalence relation B over S
is a multistep LIM-group-by-group probabilistic bisimulation iff, whenever (s, s2)



€ B, then for all traces o € A* and groups of equivalence classes G € 25/8 it
holds that s1 = implies s = with:

U DU9 = U D(U9)

s1 = D1 So = Do
M DuU9 = 11 D(U9)
S1 é Dl 82 :oc> D2
We denote by ~pB gbg,un,m the largest multistep LIN-group-by-group probabilistic
bisimulation. ]

Theorem 15. Let (S, A,—>) be an NPLTS and s1,s2 € S. Then:
S1 ~PB,gbg,Urn,m S2 <~ 81 ~PB,gbg,Ln S$2

Proof. Suppose that s1 ~pB gbg,un,m S2. This means that there exists a multistep
LM-group-by-group probabilistic bisimulation B over S such that (s1,s2) € B.
As a consequence, it holds in particular that for all (s},s5) € B, a € A, and
G € 25/B whenever s} ==, then sh==> with:

U DuU9 = U D(U9)

s) == D s == Dy
[ DuU9) = T[1 D(U9)
5/1:a>D1 sééDg

Since == coincides with ——, we have that B is also a LMN-group-by-group prob-
abilistic bisimulation and hence s1 ~PB,gbg,un S2-

Suppose now that s1 ~pB ghg,un S2. This means that there exists a UM-group-
by-group probabilistic bisimulation B over S such that (s1,s2) € B. We prove
that B is also a multistep LIM-group-by-group probabilistic bisimulation, so that
$1 ~PB,gbg,un,m S2 will follow. Given s}, sy € S such that (s},sh) € B, a € A*,
and G € 25/B we proceed by induction on |al:

— If |a| = 0, then s} == ds; and sy = ds;, are the only possible computations
from s} and s} labeled with o and it holds that:
_ 1 if{s),sh} CC for some C €G
60 (UG) = 04,(UG) = {0 if {s),sbyNC =0 for dlC €G

because (s, s5) € B and G is a group of equivalence classes with respect to B.

Therefore:
U DiU9) =64 U9) = 0,UG) = LU DAU9)
s’1=a>D1 s'2=a>D2
[ DiU9) =6 (U9) = 05,UG) = [1 D(U9)
s) == D sh == Dy

— Let |a] = n € Nsg and suppose that the result holds for all traces of length
n —1. Assume o = ad’. Since (s}, s5) € B and B is a UMN-group-by-group
probabilistic bisimulation, for all G' € 25/8 it holds that s}, —* implies sb —

with:
U DuUg) = U DrUG)
s LN D} sh LN D),
[ DuUg) = 1 DyUG)
s LN D} st LN D),

Suppose that s} == with s} %+ D}, s{ ==, and D}(s}) > 0. Let G’ = {C"}



with C' being the equivalence class containing sy. Then sh —+ with:

U DiJg) = U DUg)

s i>’Di st L>D’2
[ DyUg) = T[1 DyU9)
s i>'Di st L>D’2

If we take si and D} such that (s},s4) € B, Dy(sy) >0, and sy~ D}, by
the induction hypothesis we have that s§ = with:

U DuU9 = U D(U9)
st é Dy sy é& Do
[ DU9) [ D(U9)

e, e,
s = D1 sy => D3

« .
As a consequence, st =—> with:

U DiuU9) L D2(U9)

s'1=a>D1 s’2=a>D2

M DuUg) M D(U9)

s =% Dy sh == D, [ |

Definition 14. Let (S, A, —) be an NPLTS and symbol # € {||,[1}. An equiv-
alence relation B over S is a multistep #-group-by-group probabilistic bisim-
ulation iff, whenever (s1,s2) € B, then for all traces a € A* and groups of
equivalence classes G € 25/B it holds that s, == implies so = with:
# DiU9) = # D(U9)
S1 :a> Dl S2 :‘1> DZ
We denote by ~pB gbe,#,m the largest multistep #-group-by-group probabilistic
bisimulation. [ |

Theorem 16. Let (S, A,—>) be an NPLTS, s1,s2 € S, and # € {||,[|} Then:
81 ~PB,gbg,#,m 52 <= S1 ~“PB,gbg,# 52

Proof. Similar to the proof of Thm. 15. With regard to the induction step of the
proof that $1 ~pB ghg,# S2 implies S| ~pB ghg,# m S2, we observe that sy and D)
such that (s7,s4) € B, Dj(s4) > 0, and sh —= D} obviously exist in the case that
# is U because Di(sY) > 0. They also exist in the case that # is M because, if
sy had no a-transition reaching G' (the group composed only of the equivalence
class containing sy ) with probability greater than 0, then all a-transitions of sh
would reach G = 25/B \ G with probability 1 and hence we would have:
[ DiUg”) <1t = T[1 Dy(UG")
s LN D} st LN D)

i.e., the considered relation B would not be a TM-group-by-group probabilistic
bisimulation [ |

We conclude by showing that all the considered ~p ,-inspired probabilistic
bisimilarities collapse into ~p ;, when restricting attention to fully nondetermin-
istic processes. An analogous result holds for their ct-variants.

Theorem 17. Let (S, A,—) be an NPLTS in which the target of each transi-
tion is a Dirac distribution. Let s1,s2 € S and o € {=,<,>,UMN,U,M}. Then:



$1 ~PB,dis,m S2 <= S1 "PB,gbg,o,m 52 <= S1 ~B,m 52

Proof. Since every multistep transition of this specific NPLTS can reach with
probability greater than 0 a single state and hence a single class of any equivalence
relation — which are thus reached with probability 1 — the reflexive, symmetric,
and transitive closure of a multistep bisimulation is trivially a multistep class-
distribution probabilistic bisimulation, a multistep =-group-by-group probabilistic
bisimulation, a multistep <-group-by-group probabilistic bisimulation, a multi-
step >-group-by-group probabilistic bisimulation, a multistep UM-group-by-group
probabilistic bisimulation, a multistep U-group-by-group probabilistic bisimula-
tion, and a multistep M-group-by-group probabilistic bisimulation. [ ]



D Multistep Variants Inspired by ~pp

We start by introducing the multistep variant of ~pg and proving that it co-
incides with ~pp itself. Given an NPLTS (S, A, —) in which the transitions
of each state have different labels and given s € S, o € A*, and S’ C S, we
inductively define the multistep probability of reaching a state in S’ from s via

a as follows:
S D(s') - prob,,(s',a/,S") if a =aa’ and s -2 D

s'eS
prob, (s,a,8") = ¢ 1 ifa=cand se€ 9’
0 if « =aa and s >

ora=cands¢s

Definition 15. Let (S, A,—) be an NPLTS in which the transitions of each

state have different labels. An equivalence relation B over S is a p-multistep

probabilistic bisimulation iff, whenever (s1,s2) € B, then for all traces a € A*

and equivalence classes C' € S/B it holds that s; == implies sy = with:
prob,, (s1,a,C) = prob,,(s2,,C)

We denote by ~pB.pm the largest p-multistep probabilistic bisimulation. [ ]

Theorem 18. Let (S,A,—) be an NPLTS in which the transitions of each
state have different labels. Let s1,s2 € S. Then:
81 ~PB,pm S2 <= S1 ~PB S2

Proof. Suppose that s; ~pBpm S2. This means that there exists a p-multistep
probabilistic bisimulation B over S such that (s1,$2) € B. As a consequence, it
holds in particular that for all (s},s,) € B, a € A, and C € S/B, whenever
s} =%, then sh==> with:
prob,,(sh,a,C) = prob,, (sh,a,C)

Since == coincides with — and for all s € S such that s — D it holds that:

prob(s,0,C) = 3 D(s') = D(C)

s'eC

we have that sy —— Dy implies s —+ Dy with D1(C) = Dy(C). In other words,
B is also a probabilistic bisimulation and hence s; ~pp So.
Suppose now that s1 ~p S2. This means that there exists a probabilistic bisim-
ulation B over S such that (s1,s2) € B. We prove that B is also a p-multistep
probabilistic bisimulation, so that s1 ~pg pm s2 will follow. Given s, s5 € S such
that (s},s5) € B, « € A*, and C € S/B, we proceed by induction on |a|:

— If |a| =0, then s} == ds; and sy = ds, are the only possible computations

from s} and s} labeled with o and it holds that:
- / /!
prob,, (s},a,C) = prob,,(sh,a,C) = {(1) Z g,i: iﬁ %CC: 0

because (s}, s5) € B and C is an equivalence class with respect to B.

— Let |a] = n € N5 and suppose that the result holds for all traces of length
n—1. Assume o = a . Since (s}, s5) € B and B is a probabilistic bisimula-
tion, for all C' € S/B it holds that for each s} —25 D there exists sh 25D,



such that D1(C") = Da(C").
Given s € S such that s == with s — D, it holds that:
prob, (s,a,C) = > D(s') - prob,,(s',a/,C)

s'eS

= > > D(s) - prob,, (s, o, C)
C’eS/B s'eC’

= Y. D(s') - proby,(scr,a/,C)
C'eS/B s'€C

= > proby(sc,a',C)- > D(s)
c’es/B s'ec

= > prob,(sc,a,C)-D(C)
ces/B

where s € C' and the factorization of prob,, (scr,a’,C) stems from the
application of the induction hypothesis on o' to all states of each equiv-
alence class C'. Since for each sy —— D; there exists sh—+ Do such that
D1(C") = Do(C") for all C" € S/B — remember that the quantification over
C" can be equivalently anticipated or postponed in the absence of internal
nondeterminism — we derive that, whenever st ==, then s == with:
prob,, (s}, a,C) = prob,, (sh, a,C) n

When considering an arbitrary NPLTS (S, A, —), internal nondeterminism
comes into play and hence there might be several computations labeled with the
same trace belonging to different resolutions of nondeterminism. In that case,
their multistep probabilities have to be kept separate, otherwise their multistep
probabilities can be summed up like in the case of reactive probabilistic processes.

Since preserving the connection between each computation and the resolution
of nondeterminism to which it belongs is important to define a ~pg n-inspired
multistep variant of ~pp gis, we formalize below the notion of resolution. We call
resolution of a state s of an NPLTS U any possible way of resolving nondeter-
minism starting from s. Each resolution is a tree-like structure whose branching
points represent probabilistic choices. This is obtained by unfolding from s the
graph structure underlying ¢/ and by selecting at each state a single transition
of U — deterministic scheduler — or a convex combination of equally labeled tran-
sitions of U — randomized scheduler — among all the transitions possible from
that state. A resolution of s can be formalized as an NPLTS Z rooted at a state
zs corresponding to s, in which every state has at most one outgoing transition
and hence function prob,, can be safely applied.

Definition 16. Let U = (S, A,—>) be an NPLTS and s € S. We say that
an NPLTS Z = (Z,A,—z) is a resolution of s obtained via a deterministic
scheduler iff there exists a state correspondence function corr : Z — S such that
s = corr(zs), for some zs € Z, and for all z € Z:

— If 2% 2D, then corr(z) == D’ with D(2') = D'(corr(z')) for all 2’ € Z.
— If 222Dy and z 252 Dy, then a1 = ay and Dy = Ds.

We denote by Res(s) the set of resolutions of s. [



On the basis of the notion above, we provide a ~pp pm-inspired definition
of ~pp,gis and show that it coincides with ~pp gis itself. The ct-variant of the
~pB,pm-inspired equivalence can be defined similarly and satisfies an analogous
property with respect to the original one-step ct-equivalence.

Definition 17. Let (S, A,—) be an NPLTS. An equivalence relation B over S
is a p-multistep class-distribution probabilistic bisimulation iff, whenever (s1, s2)
€ B, then for all traces o € A* it holds that for each z,, = in a resolution
Z, € Res(sy) there exists z,, == in a resolution Z € Res(sq) such that for all
equivalence classes C € S/B:
prob, (zs,, «, corrgll (@) = prob,(2s,, corrgi (@)

We denote by ~pB dis,pm the largest p-multistep class-distribution probabilistic
bisimulation. [ |

Theorem 19. Let (S, A,—>) be an NPLTS and s1,s2 € S. Then:
$1 ~PB,dis,pm S2 < S1 ~PB.dis 52

Proof. Suppose that s1 ~pB dis,pm S2. This means that there exists a p-multistep
class-distribution probabilistic bisimulation B over S such that (s1,s2) € B. As a
consequence, it holds in particular that for all (s}, s5) € B and a € A, whenever
Zs == in a resolution Z; € Res(sy), then Zsy == in a resolution Zy € Res(s)
such that for all C € S/B:
prob,, (zs,, a, corrz,ll(C)) = prob,, (2s,,a, 007“7“221(0))
Since == coincides with = and for all s € S such that zs — D in a resolution
Z € Res(s) it holds that:
prob,, (zs, a, corrz* (0)) = > D(zs) = D(corrz'(C))
ZS/EC()rr;l(C)
we have that for each s 25D, there erists sh 25Dy such that, for all C €
S/B, D1(C) = D2(C). In other words, B is also a class-distribution probabilistic
bisimulation and hence s1 ~pB dis S2-
Suppose now that s1 ~pp,dis S2. This means that there exists a class-distribution
probabilistic bisimulation B over S such that (s1, s2) € B. We prove that B is also
a p-multistep class-distribution probabilistic bisimulation, so that s1 ~pB dis,pm 52
will follow. Given s}, sh € S such that (s}, s5) € B and o € A*, we proceed by
induction on |al:

— If |af = 0, then zy = 6., and Zg, ==6., are the only possible compu-
°1 2
tations labeled with « in any resolution Z, € Res(s}) and any resolution
Z5 € Res(sh), respectively, and for all C € S/B it holds that:
Proby (2,0, com3H(C)) = proby (s comr3H(C)) =

L if{s1,s5} CC
0 if{s],sh}nC=0
because (s}, s5) € B and C is an equivalence class with respect to B.
— Let |a] = n € N5 and suppose that the result holds for all traces of length
n—1. Assume o = a . Since (s}, s5) € B and B is a class-distribution prob-
abilistic bisimulation, it holds that for each s 25D there exists sh 25D,



such that, for all C € S/B, D1(C) = D3(C).
Given s € S such that z, == with z; — D in a resolution Z € Res(s), for
all C € S/B it holds that:
prob,, (zs, a, corrz' (C)) =
= 3 D(zy) - proby(ze,, corrz'(C))

ZS/EZ

= > > D(zg) - prob,,(zs, corrgl(C))
C'e€S/B 2, ecorrz (C7)

= > > D(zyr) - prob,, (zs.,, o, corr}l (@)
C'e€S/B 2 ecorrz (C7)

= > proby(zs.,, <, corrgl(C’)) . > D(zy)
C'eS/B z5/€co7'7;1(0’)

= > proby(zs., 0, corr;(C)) ~D(cor7‘§1 c)
Cc'eS/B

where sci € C' and the factorization of prob,,(zs.,, ', corrz'(C)) stems
from the application of the induction hypothesis on o’ to all states of each
equivalence class C'. Since for each sy - Dy there exists s —— Dy such
that, for all C" € S/B, D1(C') = Da(C’), we derive that, whenever zg, =
in a resolution 21 € Res(s}), then zg, == in a resolution Z5 € Res(sh) such
that for all C € S/B:

pr’obm(zsl1 , Q, corrgl(C)) = pr’obm(zsl2 , Q, corrz,l(C)) m

Using the notion of resolution, we can also provide a ~pg pm-inspired defini-
tion of each of the six group-by-group probabilistic bisimilarities. The ct-variants
of the six ~pp pm-inspired group-by-group probabilistic bisimilarities can be de-
fined similarly.

Definition 18. Let (S, A,—>) be an NPLTS and the relational operator <€
{=,<,>}. An equivalence relation B over S is a p-multistep p<-group-by-group
probabilistic bisimulation iff, whenever (s1,s2) € B, then for all traces a € A*
and groups of equivalence classes G € 25/8 it holds that for each z,, == in a
resolution 21 € Res(s1) there exists z,, == in a resolution Zy € Res(ss) such
that:
prob,, (zs,, @, corr}ll (UG)) x prob,, (zs,, a, corrgi(U Gg))

We denote by ~pB,gbg,sa,pm the largest p-multistep >-group-by-group probabilistic
bisimulation. [ |

Definition 19. Let (S, A,—) be an NPLTS. An equivalence relation B over S
is a p-multistep LIM-group-by-group probabilistic bisimulation iff, whenever
(s1,82) € B, then for all traces a € A* and groups of equivalence classes G € 25/8
it holds that s; —> implies s == with:



L] prob,,(zs,,, corr}ll(U Gg)) =

Z1€Res(s1)s.t. 25 =

LI proby, (zs,, @, corrz, (U 9))

Z3€Res(s2)s.t. 25, =

I_l prObm(Zé‘l’a’ COTT;}(U g)) =
Z1€Res(s1)s.t. 25 =
[1 proby, (zs,, @, corrz; (UG))
ZaE€Res(s2)s.t. 2ay =
We denote by ~pB gbg,un,pm the largest p-multistep LIN-group-by-group proba-
bilistic bisimulation. [ |

Definition 20. Let (S, A,—) be an NPLTS and symbol # € {||,[1}. An equiv-
alence relation B over S is a p-multistep #-group-by-group probabilistic bisim-
ulation iff, whenever (s1,s2) € B, then for all traces a € A* and groups of
equivalence classes G € 25/8 it holds that s; == implies so = with:
# prob,, (zs,, , corrZ(U g)) =
Z1€Res(s1)s.t. 25 =
# proby, (2, o corrz, (UG))
ZaERes(s2)s.t. 2ay =
We denote by ~pB gbg,#,pm the largest p-multistep #-group-by-group probabilistic
bisimulation. [ |

The six ~pp pm-inspired group-by-group probabilistic bisimilarities can be
alternatively defined without making explicit use of the notion of resolution.
Given s € S, a € A*, and S’ C S, we inductively define the set of multistep
probabilities of reaching a state in S’ from s via « as follows:

U { X D) ps | ps € probset,, (s, ', 5")}

s D $'€5 if « =aa’ and s
probset (s, o, 8") = ¢ {1} ifa=cand se€ S
{0} if o =aao and s >

ora=cands ¢S
Since probset,, (s, a, S") = {prob,,(zs, a, corrz'(S')) | Z € Res(s)}, it is easy to
see that in Defs. 18 to 20 we could have used probset,,(s;, o, |JG) in place of
prob,, (zs,, @, corrgil(U G)) for ¢ = 1,2. This is not possible in Def. 17 because
the use of probset,, causes the connection between each computation and the
resolution to which it belongs to be broken.

Each of the six ~pp pm-inspired group-by-group probabilistic bisimilarities
is contained in the corresponding original one-step equivalence. The ct-variants
of the six ~pp pm-inspired group-by-group probabilistic bisimilarities satisfy an
analogous inclusion property with respect to the original one-step ct-equivalences.

Theorem 20. Let (S, A,—) be an NPLTS, si1,s9 € S, and o € {=,<,>,
um, U, m}. Then:
81 ~PB,gbg,0,pm S2 = S1 ~“PB,gbg,0 52



Proof. Let o =€ {=,<,>} and suppose that s1 ~pB gbg,pm S2. Lhis means
that there exists a p-multistep D<i-group-by-group probabilistic bisimulation B
over S such that (s1,s2) € B. As a consequence, it holds in particular for
all (sy,s5) € B, a € A, and G € 25/8 that for each Zsr =% in a resolution
Zy € Res(s}) there exists zg == in a resolution Zy € Res(sh) such that:
probm(zsll,a, corrgll(u G)) > probm(zsé,a, corr:z;(U g))
Since == coincides with —— and for all s € S such that zs — D in a resolution
Z € Res(s) it holds that:
prob, (zs,a, corrz*(UG)) = > D(zy) = D(corrz' (UG))
zSIECOTT;I(U g)
we have that for each s} — Dy there exists sy — Dy with D1 (JG) =< D2 (U G).
In other words, B is also a >-group-by-group probabilistic bisimulation and hence
S$1 ~PB,gbg,> S2-
Suppose now that s1 ~pB gbe,un,pm S2. This means that there exists a p-multistep
UM-group-by-group probabilistic bisimulation B over S such that (s1,s2) € B. As
a consequence, it holds in particular for all (s}, sh) € B, a € A, and G € 25/
that, whenever s) ==, then sh == with:
L] pmbm(zsfl,oz, corrzyll(U Gg)) =

Z1E€Res(s])s.t. Zst =

L prob,(zey, @, corrz; (UG))

Z3€Res(sh) s.t. 25, =

[ proby, (2, @, corrz (UG)) =

Z1E€Res(s])s.t. Zst =
[ prob, (25, @, corr}j ua))
Z3€Res(sh) s.t. 25, =
Since == coincides with - and for all s € S such that zs — D in a resolution
Z € Res(s) it holds that:
proby,(zs,a, corrz'(JG)) = > D(zy) = D(corrz'(UG))

ZS/ECOTTEI(U g)
we have that sy — implies sb —— with:

U DuU9 = U DU9)

s'li>D1 s’Qi>D2
[ DuUY) = [1 D2(U9)
s’li)Dl SIQL)’DQ

In other words, B is also a UMN-group-by-group probabilistic bisimulation and
hence s1 ~pPB gbe,un S2-

Finally, the proof that $1 ~pPB,gbg,#.pm S2 implies $1 ~pp,gbg,# S2 for # € {U,M}
is similar to the proof that s1 ~pB gbg,un,pm S2 Mplies 51 ~PB gbg,un S2. [ |

Unlike Thm. 19, the reverse implication of Thm. 20 does not hold in general.
For example, in Fig. 6 we have that si ~ppgbe,= S2 but s1 %pBgbe,=pm 52
because, for & = a b ¢ and G containing all the states with no outgoing transitions,
it turns out that the multistep probability of reaching G via « in the maximal
resolution of s starting with the rightmost a-transition — which is 0.1-0.740.9-



S

a a

0 8 7777777777 O 2 0 1y 9.9 0 9 7777777777 O 1 0 1y O 9

b b b f b b b
0703 0604 0703 060 4 0703 0604
c d c e ¢ d c e c d c e

9
a
a a
0.8 0.2 0.1 0.9 0.9 0.1

Fig. 6. Two models related by ~pp ghg,— that are distinguished by ~pB gbg,=,pm

0.6 = 0.61 — is not matched by any of the multistep probabilities of reaching G
via a in the three maximal resolutions of s starting with the three a-transitions
— which are 0.8-0.74+0.2-0.6 = 0.68, 0.1 - 0.7 = 0.07, and 0.9 - 0.6 = 0.54.

We conclude by showing that all the considered ~pp pm-inspired probabilistic
bisimilarities collapse into ~pp pm When restricting attention to reactive proba-
bilistic processes. An analogous result holds for their ct-variants.

Theorem 21. Let (S,A,—) be an NPLTS in which the transitions of each
state have different labels. Let s1,s5 € S and o € {=,<,>,UMN,U,M}. Then:
S1 ~PB,dis,pm 52 <= 51 ~PB,gbg,0,pm 52 <= 51 ~PB,pm 52

Proof. Since every state of this specific NPLTS has at most one transition la-
beled with a certain action, a p-multistep probabilistic bisimulation is trivially a
p-multistep =-group-by-group probabilistic bistmulation, a p-multistep <-group-
by-group probabilistic bisimulation, a p-multistep >-group-by-group probabilistic
bisimulation, a p-multistep LMN-group-by-group probabilistic bisimulation, a p-
multistep LI-group-by-group probabilistic bisimulation, and a p-multistep M-group-
by-group probabilistic bisimulation. ]



